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ABSTRACT
The three-dimensional discrete cosine transform  (3-
D DCT) has been used in many 3-D applications
such as video coding and compression. Many fast
algorithms have been developed for the calculation
of 1-D DCT. These algorithms are then used for the
calculation of 3-D DCT using the row-column
approach. However, 3-D algorithms involve less
arithmetic operations and can be faster. In this
paper, the 3-D decimation in frequency vector-radix
algorithm (3-D DIF VR), for the 3-D DCT-II, is
developed and its arithmetic complexity analysed
and compared to similar algorithms. In Comparison
with the familiar row-column approach, the 3-D
vector-radix reduces the number of multiplications
significantly while keeping the number of additions
the same and hence can be used for fast 3-D image
and video coding and compression.

1. INTRODUCTION

The discrete cosine transform (DCT) is one of the
most popular transforms in the field of digital signal
processing and communications [1]. It has been
widely used in many applications such as speech
and image compression [1,2]. Its use has been
expanded to cover three-dimensional applications
such as 3-D image and video compression and
coding [3-5]. In these applications, the 3-D image is
divided into 8×8×8 or 16×16×16 cubes which are
then transformed using the 3-D DCT. Because the
3-D cosine transform is separable, it is usually
calculated using algorithms developed for the 1-D
transform in a row-column approach. However,
three-dimensional algorithms can be faster and
involves fewer arithmetic operations [6].

Therefore, it is the aim of this paper to develop
the 3-D decimation-in-frequency vector-radix
algorithm (3-D DIF VR) for fast calculation of the
3-D type-II discrete cosine transform. Compared to

the row-column approach, the 3-D vector-radix
reduces the number of multiplications significantly
while keeping the number of additions the same.

2. THE 3-D DCT-II

The 3-D type-II discrete cosine transform of
x(n1,n2,n3),  of size N1×N2×N3, can be defined as:
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3. THE 3-D DIF VR ALGORITHM

The 3-D DCT is usually computed using algorithms
developed for the 1-D DCT applied over each
dimension successively in a row-column style [3-5].
However multidimensional algorithms involve less
arithmetic operations and can be faster [6,7-9].

In this paper, a 3-D decimation in frequency
vector-radix algorithm that calculates the 3-D DCT-
II directly is introduced. In this algorithm, the
N×N×N 3-D DCT-II is first decomposed into eight
N/2×N/2×N/2-point 3-D DCTs. Each N/2×N/2×N/2
3-D DCT is then divided further until we get 2×2×2
transforms.

Let N1=N2=N3=N and assume that the factor
f3D is merged into X(k1,k2,k3). First, we need to
rearrange the input data, x(n1,n2,n3), as follows:
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Replacing x(n1,n2,n3) in Eq. (1) by ( )321 ,,~ nnnx

in Eq. (2), the 3-D DCT-II can be written as:
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where ( ) 3 ,2 ,1   ,   2/14 =+= iNnii πφ

If we consider the even and the odd parts of k1,
k2, and k3, the general formula for the calculation of
the 3-D DCT-II can be written as:
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 i, j and l equal zero for even indices and 1 for odd
indices.
Using the following trigonometric identities:
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The general equation for the 3-D DIF VR
algorithm for the 3-D DCT-II can be written as
shown in Eq. (9):
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4. ARITHMETIC COMPLEXITY

Figure 1 shows the required stages to calculate the
3-D DCT-II using the developed 3-D DIF VR
algorithm. It consists of four stages. Firstly, the 3-
D input array is rearranged according to Eq. (2).
The rearranged data is then applied to the second
stage, which is the butterflies calculation. The
input data to this stage is calculated using eight-
points butterfly unit as shown in Figure 2. Each
butterfly involves 7 real multiplications and 24 real
additions. The whole transform requires
(log2N)×(N3/8) butterflies. The output data from
the second stage is then bit-reversed. The recursive
additions described in the second part of Eq. (9) is
calculated in the last stage.

The calculation of the whole transform using
a single butterfly requires:

Multiplications = (7/8) N3log2N
Additions = (9/2)N3log2N-3N3+3N2

On the other hand, if the 3-D DCT-II is
calculated using the row column approach, the
number of real multiplications, based on 1-D
DCT-II in [10], will be  (3/2)N3log2N and the total
number of real additions will be (9/2)N3log2N-
3N3+3N2.

Table 1 shows the operations count for both
the row-column method and the new 3-D DIF VR
algorithm using a single butterfly. The 3-D DIF
VR algorithm reduces the number of
multiplications significantly while keeping the
total number of additions the same.

5. CONCLUSION

In this paper, a fast three-dimensional decimation
in frequency vector-radix algorithm for the 3-D
DCT-II is developed and implemented. This

algorithm involves the same number of additions
as the familiar row-column approach, but reduces
the number of multiplications considerably and
hence can be used for fast 3-D image and video
coding.

Table 1. Comparison between the row-column and the
3-D vector-radix algorithms based on a single butterfly.

Row-column
approach

3-D vector-
radix algorithm

Transform
Size

N1×N2×N3
Mults./

point
Adds.
/point

Mults.
/point

Adds.
/point

22×22×22 3 6.75 1.75 6.75
23×23×23 4.5 10.88 2.625 10.88
24×24×24 6 15.19 3.5 15.19
25×25×25 7.5 19.59 4.375 19.59
26×26×26 9 24.05 5.25 24.05
27×27×27 10.5 28.52 6.125 28.52
28×28×28 12 33.01 7 33.01
29×29×29 13.5 37.51 7.875 37.51

210×210×210 15 42 8.75 42
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Figure 1. Calculation process for the 3-D DCT-II using the 3-D DIF VR algorithm.
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Figure 2. Single butterfly for the 3-D DIF VR.


