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ABSTRACT

Many applications for FMCW radar systems require the
resolution of several closely spaced frequencies. In general
the Fast Fourier Transform (FFT) is used for spectrum
estimation, despite the inherent resolution problems. To
overcome the resolution limitation the state space approach
has been proposed in [1-3]. However, most experimental
results in [1-3] are based on simulations. This paper points
out the differences of the "real world" signal structure to
simulated signals, and describes the problems posed by real
radar signals. For one of the key steps of the state space
algorithm, model order selection, a novel algorithm based on
a posteriori analysis is introduced. The feasibility of the new
approach is verified with an actual 24 GHz level gauging
FMCW radar system. Our approach yields stable and accu-
rate results with a resolution approximately three times
higher than the FFT resolution.

1. INTRODUCTION
Precise close distance ranging using radar systems is a very

interesting and demanding radar application [4]. Technical

problems like multiple echo suppression, signal interference,

resolution of closely spaced targets and robustness to clutter

noise have to be solved. Additionally, the available bandwidth is

limited by technical means and official regulations.

In general FMCW radar systems are well suited for level

gauging. They allow the resolution of  multiple targets and yield

precise, energy efficient measurements [4-5]. In most FMCW

systems the measured distance is derived from the spectrum of

the received signal. Typically, the spectrum estimation is done

with the Fast Fourier Transform (FFT) since it is a well known

reliable, stable and fairly fast algorithm. The next step is then the

search for maxima in the fourier spectrum. Ideally each maxi-

mum corresponds to a reflecting target, and the respective dis-

tance is computed from the frequency of the maximum [5].

However, the resolution of closely spaced targets in the FFT

spectrum is limited by the bandwidth [6]. The resolution prob-

lems associated with the FFT cause strong measurement errors

when the desired target, i.e., a liquid level in a tank, is close to

another target, i.e. a traverse in a tank. Additionally clutter noise

components close to targets are not resolved, causing severe

measurement errors. State space methods according to [1-3]

have been shown to achieve a far better resolution of closely

spaced spectral components than the FFT.

Usually the state space approach consists of two steps: First a

singular value decomposition is made, and only the components

representing the noise parts are rejected. This requires an

accurate and consistent estimation of the number of signal

components, the so called model order. The second step is the

extraction of the frequencies from the remaining signal

components.

The experimental results in [1-3] have been obtained with

simulations of 2 to 3 ideal sinuoids superimposed with white

noise. The signal structure of applied industrial systems usually

differs significantly. For instance FMCW radar system signals

compose of many different superimposed sinusoids, some of

them with small magnitude forming clutter noise. Additionally,

technical signals always inhibit small non-linearity and other

systematic distortions [7]. These problems significantly disturb

the model order estimation suggested in [1] and require a com-

pletely new approach to model order estimation.

To our knowledge, no adaptation of the state space algorithm

to typical FMCW radar signals has been made. The goal of this

paper is to show the necessary modifications of the state space

algorithm to process FMCW radar signals. The new approach is

verified with experiments, using a 24 GHz tank level gauging

radar system described in [4]. The first actual field measure-

ments yield an increase in resolution by a factor of three over

conventional FFT processing.

The paper is structured as follows: First a short review of the

applied algorithm according to [1] is given. Then the limitations

of conventional model order selection are discussed and the new

approach is introduced. The next section contains our experi-

mental results and compares state space and FFT evaluation.

2. STATE SPACE APPROACH
The initial signal consists of the measurement data of super-

imposed undamped sinusoids, and additional white noise ( )nξ .

This can be written as:
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where y(n) is the actual measurement, p represents the model

order, ωk the frequency and ck is the complex amplitude of the

signal. Most technical systems yields only real undamped sinu-

soidal signals. For such systems the model order p equals two

times the number of sinusoidal signal components q. To obtain

the desired state space representation we first introduce a state

vector X(n)  that contains the past p measurements y(n-1)...y(p):
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Using the state space vector and the linear predictability of

sinusoidal signals, the state propagation equation is obtained:

( ) ( )nXF1nX ccc ⋅=+ (3)

with Fc being the state space transition matrix. It can be shown

that the eigenvalues λ i of the state space transition matrix F then

contain the  frequencies ωk, or more exact [1]:

p...1ke kj
k == ⋅ωλ (4)

The state space transition matrix can be obtained from any

factorization of the covariance matrix F [1], the most common

approach is the use of the singular value decomposition. With

$R  being an estimator of the Toeplitz Covariance Matrix with

size L L×  and L > p one can compute the SVD:

H
VSUR̂ ⋅⋅= (5)

Then, the noise reduction by eliminating the last L-p elements

and the corresponding eigenvectors is performed. The state space

matrix F is computed from U using the least squares approach.

At first, one sets up a matrix Θ1 consisting of U without the first

row, and then another matrix Θ2, consisting of U without the last

row. F is then given by:

+Θ⋅Θ= 21F (6)

where Θ2
+
 denotes the pseudoinverse of Θ2 .

Obviously the correct estimation of the model order p is the

crucial point for the success of the noise reduction. In most

practical applications the estimation of the model order becomes

very complicated, due to the large number of sinusoids present.

3. MODEL ORDER SELECTION
The simplest approach to the determination of the model order

is the singular value spectrum [1]. An ideal input signal for the

state space system consists only of p superimposed exponentials.

For such a system the rank of the covariance matrix equals the

number of independent exponentials. Clearly the SVD of R (5)

then yields p non-zero eigenvalues of the covariance matrix as

shown in Fig. 1 a). The fact that the eigenvalues are not exactly

zero but have a very small magnitude is caused by quantization

noise and round off errors. The gap between those eigenvalues

representing the signals and those caused by quantization is more

than 120 dB. However, it is important to note that each

eigenvalue represents a superposition of the underlying
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Fig. 1:  singular value spectrum of the proposed spectrum

a) simulated signals without noise b) radar signals

exponential signals. Therefor a pair of eigenvalues does not

necessarily represent a specific sinusoid.

The initial system proposed in (1) consists of sinusoids with

additive white noise. Then the covariance matrix R in (5) is of

full rank, and consequently all eigenvalues are greater then zero.

The algorithm proposed in [1] assumes that the magnitude of the

singular values due to noise are significantly smaller. It works as

follows: The eigenvalue spectrum is searched for a gap between

two singular values σ that is greater than a certain threshold ∆σ:

σ σj j− ≥−1 ∆σ 1,,1Q,Qj K−= (7)

Starting from a small value singular value, the singular value

spectrum is searched towards the larger singular values. The

singular values above the first gap exceeding the threshold are

considered as signal components, the ones below are rejected as

noise components. Fig. 1 a) shows the eigenvalues of a simu-

lated frequency spectrum and b) the eigenvalues of a real radar

spectrum. In case a) where simulated signals without additive

white noise are shown, the separation can easily be done. The

singular values caused by quantization errors are rather small.

Case b), the true radar spectrum is different. No clear gap is

visible, and no obvious decision boundary can be found.

The underlying assumptions of the state space model are

strictly  sinusoidal signals with superimposed white noise. Hence

the attempt to fit a state space model to real radar signals is

prone to yield systematic misfits. Problem is that our radar

signals contain both clutter noise and slight non-linearity [7].

These distortions of the signals add additional signal compo-

nents. Furthermore these components can be fairly small. Hence

the noise and signal space are no longer completely separable.

Now recall that each eigenvalue represents a superposition of

different underlying signals. As soon as one or several compo-

nents belonging to the signal space are cut off in the model order

selection process all underlying signals will be affected. De-

pending on the specific situation the rejection of eigenvalues

representing parts of the signal space can even lead to a spec-

trum estimation that has no physical meaning. Consequently, our

first implementations of the state space algorithm performed

very poor, lacking stability and consistency.

The measured signals impose new requirements on model or-

der selection: An application oriented algorithm has to cope with



the systematic misfits and the fact that no clear decision bound-

ary between eigenvalues representing signal components and

those representing noise components exists. It has to resolve as

many distorted frequencies in the best possible way while at the

same time guaranteeing stability by suppressing not resolvable

signal components. This approach contradicts classic model

order estimators, that are designed to detect the total number of

exponentials. Hence the threshold based algorithm, and other

algorithms like the Akaike Information Criteria (AIC) in [8] fail

to account for the structure of our radar signals and consequently

yield poor overall performance.

To develop a new model order algorithm one has to find a

model order selection process that attempts to resolve as many

signal components as possible while not resolving any compo-

nents induced by noise or unresolvable systematic distortions. At

first, we observed the effects of mal-selected model orders. They

can be devided into the effects of choosing a too large model

order (overmodeling) and of choosing a model order that is too

small (undermodeling).

Let us first consider the observed effects of overmodeling:

•  One signal will be represented by two closely spaced signals

with very large amplitudes. These are called spurious signals [3].

•  Undamped signals can accidentally be resolved as damped

signals, represented by complex frequencies [9].

•  The last effect is the resolution of noise frequencies, peaks

that occur in the spectrum due to noise. However, these noise

frequencies are limited in magnitude.

The effects of undermodeling are different:

•  Two different signals are represented as a single signal

component, that is some average of the two components. The

underlying averaging principle is unknown, and appears to be

highly phase and magnitude dependant. The estimated spectrum

no longer displays the physical properties of the underlying

signal.

•  A single frequency with no neighboring signals might not be

resolved at all.

Additionally, there are application specific characteristics

that can be used. Most near field ranging  applications show only

small changes in between two adjacent measurements. For

instance the frequencies of systematic disturbances will vary

only by small amounts and the targets are fairly steady over a

few seconds. Therefore the model order will only change slowly

and by small amounts, i.e. there will be at maximum one addi-

tional reflector in each new measurement. Furthermore the

underlying signals are real undamped sinusoids. Hence the

model order is an even number, that has to be changed by even

numbers only.

The proposed approach to the determination of the model or-

der p is to first assume an initial number of q sinuoids and com-

pute the frequencies with the corresponding model order p.

Then, in step two, overmodeling is detected by checking for

complex frequencies, peaks below the noise level and peaks that

are too closely spaced. If any of the above mentioned is detected,

the assumption about the number of independent sinusoids, q is

reduced by one or respectively, the model order p by 2. The
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Figure 2   Flow chart of the adaptive model order criteria

frequencies are computed with the new model order. The

checking for overmodeling is done, and the procedure is

repeated until the estimated frequencies exhibit no signs of over-

modeling. The algorithm is summarized in Figure 2.

The setting of the noise threshold strongly depends on the

SNR, hence it becomes critical in  those cases where the SNR

changes between the measurements. Our experiments have

shown that the resolution of small noise frequencies is fairly

harmless, so one might as well allow their occurrence. Another

way to detect noise frequencies is to recall that the frequencies

only vary by a small ∆f, and that there will be no abrupt changes

in the model order. Then, one can detect noise frequencies by the

fact that their relative frequencies vary by a strong ∆f between

two measurements.

The undermodeled case is harder to detect. The frequencies

estimated with the small model order p do not exhibit any spe-

cial behavior. Our algorithm avoids undermodeling by starting

with a relatively high model order, and by increasing the model

order in-between two measurements. This approach is confined

to applications with only slow variations in between measure-

ments, or respectively a fast measurement rate.

4. RESULTS
Our experimental setup consists of the 24 GHz radar system

described in [7]. Several obstacles are placed at various distances

from 1 to 10 m. The surrounding of the experiment has many

potential reflectors for clutter noise and multi-path echoes in

between the objects and between the antenna and the objects

occur. Hence it is not possible to create a situation were all the

frequencies of the signals are known a posteriori. Therefore

verification of the theoretical claims in experiments is relatively
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Figure 3: multi-target spectrum

complicated. One cannot judge whether one peak in the spec-

trum equals a multi path frequency or the superposition of  tar-

gets. The only measurable goal is the accurate resolution of the

known objects.

However, the measurement time, or more accurate, the length

of the measured signals are proportional the bandwidth of

FMCW-radar systems. Now the peak width of the fourier spec-

trum is proportional to the employed signal length [6]. Therefore

the fourier resolution is proportional to the FMCW bandwidth.

Hence the resolution of a reference measurement with FFT

evaluation at higher bandwidth will be a good reference about

the spectrum obtained in a specific measurement situation. Once

the reference measurement is made a second measurement with

lower bandwidth is evaluated with both FFT and state space

approach. The results are compared to those of the reference

measurement, and one is able to see if all signal components are

resolved at the lower bandwidth or not.

The reference measurement is made with a bandwidth of 600

MHz, the actual measurement with approximately on third of the

bandwidth at 200 MHz. Fig. 3 shows the FFT spectrum for both

600 MHz and 200 MHz, plus the state space approach evaluation

for 200 MHz. It is obvious that the state space approach

evaluation at 200 MHz resolves all signal components resolved

by the FFT evaluation of the 600 MHz signal. At the same time

performance of the FFT with the 200 MHz signal is very poor,

resolving only 3 peaks, with one of them being a combination of

2 peaks. The FFT evaluation at the lower bandwidth does not

yield reasonable estimates of the physical nature of the signal. At

the same time the state space approach is capable of resolving

the same target at one third of the Radar bandwidth, equaling a

signal length of one third. In other words, the resolution has been

increased by a factor of three.

5. CONCLUSIONS
A novel model order selection algorithm for state space spec-

trum estimation is derived from the practical observations made

with a radar system. The new approach accounts for the typical

 properties of technical radar signals. Our experiments with a

commercial 24 GHz radar unit show that the adapted state space

algorithm increases the resolution by a factor of three over the

Fast Fourier Transform. At the same time the new algorithm

yields stable and consistent results. For the first time the benefits

associated with state space frequency estimation have been

brought to use for industrial radar based distance measurement.
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