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ABSTRACT

The secondmomentbasedindependentcomponentanaly-
sisschemeof Molgedey andSchusteris generalizedto frac-
tional low order moments,relevant for linear mixturesof
heavy tail stableprocesses.TheMolgedey andSchusteral-
gorithmstandsoutbyallowingexplicitly constructionof the
independentcomponents.Surpricingly, this turnsout to be
possiblealsofor decorrelationbasedonfractionallow order
moments.

Keywords: Blind SourceSeparation(BSS),DynamicCom-
ponents,IndependentComponentAnalysis (ICA), Stable
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1. INTRODUCTION

Reconstructionof independentcomponentsfrom linearmix-
turesis an importantsignalprocessingresearchareawith
numerouspracticalapplications[1, 2]. Typically, indepen-
dent componentanalysis(ICA) proceedsfrom non-linear
transformations[3, 4] or from temporalcorrelations[5, 6].
ThesecondmomentbasedMolgedey-Schusterapproachas-
sumesthat the independentsourceshave differentautocor-
relationfunctions[5, 7, 8]. Themainvirtueof theapproach
is that an explicit solution (reconstructionof sourcesand
mixing matrix) is possible.In [8] weappliedtheMolgedey-
Schusteralgorithm to imagemixturesand we proposeda
minor modificationof the algorithm that relieves a prob-
lem of the original approach,namely that it occasionally
producescomplex mixing coefficientsand sourcesignals.
Attias andSchreinerproposeda very rich ICA framework
basedon higher order statisticsand decorrelation[9, 10],
allowing for completelygeneralandlearnablesourcedistri-
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butions,however at thepriceof significantadditionalcom-
putation.

In this contribution we analyzedynamicdecorrelation
for heavy tail stablerandomsignal,andweprovideagener-
alizationof theMolgedey-Schusteralgorithmbasedonfrac-
tional low ordermomentsratherthansecondmoments.

2. STABLE DISTRIBUTIONS AND SOME
PROPERTIES

Randomvectorsfollowing a stabledistribution are stable
with respectto addition,i.e., if

�
and � , arestablethenso

is thesum ��� ��� � . A randomvectorfollowsa strictly
symmetricstabledistribution iff its characteristicfunction
hastheform [11]�	��

� � ��������� 
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where
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and ) �,+.-/� is a finite Borel measurecalled
thespectralmeasure,

-
is theunit sphereand

�
is thechar-

acteristicexponent.A randomvariable: thatis distributed
by a symmetricstabledistributionwith characteristicexpo-
nent

�
is denoted:<; -=�>-

. In the classof stabledis-
tributions we find the normal distribution

� �?� and the
so-calledCauchydistribution

� �A@ . In generalthelow or-
der stabledistributionshave heavy tails, andaresupposed
to model,e.g.,speechsignals. Becauseof the heavy tails,
higherorder momentsdo not exists, hence,ICA methods
basedonsecondmomentsarenotwell-definedfor thesesig-
nals. For multivariatestablevariablesthespectralmeasure
carriesinformationaboutthe dependenciesamongthe in-
dividual componentsandthis maybeusedfor independent
componentanalysis[12]. Herewe show that independent
dynamiccomponentscan be reconstructedexplicitly a la
Molgedey Schuster, even if thesignalsfollow stabledistri-
butions.



Our derivation is basedon the generalizedcovariation
betweenrandomvariables: and B jointly

-=�>-
asdefined

in [11] C :EDFB9G ' �IH !KJMLON 'QPSRUT ) �,+.-/� (2)

with thedefinition V N '�PWRXT �ZY VOY 'QPSR sign
� V � . Notethat

C :5DUB9G ' � 1 is necessarybut not sufficient for : and B to
be independent.The covariationhasa convenientpseudo-
linearity property. Let : R , :$[ , B R and B\[ be jointly

-/�	-
and B R , B\[ independentthenC ] R : R � ] [�:^[_DF` R B R � `a[�Bb[0G ' �] R C : R DUB R G ' ` 'QPSRR � ] [ C :^[_DUB R G ' ` 'QPSRR �] R C : R DUB\[aG ' ` 'QPSR[ � ] [ C :^[_DUB\[aG ' ` 'QPSR[ (3)

From the covariationwe canderive the covariation coeffi-
cient cbdfe g � C :EDFBhG 'C BiDFBhG ' (4)

which hastheproperty[11]cbdfe g �kjml :nB N(o PSRUTXpj l BqB N(o PSRUT p (5)

for @hrts 2u� . By equation(5) wecanestimatethecovari-
ationcoefficient from data.

3. DECORRELATION BASED ON FRACTIONAL
LOW ORDER MOMENTS

We arenow equippedto generalizetheMolgedey-Schuster
approach,andstartout by definingthe matrix of observed
signals

�
with elements:$v e w ��x7y>z{U| RS} v e { - { e w 1 r�~ 2�� (6)

where } v e { arethemixing coefficientsforming themixing
matrix

�
,
- { e w is an instanceof the � w,� -/�	- sourcesignal

written asanelementin thematrix � and ��� is thenumber
of sources.Wenow assumethatthedifferentsourcesignals
areindependent,C - { e w D -S� e w��&� G ' � 1 �������� 4�6�� (7)

The covariationcoefficient between: v e w and : 8 e w��&� can
befoundusingequations(4) and(6)cMd>�>� �Ue d>��� ���_� � � x�y z{U| RW} v

e { - { e w D x7y z� | RO} 8 e � - � e w��W��� '� x7y	z� | R } 8
e ��-S� e w��W� D x7y>z� | R } 8 e ��-S� e w��&� � '

(8)

Finally, we use that the sourcesare independent,hence,
equation(3) is valid, providingc d �=� � e d ��� ���_� � x7y>z{U| R x7y>z� | RW} v e { C - { e w D - � e w��W� G ' } N '�PWRXT8 e �x�y>z{U| R x7y>z� | RO} 8 e { C - { e w��W� D -S� e w��W� G ' } N '�PWRXT8 e �

(9)

Wedefinematrices�^� ��� with elements  � �
�v e 8 � c d �>� � e d ��� �¡�¢� ,£ � ��� with thenominatorof equation(8) aselements¤ � ���v e 8 � y z¥{U| R y z¥ � | R } v
e { C - { e w D -S� e w��W� G ' } N 'QPSRUT8 e � (10)

anda diagonalmatrix ¦ with thedenominatorfrom equa-
tion (8) aselements§ 8 e 8 � y z¥{U| R y z¥ � | R } 8

e { C - { e w��W� D -S� e w��W� G ' } N 'QPSRUT8 e � (11)

Assumingstationarity, ¦ is independentof � , sothat � � �
� �£ � ��� ¦ PSR . Fromequation(10) it is seenthat
£ � �
� decom-

posesinto £ � ��� � �©¨ � �
� � � N 'QPSRUT (12)

where
�ª� N 'QPSRUT is the signednorm applied to eachele-

ment of
�ª�

.
¨ � �
� is the matrix with elements« � �
�{ e � �C - { e w D -S� e w��&� G ' , andwenoticethat

¨ � �
� is diagonalsincethe
sourcesareindependent.We next form thequotientmatrix¬ � ��� ,¬ � �
� � � � �
� � �®­ � PSR � £ � ��� £ �®­ � PSR� �©¨ � ��� � � N '�PWRXT � � N '�PWRXT PWR ¨ �®­ � PSR � PSR� �©¨ � ��� ¨ �®­ � PSR � PSR (13)

We cannow constructthemixing matrix
�

by solving the
eigenvalueproblem, ¬ � ���°¯ � ¯²± (14)

if we identify

¯ � � and

± � ¨ � �
� ¨ �®­ � PWR .
In short,we have shown our main result, namelythat

it is possibleto recover the mixing matrix from fractional
low order moments. The sourcesignalsare subsequently
estimatedby �E� � PSR � .

3.1. Sample estimates of Fractional Low Order Moments

Equation(5) providestheestimateof theelementsof �$� ���³ c d �>� � e d ��� ���_� � R� P � x � PSRaP
�w | ­ :$v e w : N(o PSRUT8 e w��W�R��x � PSRw | ­ : 8 e w : N´o PWRXT8 e w (15)



from a sampleof
�

measurements.We canthenform³¬ � �
� � ³� �
�
� ³� �®­

� PSR� ��¶µ � �ª� �
�
� N(o PSRUT �n· �²� N(o PWRXT �¹¸ PSR (16)

hence,solve theeigenvalueproblemto obtaintheestimated
mixingmatrix. In theaboveequation

� � �
� is thezeropadded
matrix

�
shiftedby a lag � . Thechoiceof � is a question

onehaveto dealwith. Theoptimalchoicewill bothdepend
ontheaccuracy ontheestimatedelementsin

¨ � ��� and
¨ �º­ �

andon the actualtrue valuesin
¨ � �
� ¨ �º­ � PWR . � shouldbe

selectedsowehavethelargestdifferencein theeigenvalues

of
¬ � �
� i.e. in

¨ � �
� ¨ �®­ � PSR comparedto their accuracy. In
thispaperwewill notaddressthis further, but suggestusing�ª�m@ .

4. EXPERIMENTAL RESULTS

We illustrate the performanceof the generalizationof the
Molgedey-Schusteralgorithmby analyzingmixing of syn-
theticdatafollowing astabledistribution,andby mixing of
two speechsignals.

4.1. Synthetic data

We performexperimentson mixing of two signalsin two
channels.In thefirst wemix two independentunit-variance
Gaussiansignalsby themixing matrix� �¼» 1Q� ½_¾�¿¢¿À1M� ¿¢¿.Á �1Q� Â�Á @ ¿À1M� ¾ � ½¢ÃÅÄ
containingtwo non-orthogonalnormalizedrows.Thesource
signalshave differenttemporaldependencies,oneis white
noise,while the otheris low-passfiltered with a FIR-filter
with two coefficients Æ ­ �Ç@ and Æ R � 1M� ½

. We show in
Figure1 scatterplotsof the“true signals”andtherecovered
signalsfrom the estimatedmixing matrix estimatedfrom
the conventionalMolgedey-Schusteralgorithm. Next we
mix two similarstablesignalsdrawn from distributionswith� �È@ �(Ã , hencewith heavy tails, by the samemixing ma-
trix. In Figure2 we show the scatterplotsof the true and
estimatedsignals.

The two different scenarioslead to similar estimated
mixing matricesÉmÊÌË�Í�Î Ï
Í
Ð0ÑÒÍ_Î Ñ"Ó�Ô"ÕÍ�Î Ó�Ô_ÖaÓ×Í_Î Ï
Ø�Ï"ÕÅÙfÚ ÉmÊÌË�Í�Î Ï
Ð
Û
Õ×Í_Î Ð
Ø�Í
ÐÍ�Î Ñ�Ó
Õ�Ó×Í_Î Ï�Í�Ñ¢Ö5Ù
demonstratingthatit is possiblereliablyto reconstructinde-
pendentstablesourcesignalsby thegeneralizedMolgedey-
Schusterscheme,in caseswherethesecondmomentcorre-
lationswould not convergefor largesamples.

4.2. Speech data

Finally, weconsidertheblind separationof amixtureof two
speechsignals.The signalsaretwo sourcesignalsusedin
[13]. We usethesamemixing matrix asin theaboveexam-
ple. In Figure3 we show thescatterplotof thetrueandes-
timatedsignalsusingthe conventionalMolgedey-Schuster
algorithmandin Figure4 usingthenew schemeusing sE�@ � ½ . The recoveredsignalsarevery similar, indicatingthat
theconventionalalgorithmis robustto theunderlyingdistri-
bution of thesourcesignals.We conjecturethatthis robust-
nessis relatedto the fact that the conventionalMolgedey-
Schusteralgorithmproceedsfrom the ratio of two second
ordermoments,andthattheratiomight havebetterstatisti-
cal propertiesthanthe two individual moments,this is the
topic for on-goingresearch.

5. CONCLUSION

Wehavederivedanew algorithmgeneralizingthatof Molge-
dey andSchuster[5] basedonfractionallow ordermoments.
We haveprovideda schemefor estimatingtherelevantmo-
mentsfrom finite samplesanddemonstratedtheviability of
thenew algorithmin asyntheticdataset.However, wealso
found that the original algorithmis fairly robust to possi-
bly diverging secondordermoments,andconjecturedthat
theexplanationcouldberelatedto thefact thattheconven-
tionalalgorithmis basedontheratiobetweentwo diverging
terms,possiblyimproving thestatisticalproperties.
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Fig. 1. Original Gaussiansource,i.e.
� ��� signalsagainst

recoveredsourcesignalswhenusingtheoriginalMolgedey
andSchusteralgorithm(s3��� ). In this setup

� �Ü@ 1¢1_1¢1
andoneof the sourceswaswhite, the otherfiltered by the
FIR-filter in thetext. Thealgorithmwasrunat �ª�Ý@
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Fig. 2. Samesetupasin Figure1 but now thesourcesignals
aregeneratedwith

� �Ç@ � Ã andthe algorithmis run withs²�m@ � ¿�¾ .
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Fig. 3. Original speechsource signals against recov-
eredsourcesignalswhenusingthe original Molgedey and
Schusteralgorithm. The speechsignalshada durationof� ��� Â¢1_1¢1 . Thealgorithmwasrun at �©� Ã .
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