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ABSTRACT

Blind channel estimation for SIMO time-varying chan-
nels is considered using only the second-order statistics
of the data. The time-varying channel is assumed to
be described by a complex exponential basis expansion
model (CE-BEM). The linear prediction error method for
blind identification of time-invariant channels is extended to
time-varying channels represented by a CE-BEM. Sufficient
conditions for identifiability are investigated. Cyclostation-
ary nature of the received signal is exploited to consistently
estimate the time-varying correlation function of the data
from a single observation record. The focus of the paper is
on certain theoretical issues.

1. INTRODUCTION

Single-input multiple-output (SIMO) time-invariant FIR
(finite impulse response) models of received signals arise
in several useful baseband-equivalent digital communica-
tions and other applications [1]-[4],[6]. The models and ap-
proaches discussed in [1]-[4],[6] are based on the assump-
tion that either the channel is time-invariant, or it varies
“slowly” so that adaptive (time-recursive) approaches can
track its variations with time. However, if the underly-
ing channel undergoes fast (time-selective) fading, then the
proposed system models and the approaches based on them
will yield degraded performance. In order to handle such
situations, it is desirable to consider approaches based on
models that explicitly account for fast fading.

Prior work on blind identification/equalization for fast
fading channels is sparse. In [7] a basis function expan-
sion approach has been used to convert a time-varying uni-
variate (single user) channel into a time-invariant SIMO
(single-input multiple-output) channel. Standard second-
order statistics-based subspace methods (as in [2]) are then
exploited in [7] for blind channel estimation. Refs. [8
and [10] use complex exponentials as basis functions. |8
achieves diversity by using an antenna array (not always
feasible) and treats the single user’s components along each
exponential basis as a virtual user. [10] considers transmit-
ter signal “design” for single-user.

Notation: p(A) denotes the rank of matrix A. Super-
scripts H and T denote the complex conjugate transpose
and the transpose operations, respectively. d(7) is the Kro-
necker delta and In is the N x N identity matrix.

2. MODEL ASSUMPTIONS

Consider a time-varying SIMO (single-input multiple-
output) FIR (finite impulse response) linear channel with
N outputs. Let {s(n)} denote an i.i.d. scalar information
sequence which is input to the SIMO time-varying chan-
nel with discrete-time impulse response {h(n;1)} (N-vector
channel response at time n to a unit input at time n — ).
Then the channel output vector is given by

x(n) = h(n;l)s(n —1). (1)
=0
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In a complex exponential basis expansion representation
[8],[10], it is assumed that

Q

h(n;l) = hy(l)e’" (2)

q=0

where N-column vectors h(l) (forg = 0,1, - -, Q) are time-
invariant. Eqn. (2) is a basis expansion of h(n;{) in the time
variable n onto complex exponentials with frequencies {wq}.
The noisy measurements of x(n) are given by

y(n) =x(n) +v(n) ®3)
Assume the following;:

(H1) N > 1, and {h(n;!l)} satisfies (2) where the frequencies
wq (g =0,1,---,Q) are distinct and known. Moreover,
wo = 0 (to represent the time-invariant part).

(H2) Let hi(n;l) denote the i-th component of h(n;l), i =
1,2,-+-,N. Define H;(z;n) := ZZL:O hi(n;1)z=' As-
sume that for any fixed n, H;(z;n)’s fori =1,2,--- N
have no common zeros (i.e. N x 1 H(z;n) with i-th
component H;(z;n) is irreducible for any given n).

(H3) {s(n)} is zero-mean, white with E{|s(n)|*} = 1.
(H4) {v(n)} is zero-mean, white, uncorrelated with {s(n)},
with E{v(n + 7)v(n)} = 62Ind(7).
By (H2) and [4], it follows that the [N(K +1)] x [K + L+
1] Sylvester matrix Tx.n(h) associated with time-varying

SIMO impulse response {h(n;!)} has full-column rank for
any K > L — 1 where

h(n;0) h(np;L) --- 0

Tr;n(h) = . (4)

(:) 0 h(n;0) h(n;L)

3. CHANNEL IDENTIFICATION

3.1. FIR Linear Predictor

Consider the Hilbert space H of square integrable complex
random variables on a common probability space endowed
with the inner product (for scaler complex random variables
z1 and z2) < x1,z2 >= E{ziz5} where the superscript
* denotes complex conjugation (see [5]). Let Sp{z; € I}
denote the subspace of H generated by the random vari-
ables/vectors in the set {x; € I}. Let Hp(s) denote the
subspace generated by the past of x up to time k

Hy(x) := Sp{ zi(k —m), i=1,2,--- N, m:O,l,--%)

where z;(k) is the i-th element of x(k). Let Hi_1,1(s) de-
note the subspace spanned by a finite past of s

Hy_1,1(s):=Sp{si(k—m), i=1,---,N; m=1,--- L}

6
Let (s(k)|Hk—1(s)) denote the orthogonal projection of sék;
onto the subspace Hy_1(s) [5].



Define the N(K + 1)-column vector

Xn = [XT(n)7 XT(n - 1)7 : vxT(n - K)]T (7)

and the K 4 L + 1-column vector
Sn :=[s(n), s(n—1), ,s(n— K —L)]". (8)
It then follows from (1), (4), (7) and (8) that
Xn = Tr:n(h)Sh. (9)
Since Tg:n(h) is full column-rank for all K > L — 1 (by

(H2)), there exists a [K + L+ 1] x [N(K +1)] matrix Ux:n
such that Vn,

UkinTrein(h) = I r 1. (10)
It therefore follows that

Xn € Hn,K+L(S), Sn € Hn,K(X), Hn,KJrL(S) = Hn,K(X).

(11)

Let us rewrite (1) as
x(n) = e(n) +X(nln — 1) (12)

where
e(n) := h(n;0)s(n) (13)

and
L
X(nn — 1) := Y "h(n;D)s(n —1). (14)

Theorem 1. Under (H1)-(H3
posed as in (12)-(14) such that

E{e(n)x" (n —m)}

X(nln —1) = (x(n)|Hn-1(x)),
ﬁ(n|n — 1) (S Hn717K+1(X) VK > L — 1,
X(nn—1) = (x(n)|Hp-1,k+1(x)) VK > L — 1.

The decomposition (12) is unique. 0O
Proof: Eqn. (15) follows from (1), (13) and assumption
(H3). It follows from (8) and (14) that

), {x(n)} can be decom-

=0 Vm>1,

Q(n|n — 1) S anl,L(S) C anl(s). (19)
By (11) and (19) we have
Hy 1 L(S) CHyp-1 K+l( )VK >L—1. (20)

Therefore, by (12), (15), (20) and the orthogonal projection
theorem (OPT) [5], it follows that (16) and (18) are true as
the “error” e(n) is orthogonal to the data x(n—m) (m > 1),
hence to the subspaces Hn—1(x) and Hp—1,x+1(Xx) for any
K > L — 1. Uniqueness of the decomposition (12) is a
consequence of the OPT [5]. 00O

It follows from Theorem 1 that

M
= Z A;nx(n—1) for some M <L, (21)

=1

x(n|n — 1)

and some N x N matrices Aj,s. Using (12) and (21), we
have

n) = Z Ainx(n —1i) +e(n). (22)

By (15) and (22), for m > 1,

(n—m)} = ZAimE{x(n—i)XH(n—m)}. (23)

i=1

E{x(n)x"

By the OPT and (18), it is sufficient to consider (23) for
m=10,l+1,---,M in order to solve for A;,,s. Using these
values of m in (23) we have

Rxacmn ZAanxac n_l) m:1127' 7M7
(24)
where
Rz (m;n) := E{x(n)x™(n —m)}. (25)
In a matrix formulation, we may write
[Alﬂlv ) A]\L”]Rgcr;)M = [Rzz(l’ TL), ) RIZ (M7 TL)]
(26)

where REZ;)M denotes an [N M] x [N M] matrix with its ij-th

block element as Rqz(j — 4;n — i). Note that Ri’;}w is not
necessarily full rank, therefore the coefficients A ;s are not
necessarily unique. A minimum norm solution to (26) may
be obtained as

, Rua(M;n)][RSY, 17
(27)

[Al;m ER) AM;”] = [Rm(l;n),

where the superscript # denotes the pseudoinverse.

3.2. Estimation of Leading Coefficient
It follows from (13) and (22) that

e(n) = h(n;0)s( Z Ainx(n—1) (28)

Therefore, we have

E{e(n)e” (n)} = h(n; 0)h" (n; 0)
— Z Ainx(n —i)le”

=Rua(0;n) = > AinRaa(isn) = Do (29)

(m)} = E{[x(n)e" (n)}

That is, D, can be obtained via (29) using the coefficients
A;.»s and the correlations Rye(z;n). The matrix D, is
rank one. Carry out an eigenvalue decomposition (EVD)
of Dy: let A\, denote its nonzero eigenvalue and p, be the
corresponding unit norm eigenvector. Then

h(n;0) = any/Anpar, for some complex an #0; (30)

note that |an|* = 1. Since the exact value of M is unknown,
we take M = L if L is known. If L is unknown, we take
M = L, where L,, is an upperbound on L.

Given D, one can determine h(n;0) only up to a scalar
an, which may be time-varying. We now investigate how to
determine «,’s up to a time-invariant scalar. Using (2) and

(30), we have (pn := vV Anpx, and [ > 1)
HB, = [ anln  antiln antiQln ]Pn (31)

where

H:=[ ho(0) h;(0) ho(0) |, (32)



efwon  gjwo(n+tl) edwo(n+lQ)
efwin  giwi(n+l) w1 (n+lQ)
pivan  giwg(ntl) 90 (nHQ)
Pn := block dlag{pnv Pn+i, - 7pn+lQ}- (34)

Similarly, using h(#;0) for i = n+1l,n+2l,---
we have

;n+1(Q+1),

HXB, = [ an+lIN Oln+2lIN Oén+l(Q+1)IN ]Pn+l

(35)

Y= diag{ejw°l7ejw1l7-~~,eijl}. (36)
From (31) and (35) we have

where

H=[ anln oanpln antioln |P,B;,"
=[ antiIn  aniuln
(37)
Because of the inherent scale ambiguity in blind identifica-
tion, we will set a,, = 1, to arbitrarily “resolve” it. Let

bl " (38)

where b; is 1 x (Q 4+ 1) Vi. Then (37) can be simplified to
yield

B, = b{’ b

[ ontiIn  angaln o1+ IN ] A = pnby

(39)
where A is [N(Q + 1)] X [@ + 1] given by
pn+lb1 pn«Hbl
Pni2ib2 Pn+2ib2
A= : - : (40)
Pn+iQbq Prtigbg
Prti(@+1)bo+1 0
T
=: [ Al A AQ+1 ] (41)

Eqns. (40) and (41) may be rewritten as

Al anyr onta QA 1(Q+1) ]T = vec (bfpz)

(42)
vec (AEH) } . (43)

We show in the Appendix that p( ) = Q + 1. Therefore,
(42) has a unique solution. Given au,yq (i = 1,2, - Q+1)
we can obtain hg(0), (¢ =0,1,---,Q), via (37). This then
allows us to obtain h(n;0) Vn via (2).

where A = [ vec (AlT)

3.3. Estimation of Noise Variance
If M > L, then A;,, =0 for ¢ > L by virtue of (18).
Lemma 1. Under (H1)-(H3), (R;’H})) < NM +1 for

M > L where p(A) denotes the rank of A. 0O
Sketch of proof: It follows from (22) that

[ In 7A1;n *A]Wm o ... ]R(”+1)

zx(M-+1)
= [ h(n;0)h”(n;0) 0 -+ 0 ]. (44)

Apply Sylvester’s inequality to (44) to deduce the desired
result. 0O0OO

Similar to RUY,, in (26), let R?(;;)M denote a [NM]x [N M]
matrix with its éj-th block element as Ryy( j —isn — 1) =
E{y(n—i)y"(n—j)}. Define similarly RmM pertaining to

At In [PuB ST

the additive noise v(n); note that RE}Z)M = USIMN Carry

n+1 n+1
out an EVD of R;y?M)Jrl) = R;JM)H) +o I(M+1)N Then
the smallest N — 1 eigenvalues of R("H) (for M > L)

y(M+1)
equal o2 because under (H1)-(H3), (RS;J{AZ)H)) < NM +
1 whereas under (H4), p(Ryyr,) = NM + N. Thus a

consistent estimate 72 of o2 is obtained by taking it as the

. S(n+1)
average of the smallest N — 1 eigenvalues of Ryy( M+1)0 the
data-based consistent estimate of RV Data-based

yy(M+1)"

consistent estimation of time-varying correlation function
is discussed in Sec. 3.5.
3.4. Channel Identification

Having obtained e(n) and h(n;0) (up to a scale factor) for
various n’s, how do we calculate h(n;m) for m = 1,2,---
(up to the same scale factor)? This aspect is discuss in this
subsection. From (1) and (13), we have

E{x(n)e” (n —m)}

Z (n;i)E{s(n —1)s"(n —

i=0

m)}h" (n —m;0)

= h(n;m)h" (n — m;0). (45)
Using (28) on the left-side of (45) it follows that

B(m;n) = h(n;m)h" (n —m;0) where (46)
M
B(m;n) := Rz (m;n) ZRm m+i;n) AL .. (47)
Hence we have (m =1,2,- :)
h(n;m) = B(m;n)h(n — m;0)/|[h(n —m;0)||*.  (48)

3.5. Correlation Function Estimation

The preceding developments are based on the availabil-
ity of the time-variant correlation function Rz (m;n) =

E{x(n)x H(n—m)} of the noise-free signal {x(n)}. In prac-
tice we only have noisy data {y(n)}. We now discuss how
to obtain mean-square (m.s.) as well in probability (i.p.)

consistent estimates of Ryy(m;n) = E{y(n)y”(n — m)}

and of ¢2 (noise variance), hence of Ry, (m;n), using the
representation (2).
From (1), (2) and (H3), it follows that

Q Q L

=2 2.

q1=0q2=0 I=

L
=) S D eMemhy (- mbg (1) | &
B8

q1,92:Wq) —Wqo =p 1=0

Rao(m;n) hy, (I—m)hl (1)e/?o2™m el (Car —wa)n
0

= Z Can(m; B)e’™™ (49)
B
(49) is over all Gs for which 8 =
,Q}). By (H4) and (3),

Rz (m;n) + o2Ind(m)

where the summation in
Wq; — Wqas (q17q2 € {07 17 o

Ryy(m§n) =

= [Caa(mi B) + o2 Ind(m)3(3)] "
B



= chy(wﬁﬁ)ewn‘ (50)

B
It follows from (49) and (50) that {x(n)} and {y(n)} are
almost cyclostationary sequences with cycle frequencies ﬂs

B = wg, —wq, [11],[12]. It follows from [12] that m.s. and i.p.
consistent estimates of Cy,(m;3) from the measurements

{y(n), n=1,2,---,T} can be formed as
Cyy(m; B) = (1/T) Y y(n)y" (n—m)e 7" (51)

Therefore, a consistent estimate of Ryy(m;n) is obtained

as
Z Cyy(m; B’ (52)

Ryymn

A consistent estimate of o2, denote by 057 can be obtained
as discussed in Sec. 3.2, after replacing Ryy(m;n) with

ﬁyy(m; n) therein. Hence, m.s. and i.p. consistent estimate
of Ruz(m;n), Rax(m;n), follows as

R (m;n) = Ryy(m;n) — 02Ind(m). (53)
3.6. Practical Implementation

Given data y(n), n = 1,2,---,T. Given frequencies wy,
g=0,1,---,Q, in the representation (2), and given L., an
upperbound on L in (1). Set M = L,. Form the set of
all possible second-order cycle frequenaes B = wg — We,
(g1,¢2 € {0,1,---,Q}. Pick Il > 11in (31). The followmg
steps are executed to implement a practical algorithm to es-
timate the channel impulse response at a fixed time instant
no € {1,2,-, T}

1) Estimate Cyy(m; B) as ny( ; B) using (51). Estimate

Ryy(m;n) as Ryy(m n) using (52) for n = no,no —
-,no—max(2M,1(Q+1)+M). Obtain the estimate

of 02 of o2 by following the method discussed in Sec.
3.2, after replacing Ry, (m;n) with Ry, (m;n) therein.

Finally estimate Ra.(m;n) as Raq(m;n) using (53) for
n=mngo,no — 1, -+, no —max(2M,1(Q + 1) + M).

2) Solve for Ay, (i =1,2,---, M) using (27) after replac-
ing Ry (m;n) with Rae(m;n) therein. This needs to
be done for n = ng,no — 1, -+, nog — max(M,1(Q + 1)).

3) Form an estimate ﬁn of D, using (29) for n = ng —

(Q + 1),mn0 —1Q, - ,no. Carry out an EVD of D,

to obtain p, = \/_p,\ Estimate a,’s for n = ng —

(Q+1),n0 —1Q,--,no, using (42). This allows us
to first estimate hg(0), (¢ =0,1,---,@Q), via (37) and
then to estimate h(n 0) Vn via (2).

4) Finally, h(no, m) is obtained via (47) and (48) Vm.
Note that once we estimate h(n, m) at Q41 distinct values
of n, we can obtain h(n,m) Vn,m by first uniquely esti-
mating hg(m), ¢ =0,1,---,Q, via an eqn. similar to (31).

4. APPENDIX

Q + 1 where A is defined via (40). O
can be rewritten as

0,
[ ............. A (54)

Pri(@+1)ibor1Z

Claim 1. p(A) =
Proof: Slncew =

where 0 is [NQ] x 1, A is [NQ] x Q given by

A := block diag.{Pn-ri, Pns2t, Pt} Cn (S — IQ()éS

C, is Q x @ obtained from B, by deleting its first col-

umn and last row, and % 1= diag{e 7*1! ... e7I¥al} Us
ing the result 0.8.4 on p. 21 of [9] relatmg det(C,) to
det(Bn) and minors of B,,, and noting the fact that B,
is Vandermonde, we can show that p(C,) = Q. Hence, by
Sylvester’s inequality, p(A) = Q; (we are assuming that
e @il £ 1 for i = 1,2,---,Q). Since the first column of
Pr+(Q+1)1b@+1 ¥ ~! is not a null vector, it then follows that
p(A)=Q+1. OO0
Claim 2. p(A) =
(41) and (43). O
Proof: It follows from (40)-(41) that the g-th column of
A, is given by (779" — 14 §(q — Q — 1))bigDPnt1: where byg
denotes the g-th element of the row vector b;. Therefore,
p(A;) = 1Vi. Since p(A) = Q+1, there exist Q+1 linearly
independent rows of A, no two of which belong to the same
submatrix A; (else p(A;) > 1). Moreover, if one of these
linearly independent rows, r, belongs to A,,, then all other
rows of A, lie in the one-dimensional subspace spanned by

r. The desired result then follows from the definition of A.
ooa

Q + 1 where A is defined via (40),
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