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ABSTRACT

Blind channel estimation for SIMO time-varying chan-
nels is considered using only the second-order statistics
of the data. The time-varying channel is assumed to
be described by a complex exponential basis expansion
model (CE-BEM). The linear prediction error method for
blind identification of time-invariant channels is extended to
time-varying channels represented by a CE-BEM. Sufficient
conditions for identifiability are investigated. Cyclostation-
ary nature of the received signal is exploited to consistently
estimate the time-varying correlation function of the data
from a single observation record. The focus of the paper is
on certain theoretical issues.

1. INTRODUCTION

Single-input multiple-output (SIMO) time-invariant FIR
(finite impulse response) models of received signals arise
in several useful baseband-equivalent digital communica-
tions and other applications [1]-[4],[6]. The models and ap-
proaches discussed in [1]-[4],[6] are based on the assump-
tion that either the channel is time-invariant, or it varies
“slowly” so that adaptive (time-recursive) approaches can
track its variations with time. However, if the underly-
ing channel undergoes fast (time-selective) fading, then the
proposed system models and the approaches based on them
will yield degraded performance. In order to handle such
situations, it is desirable to consider approaches based on
models that explicitly account for fast fading.

Prior work on blind identification/equalization for fast
fading channels is sparse. In [7] a basis function expan-
sion approach has been used to convert a time-varying uni-
variate (single user) channel into a time-invariant SIMO
(single-input multiple-output) channel. Standard second-
order statistics-based subspace methods (as in [2]) are then
exploited in [7] for blind channel estimation. Refs. [8]
and [10] use complex exponentials as basis functions. [8]
achieves diversity by using an antenna array (not always
feasible) and treats the single user’s components along each
exponential basis as a virtual user. [10] considers transmit-
ter signal “design” for single-user.
Notation: ρ(A) denotes the rank of matrix A. Super-
scripts H and T denote the complex conjugate transpose
and the transpose operations, respectively. δ(τ ) is the Kro-
necker delta and IN is the N ×N identity matrix.

2. MODEL ASSUMPTIONS

Consider a time-varying SIMO (single-input multiple-
output) FIR (finite impulse response) linear channel with
N outputs. Let {s(n)} denote an i.i.d. scalar information
sequence which is input to the SIMO time-varying chan-
nel with discrete-time impulse response {h(n; l)} (N -vector
channel response at time n to a unit input at time n − l).
Then the channel output vector is given by

x(n) :=

L∑

l=0

h(n; l)s(n− l). (1)
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In a complex exponential basis expansion representation
[8],[10], it is assumed that

h(n; l) =

Q∑

q=0

hq(l)e
jωqn (2)

whereN -column vectors hq(l) (for q = 0, 1, · · · , Q) are time-
invariant. Eqn. (2) is a basis expansion of h(n; l) in the time
variable n onto complex exponentials with frequencies {ωq}.
The noisy measurements of x(n) are given by

y(n) = x(n) + v(n) (3)

Assume the following:

(H1) N > 1, and {h(n; l)} satisfies (2) where the frequencies
ωq (q = 0, 1, · · · , Q) are distinct and known. Moreover,
ω0 = 0 (to represent the time-invariant part).

(H2) Let hi(n; l) denote the i-th component of h(n; l), i =

1, 2, · · · , N . Define Hi(z;n) :=
∑L

l=0
hi(n; l)z−l. As-

sume that for any fixed n, Hi(z;n)’s for i = 1, 2, · · · , N
have no common zeros (i.e. N × 1 H(z;n) with i-th
component Hi(z;n) is irreducible for any given n).

(H3) {s(n)} is zero-mean, white with E{|s(n)|2} = 1.

(H4) {v(n)} is zero-mean, white, uncorrelated with {s(n)},
with E{v(n+ τ )vH(n)} = σ2

vINδ(τ ).

By (H2) and [4], it follows that the [N(K+1)]× [K+L+
1] Sylvester matrix TK;n(h) associated with time-varying
SIMO impulse response {h(n; l)} has full-column rank for
any K ≥ L − 1 where

TK;n(h) :=




h(n;0) · · · h(n;L) · · · 0
...

. . .
. . .

0 0 h(n;0) · · · h(n;L)


 . (4)

3. CHANNEL IDENTIFICATION

3.1. FIR Linear Predictor
Consider the Hilbert space H of square integrable complex
random variables on a common probability space endowed
with the inner product (for scaler complex random variables
x1 and x2) < x1, x2 >= E{x1x

∗
2} where the superscript

∗ denotes complex conjugation (see [5]). Let Sp{xi ∈ I}
denote the subspace of H generated by the random vari-
ables/vectors in the set {xi ∈ I}. Let Hk(s) denote the
subspace generated by the past of x up to time k

Hk(x) := Sp{ xi(k −m), i = 1, 2, · · · , N ; m = 0, 1, · · ·}
(5)

where xi(k) is the i-th element of x(k). Let Hk−1,L(s) de-
note the subspace spanned by a finite past of s

Hk−1,L(s) := Sp{ si(k −m), i = 1, · · · , N ; m = 1, · · · , L}.
(6)

Let (s(k)|Hk−1(s)) denote the orthogonal projection of s(k)
onto the subspace Hk−1(s) [5].



Define the N(K + 1)-column vector

Xn := [xT (n), xT (n− 1), · · · ,xT (n−K)]T (7)

and the K + L+ 1-column vector

Sn := [s(n), s(n− 1), · · · , s(n−K − L)]T . (8)

It then follows from (1), (4), (7) and (8) that

Xn = TK;n(h)Sn. (9)

Since TK;n(h) is full column-rank for all K ≥ L − 1 (by
(H2)), there exists a [K +L+1]× [N(K +1)] matrix UK;n

such that ∀n,

UK;nTK;n(h) = IK+L+1. (10)

It therefore follows that

Xn ∈ Hn,K+L(s), Sn ∈ Hn,K(x), Hn,K+L(s) = Hn,K(x).
(11)

Let us rewrite (1) as

x(n) = e(n) + x̂(n|n − 1) (12)

where
e(n) := h(n; 0)s(n) (13)

and

x̂(n|n − 1) :=

L∑

l=1

h(n; l)s(n− l). (14)

Theorem 1. Under (H1)-(H3), {x(n)} can be decom-
posed as in (12)-(14) such that

E{e(n)xH(n −m)} = 0 ∀m ≥ 1, (15)

x̂(n|n − 1) = (x(n)|Hn−1(x)) , (16)

x̂(n|n − 1) ∈ Hn−1,K+1(x) ∀ K ≥ L− 1, (17)

x̂(n|n − 1) = (x(n)|Hn−1,K+1(x)) ∀ K ≥ L− 1. (18)

The decomposition (12) is unique.
�

Proof: Eqn. (15) follows from (1), (13) and assumption
(H3). It follows from (8) and (14) that

x̂(n|n − 1) ∈ Hn−1,L(s) ⊂ Hn−1(s). (19)

By (11) and (19) we have

Hn−1,L(s) ⊂ Hn−1,K+1(x) ∀K ≥ L− 1. (20)

Therefore, by (12), (15), (20) and the orthogonal projection
theorem (OPT) [5], it follows that (16) and (18) are true as
the “error” e(n) is orthogonal to the data x(n−m) (m ≥ 1),
hence to the subspaces Hn−1(x) and Hn−1,K+1(x) for any
K ≥ L − 1. Uniqueness of the decomposition (12) is a
consequence of the OPT [5].

�����

It follows from Theorem 1 that

x̂(n|n − 1) =

M∑

i=1

Ai;nx(n− i) for some M ≤ L, (21)

and some N ×N matrices Ai;ns. Using (12) and (21), we
have

x(n) =

M∑

i=1

Ai;nx(n− i) + e(n). (22)

By (15) and (22), for m ≥ 1,

E{x(n)xH(n−m)} =

M∑

i=1

Ai;nE{x(n−i)xH(n−m)}. (23)

By the OPT and (18), it is sufficient to consider (23) for
m = l, l+ 1, · · · ,M in order to solve for Ai;ns. Using these
values of m in (23) we have

Rxx(m;n) =

M∑

i=1

Ai;nRxx(m− i; n− i), m = 1, 2, · · · ,M,

(24)
where

Rxx(m;n) := E{x(n)xH(n−m)}. (25)

In a matrix formulation, we may write

[A1;n, · · · , AM;n]R(n)
xxM = [Rxx(1;n), · · · , Rxx(M ; n)]

(26)

where R(n)
xxM denotes an [NM ]×[NM ] matrix with its ij-th

block element as Rxx(j − i;n − i). Note that R(n)
ssM is not

necessarily full rank, therefore, the coefficients Ai;ns are not
necessarily unique. A minimum norm solution to (26) may
be obtained as

[A1;n, · · · , AM;n] = [Rxx(1;n), · · · , Rxx(M ;n)][R(n)
xxM ]#

(27)
where the superscript # denotes the pseudoinverse.

3.2. Estimation of Leading Coefficient
It follows from (13) and (22) that

e(n) = h(n; 0)s(n) = x(n)−
M∑

i=1

Ai;nx(n− i). (28)

Therefore, we have

E{e(n)eH(n)} = h(n; 0)hH(n; 0)

= E{[x(n) −
M∑

i=1

Ai;nx(n− i)]eH(n)} = E{[x(n)eH(n)}

= Rxx(0; n)−
M∑

i=1

Ai;nRxx(i; n) =: Dn. (29)

That is, Dn can be obtained via (29) using the coefficients
Ai;ns and the correlations Rxx(i;n). The matrix Dn is
rank one. Carry out an eigenvalue decomposition (EVD)
of Dn: let λn denote its nonzero eigenvalue and pλn be the
corresponding unit norm eigenvector. Then

h(n; 0) = αn
√
λnpλn for some complex αn 6= 0; (30)

note that |αn|2 = 1. Since the exact value of M is unknown,
we take M = L if L is known. If L is unknown, we take
M = Lu where Lu is an upperbound on L.

Given Dn one can determine h(n; 0) only up to a scalar
αn which may be time-varying. We now investigate how to
determine αn’s up to a time-invariant scalar. Using (2) and
(30), we have (pn :=

√
λnpλn and l ≥ 1)

HBn = [ αnIN αn+lIN · · · αn+lQIN ]Pn (31)

where
H := [ h0(0) h1(0) · · · hQ(0) ] , (32)



Bn :=




ejω0n ejω0(n+l) · · · ejω0(n+lQ)

ejω1n ejω1(n+l) · · · ejω1(n+lQ)

...
... · · ·

...
ejωQn ejωQ(n+l) · · · ejωQ(n+lQ)


 , (33)

Pn := block diag{pn,pn+l, · · · ,pn+lQ}. (34)

Similarly, using h(i; 0) for i = n+ l, n+2l, · · · , n+ l(Q+1),
we have

HΣBn = [ αn+lIN αn+2lIN · · · αn+l(Q+1)IN ]Pn+l

(35)
where

Σ := diag{ejω0l, ejω1l, · · · , ejωQl}. (36)

From (31) and (35) we have

H = [ αnIN αn+lIN · · · αn+lQIN ]PnB
−1
n

= [ αn+lIN αn+2lIN · · · αn+l(Q+1)IN ]Pn+lB
−1
n Σ−1.

(37)
Because of the inherent scale ambiguity in blind identifica-
tion, we will set αn = 1, to arbitrarily “resolve” it. Let

B−1
n =

[
bH1 bH2 · · · bHQ+1

]H
(38)

where bi is 1 × (Q + 1) ∀i. Then (37) can be simplified to
yield

[ αn+lIN αn+2lIN · · · αn+l(Q+1)IN ]A = pnb1

(39)
where A is [N(Q+ 1)]× [Q+ 1] given by

A :=




pn+lb1

pn+2lb2

...
pn+lQbQ

pn+l(Q+1)bQ+1


Σ−1 −




pn+lb1

pn+2lb2

...
pn+lQbQ

0


 (40)

=:
[

AT
1 AT

2 · · · AT
Q+1

]T
(41)

Eqns. (40) and (41) may be rewritten as

Ã [ αn+l αn+2l · · · αn+l(Q+1) ]T = vec
(
bT

1 pT
n

)

(42)

where Ã :=
[

vec
(
AT

1

)
· · · vec

(
AT

Q+1

) ]
. (43)

We show in the Appendix that ρ(Ã) = Q + 1. Therefore,
(42) has a unique solution. Given αn+il (i = 1, 2, · · · , Q+1),
we can obtain hq(0), (q = 0, 1, · · · , Q), via (37). This then
allows us to obtain h(n; 0) ∀n via (2).

3.3. Estimation of Noise Variance
If M > L, then Ai;n = 0 for i > L by virtue of (18).

Lemma 1. Under (H1)-(H3), ρ(R(n+1)
xxM ) ≤ NM + 1 for

M ≥ L where ρ(A) denotes the rank of A.
�

Sketch of proof: It follows from (22) that

[ IN −A1;n · · · −AM;n 0 · · · 0 ]R(n+1)

xx(M+1)

=
[

h(n; 0)hH(n; 0) 0 · · · 0
]
. (44)

Apply Sylvester’s inequality to (44) to deduce the desired
result.

�����

Similar toR(n)
xxM in (26), letR(n)

yyM denote a [NM ]×[NM ]

matrix with its ij-th block element as Ryy(j − i;n − i) =

E{y(n− i)yH(n−j)}. Define similarly R(n)
vvM pertaining to

the additive noise v(n); note that R(n)
vvM = σ2

vIMN . Carry

out an EVD of R(n+1)

yy(M+1) = R(n+1)

xx(M+1) + σ2
vI(M+1)N . Then

the smallest N − 1 eigenvalues of R(n+1)

yy(M+1) (for M ≥ L)

equal σ2
v because under (H1)-(H3), ρ(R(n+1)

xx(M+1)) ≤ NM +

1 whereas under (H4), ρ(RyyL1) = NM + N . Thus a
consistent estimate σ̂2

v of σ2
v is obtained by taking it as the

average of the smallest N − 1 eigenvalues of R̂(n+1)

yy(M+1), the

data-based consistent estimate of R(n+1)

yy(M+1). Data-based

consistent estimation of time-varying correlation function
is discussed in Sec. 3.5.

3.4. Channel Identification
Having obtained e(n) and h(n; 0) (up to a scale factor) for
various n’s, how do we calculate h(n;m) for m = 1, 2, · · ·
(up to the same scale factor)? This aspect is discuss in this
subsection. From (1) and (13), we have

E{x(n)eH(n−m)}

=

L∑

i=0

h(n; i)E{s(n − i)s∗(n −m)}hH(n −m; 0)

= h(n;m)hH(n−m; 0). (45)

Using (28) on the left-side of (45) it follows that

B(m;n) = h(n;m)hH(n−m; 0) where (46)

B(m;n) := Rxx(m;n)−
M∑

i=1

Rxx(m+ i;n)AH
i;n−m. (47)

Hence we have (m = 1, 2, · · ·)

h(n;m) = B(m;n)h(n−m; 0)/‖h(n −m; 0)‖2. (48)

3.5. Correlation Function Estimation
The preceding developments are based on the availabil-
ity of the time-variant correlation function Rxx(m;n) =
E{x(n)xH(n−m)} of the noise-free signal {x(n)}. In prac-
tice we only have noisy data {y(n)}. We now discuss how
to obtain mean-square (m.s.) as well in probability (i.p.)
consistent estimates of Ryy(m;n) = E{y(n)yH(n − m)}
and of σ2

v (noise variance), hence of Rxx(m;n), using the
representation (2).

From (1), (2) and (H3), it follows that

Rxx(m;n) =

Q∑

q1=0

Q∑

q2=0

L∑

l=0

hq1 (l−m)hHq2(l)e
jωq2mej(ωq1−ωq2 )n

=
∑

β


 ∑

q1,q2:ωq1−ωq2 =β

L∑

l=0

ejωq2mhq1 (l −m)hHq2(l)


 ejβn

=:
∑

β

Cxx(m;β)ejβn (49)

where the summation in (49) is over all βs for which β =
ωq1 − ωq2 , (q1, q2 ∈ {0, 1, · · · , Q}). By (H4) and (3),

Ryy(m;n) = Rxx(m;n) + σ2
vINδ(m)

=
∑

β

[
Cxx(m;β) + σ2

vINδ(m)δ(β)
]
ejβn



=:
∑

β

Cyy(m; β)ejβn. (50)

It follows from (49) and (50) that {x(n)} and {y(n)} are
almost cyclostationary sequences with cycle frequencies βs,
β = ωq1−ωq2 [11],[12]. It follows from [12] that m.s. and i.p.
consistent estimates of Cyy(m; β) from the measurements
{y(n), n = 1, 2, · · · , T} can be formed as

Ĉyy(m; β) := (1/T )

T∑

n=1

y(n)yH(n−m)e−jβn. (51)

Therefore, a consistent estimate of Ryy(m;n) is obtained
as

R̂yy(m;n) :=
∑

β

Ĉyy(m; β)ejβn. (52)

A consistent estimate of σ2
v, denote by σ̂2

v, can be obtained
as discussed in Sec. 3.2, after replacing Ryy(m;n) with

R̂yy(m;n) therein. Hence, m.s. and i.p. consistent estimate

of Rxx(m;n), R̂xx(m;n), follows as

R̂xx(m;n) := R̂yy(m;n)− σ̂2
vINδ(m). (53)

3.6. Practical Implementation
Given data y(n), n = 1, 2, · · · , T . Given frequencies ωq,
q = 0, 1, · · · , Q, in the representation (2), and given Lu, an
upperbound on L in (1). Set M = Lu. Form the set of
all possible second-order cycle frequencies β = ωq1 − ωq2 ,
(q1, q2 ∈ {0, 1, · · · , Q}. Pick l ≥ 1 in (31). The following
steps are executed to implement a practical algorithm to es-
timate the channel impulse response at a fixed time instant
n0 ∈ {1, 2, · · · , T}.

1) Estimate Cyy(m;β) as Ĉyy(m; β) using (51). Estimate

Ryy(m;n) as R̂yy(m;n) using (52) for n = n0, n0 −
1, · · · , n0−max(2M, l(Q+1)+M). Obtain the estimate

of σ̂2
v of σ2

v by following the method discussed in Sec.

3.2, after replacing Ryy(m;n) with R̂yy(m;n) therein.

Finally estimate Rxx(m;n) as R̂xx(m;n) using (53) for
n = n0, n0 − 1, · · · , n0 −max(2M, l(Q+ 1) +M).

2) Solve for Ai;n (i = 1, 2, · · · ,M) using (27) after replac-

ing Rxx(m;n) with R̂xx(m;n) therein. This needs to
be done for n = n0, n0 − 1, · · · , n0 −max(M, l(Q+ 1)).

3) Form an estimate D̂n of Dn using (29) for n = n0 −
l(Q + 1), n0 − lQ, · · · , n0. Carry out an EVD of D̂n
to obtain pn =

√
λnpλn . Estimate αn’s for n = n0 −

l(Q + 1), n0 − lQ, · · · , n0, using (42). This allows us
to first estimate hq(0), (q = 0, 1, · · · , Q), via (37) and
then to estimate h(n; 0) ∀n via (2).

4) Finally, h(n0,m) is obtained via (47) and (48) ∀m.

Note that once we estimate h(n,m) at Q+1 distinct values
of n, we can obtain h(n,m) ∀n,m by first uniquely esti-
mating hq(m), q = 0, 1, · · · , Q, via an eqn. similar to (31).

4. APPENDIX

Claim 1. ρ(A) = Q+ 1 where A is defined via (40).
�

Proof: Since ω0 = 0, (40) can be rewritten as

A =


 0

... A
· · · · · · · · · · · · · · · · · · · · ·
pn+(Q+1)lbQ+1Σ

−1


 (54)

where 0 is [NQ]× 1, A is [NQ] ×Q given by

A := block diag.{pn+l,pn+2l, · · · ,pn+Ql}Cn(Σ̃− IQ),
(55)

Cn is Q × Q obtained from B−1
n by deleting its first col-

umn and last row, and Σ̃ := diag{e−jω1l, · · · , e−jωQl}. Us-
ing the result 0.8.4 on p. 21 of [9] relating det(Cn) to
det(Bn) and minors of Bn, and noting the fact that Bn

is Vandermonde, we can show that ρ(Cn) = Q. Hence, by

Sylvester’s inequality, ρ(A) = Q; (we are assuming that
e−jωil 6= 1 for i = 1, 2, · · · , Q). Since the first column of
pn+(Q+1)lbQ+1Σ

−1 is not a null vector, it then follows that
ρ(A) = Q+ 1.

��� �

Claim 2. ρ(Ã) = Q + 1 where Ã is defined via (40),
(41) and (43).

�

Proof: It follows from (40)-(41) that the q-th column of
Ai is given by (e−jωq l− 1+ δ(q−Q− 1))biqpn+li where biq
denotes the q-th element of the row vector bi. Therefore,
ρ(Ai) = 1 ∀i. Since ρ(A) = Q+1, there exist Q+1 linearly
independent rows of A, no two of which belong to the same
submatrix Ai (else ρ(Ai) > 1). Moreover, if one of these
linearly independent rows, r, belongs to Am, then all other
rows of Am lie in the one-dimensional subspace spanned by

r. The desired result then follows from the definition of Ã.
�����
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