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ABSTRACT

The secondmomentbasedindependentomponentanaly-
sisschemef Molgedey andSchusters generalizedo frac-
tional low order moments,relevant for linear mixtures of
heavy tail stableprocessesThe Molgedey andSchusterl-
gorithmstandutby allowing explicitly constructiorof the
independentomponentsSurpricingly, this turnsout to be
possiblealsofor decorrelatiorbasedn fractionallow order
moments.
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1. INTRODUCTION

Reconstructionf independentomponentérom linearmix-
turesis an importantsignal processingesearchareawith
numerougracticalapplicationd1, 2]. Typically, indepen-
dent componentanalysis(ICA) proceedsrom non-linear
transformation$3, 4] or from temporalcorrelationg5, 6].
ThesecondnomentasedMolgede/-Schusteapproactas-
sumesthatthe independensourceshave differentautocor
relationfunctions[5, 7, 8]. Themainvirtue of theapproach
is that an explicit solution (reconstructiorof sourcesand
mixing matrix) is possible.In [8] we appliedthe Molgedey-
Schusteralgorithmto image mixturesand we proposeda
minor modification of the algorithm that relieves a prob-
lem of the original approach,namelythat it occasionally
producescomplex mixing coeficients and sourcesignals.
Attias and Schreinemproposeda very rich ICA frameawork
basedon higher order statisticsand decorrelation9, 10,
allowing for completelygenerabndlearnablesourcedistri-
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butions,however at the price of significantadditionalcom-
putation.

In this contribution we analyzedynamicdecorrelation
for heavy tail stablerandomsignal,andwe provide agener
alizationof theMolgede/-Schustealgorithmbasednfrac-
tional low ordermomentsratherthansecondnoments.

2. STABLE DISTRIBUTIONS AND SOME
PROPERTIES

Randomvectorsfollowing a stabledistribution are stable
with respecto addition,i.e.,if X andY, arestablethenso
isthesumZ = X + Y. A randomvectorfollows a strictly
symmetricstabledistribution iff its characteristidunction
hastheform [11]

_ | exp {tTAt} a=2
= { exp { [ |¢%s[" u(ds)} 0<a<2

wheret € R™ andu(dS) is afinite Borel measurecalled
thespectraimeasureS is the unit sphereanda is thechar
acteristicexponent.A randomvariableX thatis distributed
by a symmetricstabledistribution with characteristiexpo-
nenta is denotedX ~ SaS. In the classof stabledis-
tributions we find the normal distribution o = 2 andthe
so-calledCauchydistributiona = 1. In generakhelow or-
der stabledistributions have heavy tails, and are supposed
to model,e.g.,speechsignals. Becauseof the heavy tails,
higher order momentsdo not exists, hence,ICA methods
basednsecondnomentsarenotwell-definedfor thesesig-
nals. For multivariatestablevariablesthe spectraimeasure
carriesinformation aboutthe dependencieamongthe in-
dividual componentandthis may be usedfor independent
componentanalysis[12]. Herewe shav thatindependent
dynamic componentan be reconstructedxplicitly a la
Molgedey Schusterevenif the signalsfollow stabledistri-
butions.



Our derivation is basedon the generalizeccovariation
betweerrandomvariablesX andY” jointly Sa.S asdefined
in[11]

X, Y], = /S 2@V (dS) @)

with thedefinition z(>~1) = |z|*~" sign(z). Notethat
[X,Y], = 0isnecessarput not sufficientfor X andY” to
be independent.The covariationhasa corvenientpseudo-
linearity property Let X;, X5, Y7 andY; bejointly SaS
andY7, Y, independenthen

[a1 X7 + a2 X5, 0:Y7 + bzyz]a =
a1 [ X1, V1], 08 M an [Xo, Vi) 00 +
al [X17 )/Q]a bg_1+ GQ [X27 }/2](1 bg_l (3)

From the covariationwe canderive the covariation coefi-
cient

— [X7 Y]a
M=, “
which hasthe property[11]
E (Xy<p71))
AXY = ————+ 5
XY E (YY<p_1>) ( )

for 1 < p < a. By equation(5) we canestimatehe covari-
ationcoeficientfrom data.

3. DECORRELATION BASED ON FRACTIONAL
LOW ORDER MOMENTS

We arenow equippedo generalizehe Molgedey-Schuster
approachandstartout by definingthe matrix of obsened
signalsX with elements

Xt =Y AmiSin 0<t<T (6)

whereA,, ; arethemixing coeficientsforming the mixing
matrix A, S, is aninstanceof the j** Sa.S sourcesignal
written asanelementin thematrix S and N, is the number
of sourcesWe now assumehatthe differentsourcesignals
areindependent,

[Sjts Si4r], =0 j#i TER. )

The covariationcoeficient betweenX,, ; and X,, ;4, can
befoundusingequationg4) and(6)

N, N,
[Zj:l Am,jSjt> 2z An,isi,t+r]
o

I:Eiisl An,iSijt4r Efvzsl An,,'Si’t_,_.,.] 3
(8)

/\Xm,t,Xn,H-f =

Finally, we use that the sourcesare independenthence,
equation(3) is valid, providing

\ S T Ay [Sie, Siarel, ALY
Xm,an,t T a—
’ Z;V:sl Ziiﬁ An,j [S',t-i-ra Si,t-i—f]a Aﬁz,i Y

9)

We definematricesA (™) with elementsAsZ,)n = AXpnt, X tgrs
B(7) with thenominatorof equation(8) aselements

N, Ny
BO, =35 A [Sie Siaar  ASTY (10)

j=1i=1

anda diagonalmatrix D with the denominatorfrom equa-
tion (8) aselements

N, N,
Dn,n = Z Z An,j [Sj,t+T7 Si,t—i—r]a Afgiil) (11)

j=1i=1

AssumingstationarityD isindependentf r, sothatA (") =
B()D~!. Fromequation(10) it is seenthatB(") decom-
posednto

B = ACMAT Y (12)

where AT s the signednorm appliedto eachele-
mentof AT. C(7) is the matrix with eIementsC](.:.) =

[Sj,¢> Sit+7],,» andwe noticethatC(™) is diagonalsincethe
sourcesareindependentWe next form the quotientmatrix

Q,

Q™ ADAO T _ gngo~!

= ACTATETDATE N g0 A
ACMCO AT (13)

We cannow constructthe mixing matrix A by solvingthe
eigervalueproblem,

Q¥ =T (14)

if weidentify @ = A andl’ = C(DC© ™",

In short, we have shovn our main result, namelythat
it is possibleto recover the mixing matrix from fractional
low order moments. The sourcesignalsare subsequently
estimatecby S = A~1X.

3.1. Sampleestimatesof Fractional Low Order Moments

Equation(5) providesthe estimateof the elementof A"

1 T—1—1 {(p—1)
N T—7 Et:o Xm,tXn,t-i-r
)‘Xm,t,Xn,t+r = (15)

1 T-1 (pfl)
T £it=0 Xn,tXn,t




from a sampleof T measurementdNe canthenform

Qo = ng K(O)_l
T —1
= xxO (xx00") 7 )

-7

hence solve theeigervalueproblemto obtaintheestimated
mixing matrix. In theaboveequatioriX (7) is thezeropadded
matrix X shiftedby alag . The choiceof 7 is a question

onehaveto dealwith. The optimalchoicewill bothdepend

ontheaccuray ontheestimatecelementsn C(7) andC(®)

andon the actualtrue valuesin C(C(© ™", 7 shouldbe
selectedsowe have thelargestdifferencein theeigervalues
of Q™ i.e. in CMC® ™! comparedo their accurag. In
this paperwe will notaddresshisfurther, but suggestising
T=1.

4. EXPERIMENTAL RESULTS

We illustrate the performanceof the generalizatiorof the
Molgedey-Schustemlgorithmby analyzingmixing of syn-
theticdatafollowing a stabledistribution, andby mixing of
two speeclsignals.

4.1. Synthetic data

We perform experimentson mixing of two signalsin two
channelsin thefirst we mix two independentinit-variance
Gaussiarsignalsby the mixing matrix

[ 0.8944 0.4472

A= 0.3714 0.9285

containingwo non-orthogonahormalizedows. Thesource
signalshave differenttemporaldependenciegyneis white
noise,while the otheris low-passfiltered with a FIR-filter
with two coeficientshg = 1 andh; = 0.8. We shav in
Figurel scatterplot®f the“true signals”andtherecovered
signalsfrom the estimatedmixing matrix estimatedfrom
the conventional Molgedey-Schusteralgorithm. Next we
mix two similar stablesignalsdravn from distributionswith
a = 1.5, hencewith heayy tails, by the samemixing ma-
trix. In Figure 2 we shaw the scatterplotof the true and
estimatedsignals.
The two different scenariodead to similar estimated

mixing matrices

A

bt

_ [ 0.9034 0.4287]

A — | 0-9367 0.3503
| 0.2812 0.9597 o

0.4272  0.9041

demonstratinghatit is possiblereliably to reconstrucinde-
pendenstablesourcesignalsby thegeneralizedolgedey-
Schusteschemeijn casesvherethe secondnomentcorre-
lationswould not corvergefor largesamples.

4.2. Speech data

Finally, we considetheblind separatiomf amixtureof two
speectsignals. The signalsaretwo sourcesignalsusedin
[13]. We usethe samemixing matrix asin theabove exam-
ple. In Figure3 we show the scatterplobf thetrueandes-
timatedsignalsusing the corventionalMolgedey-Schuster
algorithmandin Figure4 usingthe newv schemeusingp =
1.8. Therecoveredsignalsarevery similar, indicatingthat
thecorventionalalgorithmis robustto theunderlyingdistri-
bution of the sourcesignals.We conjecturethatthis robust-
nessis relatedto the fact that the corventionalMolgedey-
Schusteralgorithm proceedsrom the ratio of two second
ordermomentsandthattheratio might have betterstatisti-
cal propertiesthanthe two individual momentsthis is the
topicfor on-goingresearch.

5. CONCLUSION

We havederivedanew algorithmgeneralizinghatof Molge-
dey andSchustef5] basednfractionallow ordermoments.
We have provideda schemdor estimatingthe relevantmo-
mentsfrom finite samplesanddemonstratethe viability of
the new algorithmin a syntheticdataset. However, we also
found that the original algorithmis fairly robustto possi-
bly diverging secondorder moments and conjecturedhat
the explanationcould berelatedto the factthatthe corven-
tional algorithmis basedn theratio betweertwo diverging
terms,possiblyimproving the statisticalproperties.
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Fig. 1. Original Gaussiarsourcej.e. a = 2 signalsagainst
recoveredsourcesignalswhenusingthe original Molgedey

and Schusterlgorithm(p = 2). In this setupT’ = 10000

andone of the sourcesvaswhite, the otherfiltered by the
FIR-filter in thetext. Thealgorithmwasrunatr = 1
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Fig. 2. Samesetupasin Figurel but now the sourcesignals
aregeneratedvith o = 1.5 andthe algorithmis run with
p = 1.49.
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Fig. 3. Original speechsource signals against recov-

eredsourcesignalswhenusingthe original Molgedey and
Schusteralgorithm. The speechsignalshad a duration of
T = 23000. Thealgorithmwasrunatr = 5.
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