
FAST ALGORITHM FOR THE 3-D DCT

O. Alshibami and S. Boussakta

Institute of Integrated Information Systems
School of Electronic and Electrical Engineering

University of Leeds, Leeds,
 LS2 9JT, United Kingdom

E-mail: eenoha@leeds.ac.uk and s.boussakta@ee.leeds.ac.uk

ABSTRACT
The three-dimensional discrete cosine transform (3-
D DCT) has been used in many 3-D applications
such as video coding and compression. Many fast
algorithms have been developed for the calculation
of 1-D DCT. These algorithms are then used for the
calculation of 3-D DCT using the row-column
approach. However, 3-D algorithms involve less
arithmetic operations and can be faster. In this
paper, the 3-D decimation in frequency vector-radix
algorithm (3-D DIF VR), for the 3-D DCT-II, is
developed and its arithmetic complexity analysed
and compared to similar algorithms. In Comparison
with the familiar row-column approach, the 3-D
vector-radix reduces the number of multiplications
significantly while keeping the number of additions
the same and hence can be used for fast 3-D image
and video coding and compression.

1. INTRODUCTION

The discrete cosine transform (DCT) is one of the
most popular transforms in the field of digital signal
processing and communications [1]. It has been
widely used in many applications such as speech
and image compression [1,2]. Its use has been
expanded to cover three-dimensional applications
such as 3-D image and video compression and
coding [3-5]. In these applications, the 3-D image is
divided into 8×8×8 or 16×16×16 cubes which are
then transformed using the 3-D DCT. Because the
3-D cosine transform is separable, it is usually
calculated using algorithms developed for the 1-D
transform in a row-column approach. However,
three-dimensional algorithms can be faster and
involves fewer arithmetic operations [6].

Therefore, it is the aim of this paper to develop
the 3-D decimation-in-frequency vector-radix
algorithm (3-D DIF VR) for fast calculation of the
3-D type-II discrete cosine transform. Compared to

the row-column approach, the 3-D vector-radix
reduces the number of multiplications significantly
while keeping the number of additions the same.

2. THE 3-D DCT-II

The 3-D type-II discrete cosine transform of
x(n1,n2,n3), of size N1×N2×N3, can be defined as:

() ()

() () ()
1 ,...,1 ,0

coscoscos

,,,,

332211

1

0

1

0

1

0
3213321

1

1

2

2

3

3

−=

= ∑ ∑ ∑
−

=

−

=

−

=

ii

N

n

N

n

N

n
D

Nk

kkk

nnnxfkkkX

ααα (1)

where
()

3 ,2 ,1
2

12 =+= i
N

n

i

i
i

πα

321
321

3

8
kkkD NNN

f εεε=

and

3 ,2 ,1

otherwise 1

0for
2

1

 321 =




 =

= i
,k,kk

kiε

3. THE 3-D DIF VR ALGORITHM

The 3-D DCT is usually computed using algorithms
developed for the 1-D DCT applied over each
dimension successively in a row-column style [3-5].
However multidimensional algorithms involve less
arithmetic operations and can be faster [6,7-9].

In this paper, a 3-D decimation in frequency
vector-radix algorithm that calculates the 3-D DCT-
II directly is introduced. In this algorithm, the
N×N×N 3-D DCT-II is first decomposed into eight
N/2×N/2×N/2-point 3-D DCTs. Each N/2×N/2×N/2
3-D DCT is then divided further until we get 2×2×2
transforms.

Let N1=N2=N3=N and assume that the factor
f3D is merged into X(k1,k2,k3). First, we need to
rearrange the input data, x(n1,n2,n3), as follows:

()

()

()

()

()

()

()

()

()































−≤≤
−−−−−−
−≤≤−≤≤

−−−−
−≤≤−≤≤

−−−−
−≤≤−≤≤

−−
−≤≤−≤≤

−−−−
−≤≤−≤≤

−−
−≤≤−≤≤

−−
−≤≤

=

1,,2/

 122,122,122

12/0 ,1,2/

 2,122,122

12/0 ,1,2/

 122,2,122

12/,0 ,12/

 2,2,122

1,2/ ,12/0

 122,122,2

12/ ,12/,0

 2,122,2

12/ ,12/,0

 122,2,2

12/,,0

 2,2,2

,,~

321

321

321

321

231

321

321

321

321

321

231

321

321

321

321

321

321

NnnnN

nNnNnNx

NnNnnN

nnNnNx

NnNnnN

nNnnNx

NnnNnN

nnnNx

NnnNNn

nNnNnx

NnNNnn

nnNnx

NnNNnn

nNnnx

Nnnn

nnnx

nnnx

(2)

Replacing x(n1,n2,n3) in Eq. (1) by ()321 ,,~ nnnx

in Eq. (2), the 3-D DCT-II can be written as:

() ()

() () ()332211

1

0

1

0

1

0
321321

coscoscos

,,~,,
1 2 3

kkk

nnnxkkkX
N

n

N

n

N

n

φφφ

∑ ∑ ∑
−

=

−

=

−

=

=
 (3)

where () 3 ,2 ,1 , 2/14 =+= iNnii πφ

If we consider the even and the odd parts of k1,
k2, and k3, the general formula for the calculation of
the 3-D DCT-II can be written as:

()

() ()()

()() ()()lkjk

iknnnx

lkjkikX
N

n

N

n

N

n
ijl

++

+=

+++

∑ ∑ ∑
−

=

−

=

−

=

3322

12/

0
11

12/

0

12/

0
321

321

2cos2cos

2cos,,~

2,2,2

1 2 3

φφ

φ

(4)

where

() ()
()
()

()
()

()
()

()2/,2/,2/~)1(

,2/,2/~)1(

2/,,2/~)1(

,,2/~)1(

2/,2/,~)1(

,2/,~)1(

2/,,~)1(

,,~,,~

321

321

321

321

321

321

321

321321

nnnnnnx

nnnnnx

nnnnnx

nnnnx

nnnnnx

nnnnx

nnnnx

nnnxnnnx

lji

ji

li

i

lj

j

l

ijl

+++−+

++−+

++−+

+−+

++−+

+−+

+−+

=

++

+

+

+ (5)

 i, j and l equal zero for even indices and 1 for odd
indices.
Using the following trigonometric identities:

()() ()
()()ii

iiiii

k

kk

φ
φφφ

12cos

2coscos212cos

−−
=+

 (6)

()() ()()
() ()

()() ()()
()() ()()
()() ()()jjii

jjii

jjii

jjiiji

jjii

kk

kk

kk

kk

kk

φφ
φφ
φφ

φφφφ
φφ

12cos12cos

12cos12cos

12cos12cos

2cos2coscoscos4

12cos12cos

−−−

−+−

+−−

=

++

 (7)

and
()() ()() ()()

() () ()
()() ()() ()()
()() ()() ()()
()() ()() ()()
()() ()() ()()
()() ()() ()()
()() ()() ()()
()() ()() ()()lljjii

lljjii

lljjii

lljjii

lljjii

lljjii

lljjii

lljjiilji

lljjii

kkk

kkk

kkk

kkk

kkk

kkk

kkk

kkk

kkk

φφφ
φφφ
φφφ
φφφ
φφφ
φφφ
φφφ

φφφφφφ
φφφ

12cos12cos12cos

12cos12cos12cos

12cos12cos12cos

12cos12cos12cos

12cos12cos12cos

12cos12cos12cos

12cos12cos12cos

2cos2cos2coscoscoscos8

12cos12cos12cos

−−−−

+−−−

−+−−

++−−

−−+−

+−+−

−++−

=

+++

 (8)

The general equation for the 3-D DIF VR
algorithm for the 3-D DCT-II can be written as
shown in Eq. (9):

()
()
()
()
()

()
()

()

()
()
()
()
()
()
()
()

()
()

() () ()
()

() () ()
() () ()

�������������� ��������������� ������ ����� ��
AdditionsRecursive

r

nCalculatiosButterflie

X

kkkXkkkXkkkX

kkkXkkkXkkkX

kkkX

kkkXkkkXkkkX

kkkX

kkkX

kkkX

kkkX

kkkX

kkkX

kkkX

kkkX

kkkX

kkkX

kkkX

kkkX

kkkX

kkkX

kkkX

kkkX

kkkX

kkkX

111

321321321

321321321

321

321321321

321

321

321111

321110

321101

321100

321011

321010

321001

321000

321

321

321

321

321

321

321

321

2,12,122,12,122,12,12

12,2,1212,2,1212,2,12

2,2,12

12,12,212,12,212,12,2

2,12,2

12,2,2

0

2,2,2

2,2,2

2,2,2

2,2,2

2,2,2

2,2,2

2,2,2

2,2,2

12,12,12

2,12,12

12,2,12

2,2,12

1,12,2

2,12,2

12,2,2

2,2,2

































−−−−+−+−−
−−−−+−+−−

−−
−−−−+−+−−

−−
−−

+

































=

































+++
++

++
+

++
+

+

 (9)

where

() ()

() () ()
() () ()332211

321

12/

0

12/

0

12/

0
321321

2cos2cos2cos

cos2cos2cos2

,,~2,2,2
1 2 3

kkk

nnnxkkkX

cba

N

n

N

n

N

n
abcabc

φφφ
φφφ

∑ ∑ ∑
−

=

−

=

−

=

=

 (10)

and
()

() ()
() ()
() ()12,12,1212,12,12

12,12,1212,12,12

12,12,1212,12,12

12,12,12

321321

321321

321321

321111

−−−−+−−−
−+−−++−−
−−+−+−+−

−++−=

kkkXkkkX

kkkXkkkX

kkkXkkkX

kkkXX r

 (11)

4. ARITHMETIC COMPLEXITY

Figure 1 shows the required stages to calculate the
3-D DCT-II using the developed 3-D DIF VR
algorithm. It consists of four stages. Firstly, the 3-
D input array is rearranged according to Eq. (2).
The rearranged data is then applied to the second
stage, which is the butterflies calculation. The
input data to this stage is calculated using eight-
points butterfly unit as shown in Figure 2. Each
butterfly involves 7 real multiplications and 24 real
additions. The whole transform requires
(log2N)×(N3/8) butterflies. The output data from
the second stage is then bit-reversed. The recursive
additions described in the second part of Eq. (9) is
calculated in the last stage.

The calculation of the whole transform using
a single butterfly requires:

Multiplications = (7/8) N3log2N
Additions = (9/2)N3log2N-3N3+3N2

On the other hand, if the 3-D DCT-II is
calculated using the row column approach, the
number of real multiplications, based on 1-D
DCT-II in [10], will be (3/2)N3log2N and the total
number of real additions will be (9/2)N3log2N-
3N3+3N2.

Table 1 shows the operations count for both
the row-column method and the new 3-D DIF VR
algorithm using a single butterfly. The 3-D DIF
VR algorithm reduces the number of
multiplications significantly while keeping the
total number of additions the same.

5. CONCLUSION

In this paper, a fast three-dimensional decimation
in frequency vector-radix algorithm for the 3-D
DCT-II is developed and implemented. This

algorithm involves the same number of additions
as the familiar row-column approach, but reduces
the number of multiplications considerably and
hence can be used for fast 3-D image and video
coding.

Table 1. Comparison between the row-column and the
3-D vector-radix algorithms based on a single butterfly.

Row-column
approach

3-D vector-
radix algorithm

Transform
Size

N1×N2×N3
Mults./

point
Adds.
/point

Mults.
/point

Adds.
/point

22×22×22 3 6.75 1.75 6.75
23×23×23 4.5 10.88 2.625 10.88
24×24×24 6 15.19 3.5 15.19
25×25×25 7.5 19.59 4.375 19.59
26×26×26 9 24.05 5.25 24.05
27×27×27 10.5 28.52 6.125 28.52
28×28×28 12 33.01 7 33.01
29×29×29 13.5 37.51 7.875 37.51

210×210×210 15 42 8.75 42

6. REFERENCES

[1] K. R. Rao, and P. Yip, Discrete cosine
transform: algorithms, advantages, and
applications. Academic Press Inc., Sept.
1990.

[2] W. Kuo, Digital Image Compression:
Algorithms and Standards. Kluwer
Academic Publishers, Boston, 1995.

[3] S. Tai, Y. Wu, and C. Lin, “An adaptive 3-D
discrete cosine transform coder for medical
image compression”, IEEE Trans.
Information Technology in Biomedicine, vol.
4, pp. 259-263, Sept 2000.

[4] M. Servais, and G. De Jager, “Video
compression using the three dimensional
discrete cosine transform (3D-DCT)”, Proc.
of COMSIG ’97, South African, 1997, pp.
27-32.

[5] R. Westwater, and B. Furht, “The XYZ
algorithm for real-time compression of full-
motion video”, Real-Time Imaging, vol. 2,
pp. 19-34, 1996.

[6] S. Boussakta, and O. Alshibami, “fast
algorithm for the 3-D discrete Hartley
transform”, ICASSP-2000, 5-9 June 2000,
Istanbul, Turkey, pp. 2302-2305.

[7] S. C. Chan and K. L. Ho, “A new two-
dimensional fast cosine transform

algorithm”, IEEE Trans. Signal Processing,
vol. 39, No. 2, pp. 481-485, Feb. 1991.

[8] G. Bi, G. Li, K. Ma, and T. C. Tan, “On the
computation of two-dimensional DCT”,
IEEE Trans. Signal Processing, vol. 48, No.
4, April 2000.

[9] S. C. Chan and K. L. Ho, “Direct methods
for computing discrete sinusoidal
transforms”, IEE Proc. Radar and Signal

Processing, vol. 137, No. 6, pp. 433-442,
Dec.1990.

[10] H. S. Hou, “A fast recursive algorithm for
computing the discrete cosine transform”,
IEEE Trans. Acoust., Speech, and Signal
processing, vol. 33, pp. 1532-1539, Dec.
1985.

3-
 D

 R
ea

rr
an

ge
m

en
t

B
ut

te
rf

lie
s

ca
lc

ul
at

io
n

3-
 D

 B
it

R
ev

er
sa

l

3-
D

 R
ec

ur
si

ve
 A

dd
iti

on

3-
D

 I
np

ut
 D

at
a

R
ea

rr
an

ge
d

In
pu

t
D

at
a

3-
D

 D
C

T

R
ev

es
ed

 D
at

a

Figure 1. Calculation process for the 3-D DCT-II using the 3-D DIF VR algorithm.

()
N

ni
i 2

14 +
=

πφ

a

b

a+b

a-b

)(2 3φc

)(2 2φc

)(2 1φc

)()(4 32 φφ cc

)()(4 31 φφ cc

)()(4 21 φφ cc

)()()(8 321 φφφ ccc

() ()iic φφ cos=and

X000(2k1,2k2,2k3)

X001(2k1,2k2,2k3)

X010(2k1,2k2,2k3)

X011(2k1,2k2,2k3)

X100(2k1,2k2,2k3)

X101(2k1,2k2,2k3)

X110(2k1,2k2,2k3)

X111(2k1,2k2,2k3)

()321 ,,~ nnnx

()2/,,~
321 nnnnx +

()2/,2/,~
321 nnnnnx ++

()2/,,2/~
321 nnnnnx ++

()321 ,,2/~ nnnnx +

()321 ,2/,2/~ nnnnnx ++

()2/,2/,2/~
321 nnnnnnx +++

()321 ,2/,~ nnnnx +

Figure 2. Single butterfly for the 3-D DIF VR.

