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ABSTRACT

Many applications for FMCW radar systems require the
resolution of several closely spaced frequencies. In general
the Fast Fourier Transform (FFT) is used for spectrum
estimation, despite the inherent resolution problems. To
overcome the resolution limitation the state space approach
has been proposed in [1-3]. However, most experimental
results in [1-3] are based on simulations. This paper points
out the differences of the "real world" signal structure to
simulated signals, and describes the problems posed by real
radar signals. For one of the key steps of the state space
algorithm, model order selection, a novel algorithm based on
a posteriori analysis is introduced. The feasibility of the new
approach is verified with an actual 24 GHz level gauging
FMCW radar system. Qur approach yields stable and accu-
rate results with a resolution approximately three times
higher than the FFT resolution.

1. INTRODUCTION

Precise close distance ranging using radar systems is a very
interesting and demanding radar application [4]. Technical
problems like multiple echo suppression, signal interference,
resolution of closely spaced targets and robustness to clutter
noise have to be solved. Additionally, the available bandwidth is
limited by technical means and official regulations.

In general FMCW radar systems are well suited for level
gauging. They allow the resolution of multiple targets and yield
precise, energy efficient measurements [4-5]. In most FMCW
systems the measured distance is derived from the spectrum of
the received signal. Typically, the spectrum estimation is done
with the Fast Fourier Transform (FFT) since it is a well known
reliable, stable and fairly fast algorithm. The next step is then the
search for maxima in the fourier spectrum. Ideally each maxi-
mum corresponds to a reflecting target, and the respective dis-
tance is computed from the frequency of the maximum [5].

However, the resolution of closely spaced targets in the FFT
spectrum is limited by the bandwidth [6]. The resolution prob-
lems associated with the FFT cause strong measurement errors
when the desired target, i.e., a liquid level in a tank, is close to
another target, i.e. a traverse in a tank. Additionally clutter noise
components close to targets are not resolved, causing severe

measurement errors. State space methods according to [1-3]
have been shown to achieve a far better resolution of closely
spaced spectral components than the FFT.

Usually the state space approach consists of two steps: First a
singular value decomposition is made, and only the components
representing the noise parts are rejected. This requires an
accurate and consistent estimation of the number of signal
components, the so called model order. The second step is the
extraction of the frequencies from the remaining signal
components.

The experimental results in [1-3] have been obtained with
simulations of 2 to 3 ideal sinuoids superimposed with white
noise. The signal structure of applied industrial systems usually
differs significantly. For instance FMCW radar system signals
compose of many different superimposed sinusoids, some of
them with small magnitude forming clutter noise. Additionally,
technical signals always inhibit small non-linearity and other
systematic distortions [7]. These problems significantly disturb
the model order estimation suggested in [1] and require a com-
pletely new approach to model order estimation.

To our knowledge, no adaptation of the state space algorithm
to typical FMCW radar signals has been made. The goal of this
paper is to show the necessary modifications of the state space
algorithm to process FMCW radar signals. The new approach is
verified with experiments, using a 24 GHz tank level gauging
radar system described in [4]. The first actual field measure-
ments yield an increase in resolution by a factor of three over
conventional FFT processing.

The paper is structured as follows: First a short review of the
applied algorithm according to [1] is given. Then the limitations
of conventional model order selection are discussed and the new
approach is introduced. The next section contains our experi-
mental results and compares state space and FFT evaluation.

2. STATE SPACE APPROACH

The initial signal consists of the measurement data of super-
imposed undamped sinusoids, and additional white noise & (n)
This can be written as:
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where y(n) is the actual measurement, p represents the model
order, wy the frequency and c is the complex amplitude of the
signal. Most technical systems yields only real undamped sinu-
soidal signals. For such systems the model order p equals two
times the number of sinusoidal signal components q. To obtain
the desired state space representation we first introduce a state
vector X(n) that contains the past p measurements y(n-1)...y(p):
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Using the state space vector and the linear predictability of
sinusoidal signals, the state propagation equation is obtained:

X (n+1)=F, X.(n) 3)

with F. being the state space transition matrix. It can be shown
that the eigenvalues A; of the state space transition matrix F then
contain the frequencies w, or more exact [1]:

A =e®k=1.p 4)

The state space transition matrix can be obtained from any
factorization of the covariance matrix F [1], the most common
approach is the use of the singular value decomposition. With

R being an estimator of the Toeplitz Covariance Matrix with
size¢ L XL and L > p one can compute the SVD:

R=UBIV! 5

Then, the noise reduction by eliminating the last L-p elements
and the corresponding eigenvectors is performed. The state space
matrix F is computed from U using the least squares approach.
At first, one sets up a matrix @, consisting of U without the first
row, and then another matrix ©,, consisting of U without the last
row. F is then given by:

F=0, [0} ©)
where ©," denotes the pseudoinverse of ©, .

Obviously the correct estimation of the model order p is the
crucial point for the success of the noise reduction. In most
practical applications the estimation of the model order becomes
very complicated, due to the large number of sinusoids present.

3. MODEL ORDER SELECTION

The simplest approach to the determination of the model order
is the singular value spectrum [1]. An ideal input signal for the
state space system consists only of p superimposed exponentials.
For such a system the rank of the covariance matrix equals the
number of independent exponentials. Clearly the SVD of R (5)
then yields p non-zero eigenvalues of the covariance matrix as
shown in Fig. 1 a). The fact that the eigenvalues are not exactly
zero but have a very small magnitude is caused by quantization
noise and round off errors. The gap between those eigenvalues
representing the signals and those caused by quantization is more
than 120 dB. However, it is important to note that each
eigenvalue represents a superposition of the underlying
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Fig. 1: singular value spectrum of the proposed spectrum
a) simulated signals without noise b) radar signals

exponential signals. Therefor a pair of eigenvalues does not
necessarily represent a specific sinusoid.

The initial system proposed in (1) consists of sinusoids with
additive white noise. Then the covariance matrix R in (5) is of
full rank, and consequently all eigenvalues are greater then zero.
The algorithm proposed in [1] assumes that the magnitude of the
singular values due to noise are significantly smaller. It works as
follows: The eigenvalue spectrum is searched for a gap between
two singular values O that is greater than a certain threshold Ao:

0;j=0j, >A0 j=Q,Q-1L....1 (7)

Starting from a small value singular value, the singular value
spectrum is searched towards the larger singular values. The
singular values above the first gap exceeding the threshold are
considered as signal components, the ones below are rejected as
noise components. Fig. 1 a) shows the eigenvalues of a simu-
lated frequency spectrum and b) the eigenvalues of a real radar
spectrum. In case a) where simulated signals without additive
white noise are shown, the separation can easily be done. The
singular values caused by quantization errors are rather small.
Case b), the true radar spectrum is different. No clear gap is
visible, and no obvious decision boundary can be found.

The underlying assumptions of the state space model are
strictly sinusoidal signals with superimposed white noise. Hence
the attempt to fit a state space model to real radar signals is
prone to yield systematic misfits. Problem is that our radar
signals contain both clutter noise and slight non-linearity [7].
These distortions of the signals add additional signal compo-
nents. Furthermore these components can be fairly small. Hence
the noise and signal space are no longer completely separable.

Now recall that each eigenvalue represents a superposition of
different underlying signals. As soon as one or several compo-
nents belonging to the signal space are cut off in the model order
selection process all underlying signals will be affected. De-
pending on the specific situation the rejection of eigenvalues
representing parts of the signal space can even lead to a spec-
trum estimation that has no physical meaning. Consequently, our
first implementations of the state space algorithm performed
very poor, lacking stability and consistency.

The measured signals impose new requirements on model or-
der selection: An application oriented algorithm has to cope with



the systematic misfits and the fact that no clear decision bound-
ary between eigenvalues representing signal components and
those representing noise components exists. It has to resolve as
many distorted frequencies in the best possible way while at the
same time guaranteeing stability by suppressing not resolvable
signal components. This approach contradicts classic model
order estimators, that are designed to detect the total number of
exponentials. Hence the threshold based algorithm, and other
algorithms like the Akaike Information Criteria (AIC) in [8] fail
to account for the structure of our radar signals and consequently
yield poor overall performance.

To develop a new model order algorithm one has to find a
model order selection process that attempts to resolve as many
signal components as possible while not resolving any compo-
nents induced by noise or unresolvable systematic distortions. At
first, we observed the effects of mal-selected model orders. They
can be devided into the effects of choosing a too large model
order (overmodeling) and of choosing a model order that is too
small (undermodeling).

Let us first consider the observed effects of overmodeling:

¢ One signal will be represented by two closely spaced signals
with very large amplitudes. These are called spurious signals [3].

* Undamped signals can accidentally be resolved as damped
signals, represented by complex frequencies [9].

e The last effect is the resolution of noise frequencies, peaks
that occur in the spectrum due to noise. However, these noise
frequencies are limited in magnitude.

The effects of undermodeling are different:

e Two different signals are represented as a single signal
component, that is some average of the two components. The
underlying averaging principle is unknown, and appears to be
highly phase and magnitude dependant. The estimated spectrum
no longer displays the physical properties of the underlying
signal.

* A single frequency with no neighboring signals might not be
resolved at all.

Additionally, there are application specific characteristics
that can be used. Most near field ranging applications show only
small changes in between two adjacent measurements. For
instance the frequencies of systematic disturbances will vary
only by small amounts and the targets are fairly steady over a
few seconds. Therefore the model order will only change slowly
and by small amounts, i.e. there will be at maximum one addi-
tional reflector in each new measurement. Furthermore the
underlying signals are real undamped sinusoids. Hence the
model order is an even number, that has to be changed by even
numbers only.

The proposed approach to the determination of the model or-
der p is to first assume an initial number of q sinuoids and com-
pute the frequencies with the corresponding model order p.
Then, in step two, overmodeling is detected by checking for
complex frequencies, peaks below the noise level and peaks that
are too closely spaced. If any of the above mentioned is detected,
the assumption about the number of independent sinusoids, q is
reduced by one or respectively, the model order p by 2. The
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Figure 2 Flow chart of the adaptive model order criteria

frequencies are computed with the new model order. The
checking for overmodeling is done, and the procedure is
repeated until the estimated frequencies exhibit no signs of over-
modeling. The algorithm is summarized in Figure 2.

The setting of the noise threshold strongly depends on the
SNR, hence it becomes critical in those cases where the SNR
changes between the measurements. Our experiments have
shown that the resolution of small noise frequencies is fairly
harmless, so one might as well allow their occurrence. Another
way to detect noise frequencies is to recall that the frequencies
only vary by a small Af, and that there will be no abrupt changes
in the model order. Then, one can detect noise frequencies by the
fact that their relative frequencies vary by a strong Af between
two measurements.

The undermodeled case is harder to detect. The frequencies
estimated with the small model order p do not exhibit any spe-
cial behavior. Our algorithm avoids undermodeling by starting
with a relatively high model order, and by increasing the model
order in-between two measurements. This approach is confined
to applications with only slow variations in between measure-
ments, or respectively a fast measurement rate.

4. RESULTS

Our experimental setup consists of the 24 GHz radar system
described in [7]. Several obstacles are placed at various distances
from 1 to 10 m. The surrounding of the experiment has many
potential reflectors for clutter noise and multi-path echoes in
between the objects and between the antenna and the objects
occur. Hence it is not possible to create a situation were all the
frequencies of the signals are known a posteriori. Therefore
verification of the theoretical claims in experiments is relatively
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Figure 3: multi-target spectrum

complicated. One cannot judge whether one peak in the spec-
trum equals a multi path frequency or the superposition of tar-
gets. The only measurable goal is the accurate resolution of the
known objects.

However, the measurement time, or more accurate, the length
of the measured signals are proportional the bandwidth of
FMCW-radar systems. Now the peak width of the fourier spec-
trum is proportional to the employed signal length [6]. Therefore
the fourier resolution is proportional to the FMCW bandwidth.
Hence the resolution of a reference measurement with FFT
evaluation at higher bandwidth will be a good reference about
the spectrum obtained in a specific measurement situation. Once
the reference measurement is made a second measurement with
lower bandwidth is evaluated with both FFT and state space
approach. The results are compared to those of the reference
measurement, and one is able to see if all signal components are
resolved at the lower bandwidth or not.

The reference measurement is made with a bandwidth of 600
MHz, the actual measurement with approximately on third of the
bandwidth at 200 MHz. Fig. 3 shows the FFT spectrum for both
600 MHz and 200 MHz, plus the state space approach evaluation
for 200 MHz. It is obvious that the state space approach
evaluation at 200 MHz resolves all signal components resolved
by the FFT evaluation of the 600 MHz signal. At the same time
performance of the FFT with the 200 MHz signal is very poor,
resolving only 3 peaks, with one of them being a combination of
2 peaks. The FFT evaluation at the lower bandwidth does not
yield reasonable estimates of the physical nature of the signal. At
the same time the state space approach is capable of resolving
the same target at one third of the Radar bandwidth, equaling a
signal length of one third. In other words, the resolution has been
increased by a factor of three.

5. CONCLUSIONS

A novel model order selection algorithm for state space spec-
trum estimation is derived from the practical observations made
with a radar system. The new approach accounts for the typical

properties of technical radar signals. Our experiments with a
commercial 24 GHz radar unit show that the adapted state space
algorithm increases the resolution by a factor of three over the
Fast Fourier Transform. At the same time the new algorithm
yields stable and consistent results. For the first time the benefits
associated with state space frequency estimation have been
brought to use for industrial radar based distance measurement.
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