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ABSTRACT

The three-dimensiona discrete cosine transform (3-
D DCT) has been used in many 3-D applications
such as video coding and compression. Many fast
algorithms have been developed for the calculation
of 1-D DCT. These algorithms are then used for the
calculation of 3-D DCT using the row-column
approach. However, 3-D agorithms involve less
arithmetic operations and can be faster. In this
paper, the 3-D decimation in frequency vector-radix
algorithm (3-D DIF VR), for the 3-D DCT-II, is
developed and its arithmetic complexity analysed
and compared to similar algorithms. In Comparison
with the familiar row-column approach, the 3-D
vector-radix reduces the number of multiplications
significantly while keeping the number of additions
the same and hence can be used for fast 3-D image
and video coding and compression.

1. INTRODUCTION

The discrete cosine transform (DCT) is one of the
most popular transformsin the field of digital signal
processing and communications [1]. It has been
widely used in many applications such as speech
and image compression [1,2]. Its use has been
expanded to cover three-dimensiona applications
such as 3-D image and video compression and
coding [3-5]. In these applications, the 3-D image is
divided into 8x8x8 or 16x16x16 cubes which are
then transformed using the 3-D DCT. Because the
3-D cosine transform is separable, it is usualy
calculated using agorithms developed for the 1-D
transform in a row-column approach. However,
three-dimensional algorithms can be faster and
involves fewer arithmetic operations[6].

Therefore, it is the aim of this paper to develop
the 3-D decimation-in-frequency vector-radix
algorithm (3-D DIF VR) for fast calculation of the
3-D type-ll discrete cosine transform. Compared to

the row-column approach, the 3-D vector-radix
reduces the number of multiplications significantly
while keeping the number of additions the same.

2. THE 3-D DCT-II

The 3-D type-ll discrete cosine transform of
X(ng,Ny,N3), of size N;xN»xNs3, can be defined as:
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3. THE 3-D DIF VR ALGORITHM
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The 3-D DCT is usually computed using algorithms
developed for the 1-D DCT applied over each
dimension successively in a row-column style [3-5].
However multidimensional agorithms involve less
arithmetic operations and can be faster [6,7-9].

In this paper, a 3-D decimation in frequency
vector-radix algorithm that calculates the 3-D DCT-
Il directly is introduced. In this algorithm, the
NxNxN 3-D DCT-II is first decomposed into eight
N/2xN/2xN/2-point 3-D DCTs. Each N/2xN/2xN/2
3-D DCT isthen divided further until we get 2x2x2
transforms.

Let N;=N,=N3=N and assume that the factor
fap is merged into X(Ki,ko,ks). First, we need to
rearrange the input data, x(ny,n,,ns), as follows:
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Replacing x(n,nz,n3) in Eq. (1) by X(n,,n,,n,)
in EqQ. (2), the 3-D DCT-II can be written as:
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If we consider the even and the odd parts of ki,
ko, and ks, the general formula for the calculation of
the 3-D DCT-II can be written as:
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i, j and | equa zero for even indices and 1 for odd
indices.
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The general equation for the 3-D DIF VR

algorithm for the 3-D DCT-IlI can be written as
shownin Eqg. (9):
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4. ARITHMETIC COMPLEXITY

Figure 1 shows the required stages to calculate the
3-D DCT-Il using the developed 3-D DIF VR
algorithm. It consists of four stages. Firstly, the 3-
D input array is rearranged according to Eq. (2).
The rearranged data is then applied to the second
stage, which is the butterflies calculation. The
input data to this stage is calculated using eight-
points butterfly unit as shown in Figure 2. Each
butterfly involves 7 real multiplications and 24 real
additions. The whole transform requires
(logoN)x(N*/8) butterflies. The output data from
the second stage is then bit-reversed. The recursive
additions described in the second part of Eq. (9) is
calculated in the last stage.

The calculation of the whole transform using
asingle butterfly requires:

Multiplications = (7/8) N°log,N
Additions = (9/2)N* 0g,N-3N*+3N?

On the other hand, if the 3-D DCT-II is
calculated using the row column approach, the
number of real multiplications, based on 1-D
DCT-I1 in [10], will be (3/2)N°log,N and the total
number of real additions will be (9/2)N°log,N-
3N>+3N%

Table 1 shows the operations count for both
the row-column method and the new 3-D DIF VR
algorithm using a single butterfly. The 3-D DIF
VR agorithm reduces the number of
multiplications significantly while keeping the
total number of additions the same.

5. CONCLUSION

In this paper, a fast three-dimensional decimation
in frequency vector-radix algorithm for the 3-D
DCT-Il is developed and implemented. This

algorithm involves the same number of additions
as the familiar row-column approach, but reduces
the number of multiplications considerably and
hence can be used for fast 3-D image and video
coding.

Table 1. Comparison between the row-column and the
3-D vector-radix algorithms based on a single butterfly.

Transform Row-column 3?D vectqr-
Size approach radix algorithm
Mults./ Adds. Mults. Adds.

N1*N2xN3 point /point /point /point
22x2°x2? 3 6.75 1.75 6.75
2%x2%x2° 45 10.88 | 2.625 | 10.88
2'x2%x2* 6 15.19 35 15.19
2% 25x2° 75 1959 | 4.375 | 19.59
2%x2%x2° 9 2405 | 525 | 24.05
2"x2"x2" 10.5 2852 | 6.125 | 2852
28x28x 28 12 33.01 7 33.01
29x2%9x2° 135 | 3751 | 7.875 | 3751
210x210x 210 15 42 8.75 42

6. REFERENCES

[1] K. R. Rao, and P. Yip, Discrete cosine
transform: algorithms, advantages, and
applications. Academic Press Inc., Sept.
1990.

[2] W. Kuo, Digital Image Compression:
Algorithms and  Sandards.  Kluwer
Academic Publishers, Boston, 1995.

[3] S Ta,Y.Wu andC. Lin, “An adaptive 3-D
discrete cosine transform coder for medical
image  compression”, IEEE  Trans.
Information Technology in Biomedicine, vol.
4, pp. 259-263, Sept 2000.

[4 M. Servais, and G. De Jager, “Video
compression using the three dimensiona
discrete cosine transform (3D-DCT)”, Proc.
of COMSG '97, South African, 1997, pp.
27-32.

[5] R. Westwater, and B. Furht, “The XYZ
algorithm for real-time compression of full-
motion video”, Real-Time Imaging, vol. 2
pp. 19-34, 1996.

[6] S. Boussakta, and O. Alshibami, “fast
algorithm for the 3-D discrete Hartley
transform”, 1CASSP-2000, 5-9 June 2000,
Istanbul, Turkey, pp. 2302-2305.

[71 S. C. Chan and K. L. Ho, “A new two-
dimensional fat  cosine  transform



(8]

[9]

algorithm”, IEEE Trans. Sgnal Processing,
vol. 39, No. 2, pp. 481-485, Feb. 1991.

G. Bi, G. Li, K. Ma,and T. C. Tan, “On the
computation of two-dimensional DCT”,
|IEEE Trans. Sgnal Processing, vol. 48, No.
4, April 2000.

S. C. Chan and K. L. Ho, “Direct methods
for computing discrete  sinusoidal
transforms’, |EE Proc. Radar and Sgnal

[10]

Processing, vol. 137, No. 6, pp. 433-442,
Dec.1990.

H. S. Hou, “A fast recursive agorithm for
computing the discrete cosine transform”,
IEEE Trans. Acoust.,, Speech, and Sgnal
processing, vol. 33, pp. 1532-1539, Dec.
1985.

3-D Input Data
3- D Rearrangement

Rearranged Input Data
Butterflies calculation

> > —
c
K=l
7 s
5| R| 2
> [a) =
[f) ) O
xx 9 = o
Q 7}
h— 0 = [a)
m () 3 7
> O ™
o) %) i)
) 0 d x
® o
™
> > —

Figure 1. Calculation process for the 3-D DCT-II using the 3-D DIF VR algorithm.
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Figure 2. Single butterfly for the 3-D DIF VR.



