INTEGER CODE GENERATION FOR THE Tl TMS320C62X

Martin Coors, Holger Keding Olaf Liithje, Heinrich Meyr

Institutefor IntegratedSignalProcessingystems
AachenUniversity of Technology52056Aachen Germary
{coors,leding,luethje,mgr} @iss.rwth-aachen.de

ABSTRACT

This paperpresentsa methodologywhich enableghe generation
of C62x optimizedfixed-pointC-codefrom a floating-pointde-
scriptionof analgorithm.The FRIDGE designervironmenttrans-
forms floating-pointANSI-C codewith local fixed-pointannota-
tionsinto aninternalbit-truerepresentation-romthis representa-
tion we generateC62x optimizedintegerC codeutilizing thecode
transformatiortechniquesllustratedin this paper A benchmark
is presenteccomparingthe efficiengy of the generateccodewith
C67x C-code,C62x floating-pointemulationand genericinteger
ANSI-C code.

1. INTRODUCTION

Algorithm designfor digital signal processingsystemstypically
startsin thefloating-pointdomainto abstracfrom implementation
effects. On the otherhandthe implementatioris usuallydoneon
fixed-pointdevicesdueto the advantageof fixed-pointsystemsn
termsof power consumptionchip size,andprice perunit.

Priorto theactualsystemimplementatioratransformatiorfrom
thefloating-pointto afixed-pointsystenis necessary.e anexplo-
ration of the fixed-pointdesignspacewith respecto quantization
noise,performanceandoperandvord lengths.

Modeling the fixed-pointbehaior of signal processingalgo-
rithms is frequently done on a PC or a workstationutilizing a
C/C++-basedystem-lgel designervironment.For efficientmod-
eling of finite word length effects genericfixed-pointdatatypes
arenecessaryANSI-C doesnot offer suchdatatypesandhence
fixed-pointmodelingusing pure ANSI-C becomes very tedious
anderrorpronetask.

Genericfixed-pointdatatypesimplementedin C++ basedli-
braries[1, 2, 3] offer a high modelingefficiency. They alsosup-
ply variouscastingmodesfor overflov andquantizatiorhandling.
Neverthelesghesefixed-pointdatatypesare not suitedfor DSP
implementationasthe currently available DSP compilersdo not
supportC++ fixed-pointdatatypesfor fixed-pointdesign.Theup-
cominggeneratiorof DSP compilerswill supportC++ language
constructsbut compilingthefixed-pointlibrariesfor theDSPis no
viable alternatie astheimplementatiorof the genericdatatypes
malkes extensive useof operatoroverloading,templatesand dy-
namicmemorymanagementThis will renderfixed-pointopera-
tions ratherinefficient comparedo integer arithmeticperformed
onaDSR

ANSI C-basedixed-pointlibrariessuchasthe ETSI basicarith-
meticoperationausedin [4] offer a setof two or threefixed-point
datatypesand somedatapath elementdik e they are frequently
encounterean programmabléSPs.Here,the lack of flexibility
restrictsthe fixed-pointdesignprocess.

Thusasignificantgapin thedesignflow is evident: amanualim-
plementatioron the DSP andtarget specificcodeoptimizationis
necessaryincreasingtime-to-marlet and making designchanges
very tedious.errorprone,andcostly

The FRIDGE C62x designernvironmentpresentedn this paper
enablesa seamlesslesign-flev from floating-pointto optimized
C62x C-codeutilizing integral datatypes. Generatinga C62x op-
timized versionof a signalprocessinglgorithmusinga different
setof fixed-pointparameterbecomesa matterof hoursinstead
of daysor weeksusingthe corventionalmanualtechniques.The
C62xintegercodegeneratedby thedesignervironmentyieldsbit-
by-bit the sameresultsasthefixed-pointcodeutilizing C++ simu-
lation classe®n the hostmachine.Thusa comparatie simulation
to the'golden referencemodel’ givesthe designera high degree
of confidencén thegenerateadode.

TheC62xhasbeenchoserasatargetdevice for severalreasons:

e The C62x is a popularhigh performancefixed-pointDSP
platform which is intendedto be programmedn C. An efficient
C compilerfor the C62xis availablefrom TI.

e The C62xC compilerallows directaccesgo the built-in ar
chitecturalfeatureof the processowia intrinsics. Thusotherwise
computationallyexpensve fixed-pointoperationscan be directly
mappedo thehardware. Additionalinformationaboutthecontrol-
anddata-flav in thealgorithmcanbe passednto thecompiler

e An evaluationof the C62x compiler[5] utilizing the DSP-
stonebenchmarkingnethodology[6] hasshavn thatdramaticdm-
provementf theperformancef thecompiledcodecanbeachie-
ved by target specificcoderestructuringand optimization. Some
of the optimization techniquesdevelopedduring the evaluation
have also beenimplementedn the FRIDGE C62x designervi-
ronmentutilizing theinformationpresenin theinternalrepresen-
tationof thealgorithm.

This paperis organizedas follows: section2 will briefly in-
troducethe FRIDGE fixed-pointdesignervironmentwhich forms
the basisfor the C62x codegeneration.In the mainsection3 the
transformatiorprocesss presentedin section4 we provide com-
parative benchmarkingdatafor varioussignal processingkernel
functions.Section5 concludeghe paper

2. FRIDGE DESIGN ENVIR ONMENT

Thework presentedh this paperis basedntheFixed-PointPRo-
gramm ng DesignEnvironment(FRIDGE)which supportghede-
signerin the floating-pointto fixed-pointtransformatiorprocess.
FRIDGEr elieson dataflow analysisandinformationpropagation

asdescribede.qg. in [7, 8] to transforma signal processingalgo-
rithm into a fully bit-true representation.The transformationis

basedn analyticalrangeandprecisionpropagatiorof fixed-point
operands.Fig. 1 highlights the designflow. Startingpointis a
floating-pointdescriptionof the algorithmin ANSI-C. First the
designeladdslocal fixed-pointannotationgo thealgorithm,spec-
ifying the bit-true format for input- andkey-operands.The local

annotationsare specifiedusing the fixed-pointdatatypesof Sys-
temC The resultis a hybrid description i.e. partsare specified
in fixed-pointwhereaghe majority of the operandsstill remains
floating-point. In a first stepthe FRIDGE front end parsesthe
hybrid descriptioninto anintermediaterepresentatiofiR). Then
rangeandprecisionpropagations performedo determinehebit-

trueformatfor all operandsDuring this processcontrol-anddata
flow analysisis alsocarriedout. Theinformationgainedis stored
in thelR. Theadwancedalgorithmsusedfor theanalysishave been
describedn [9].

local

annotation l <
floating- . Host SystemC
5 > » hybrid |————p m
point \ ybrt Simulation
ANSI-C l SystemC ’T
global = Interpolation —b@ﬁ
annotation P SystemC

C62x — C62x Back End
settings ¢

C62x | C62x | | Cé62x ||
C-code C-Compiler| | Simulator

Fig. 1. Fixed-Pointsystemdesignflow with FRIDGE

After this procesghe R holdsa bit-true descriptionof the algo-
rithm with additionalcontrol- and dataflow information. These
data structuresform the basisfor the transformationstepsper
formedin the FRIDGE back endsthat target differentlanguages
andplatforms.The System®adk endtransferghelR into aquan-
tizedalgorithmusingthe System@ixed-pointdatatypes.

For the C62x integer code generation further transformation
stepsare necessary The C62xbadk endalsorequiresadditional
information collectedduring the control- and dataflow analysis.
After anumberof IR refinementsa C-coderepresentationf the
algorithmusingonly integral datatypescanbe derived from the
IR. It is importantto notethatthetransformatiorin the backend,
in contrastto the float-to-fixed transformatiorin the IR, doesnot
changethe behaior of the algorithm. The fully quantizedalgo-
rithm codedin SystemGndtheintegerbasedalgorithmyield bit-
by-bitidenticalresults.

3. TRANSFORMATION

3.1. LBP Alignment

A fixed-pointoperands specifiedby a3-tuple< wl, iwl, sign >
wherewl is the word lengthof the operand,w! the integer word
lengthand sign the sign encodingused. For the embeddingof a
fixed-pointoperandinto a register of the DSP with the machine

word lengthmwl the minimumrequirements
mwl > wl = iwl + fwl 1)

Fig. 2 illustratesdifferentoptionsfor embeddingan operandwith
aword lengthof 5 bits into a given machineword length mwl of
8. Olwviously for mwl > wl adegreeof freedomfor choosingthe
location of binary point Ibp exists:

mwl — qwl > lbp > wl — iwl = fwl (2)
mwl
wi mwl : machine word lenght

: word length

: integer word length

: fractional word length

: location of binary point
: sign encoding

iwl] wi
SRR &
Ibp

-—> g
lbp

SITJTITT ST SSSTITT SSlRTIT

Fig. 2. Embeddinga 5 bit word into an8 bit register

Besideghis degreeof freedomtherearealsoa numberof limi-
tationsfor the selectionof thelbp:

e Operation constraints. certainoperationsrequirethe Ibp
to be at the sameposition for both operandsge.g. additionsor
comparisons.

e Control and data-flow constraints: generallyareadaccess
to a storageelementmustusethe samelbp asthe precedingwrite
accesgo thestorageelement.Thisimpliesthatif awrite operation
to amemorylocationoccursin alternatve control-flov branches,
the Ibp mustbe at the samepositionin both write operationsas
no run time informationaboutthe Ibp is availablein a following
readoperation. The sameappliesto ambiguousnrite operations
to arraysandwrite operationia pointers.

e Interface constraints: for interfaceelementsge.g. function
parametersr globalvariablesthe lbp mustbe predefined.Other
wise the datawritten to or readfrom thesedataelementscanbe
misinterpretedy the calling function(s).

Thelbp alignmentalgorithmimplementedn theFRIDGE C62x
backendis designedo take adwantageof the degreeof freedom
describedby equation2, while meetingthe constraintsspecified
above. For meetingtheseconstraintsand maintainingthe consis-
teng of thelbpsonerequiresgprecisanformationaboutthecontrol
anddataflow of thealgorithm. To obtainthis informationwe used
the dataflow analysismethoddescribedn [9]. Thedataflow in-
formationis representedbasically as define-usgdu) chains and
use-defin¢ud) chains[10], but with additionalandmoreaccurate
informationaboutambiguouscontrolflow.

Asinitial stepfor theembeddingve choosdbp=fwl for all oper-
ands. Thusall operandsreright aligned In aniterative process,
the dataflow informationis usedto adjustthe lbpsby insertionof
shift operationgo meet

1. theinterfaceconstraints
2. thecontrol-anddataflow constraints

3. theoperationconstraints

For eachconstrainthealgorithmterminatesvhenall conditions
arefulfilled andthe Ibpsdid not changeduring the lastiteration.
Theembeddingf constantganbedonein away thattherequired
shift operationsvhenusingthemareminimized.

3.2. CastMode Transformation

Castoperationscanreduceor limit the word length at the MSB
side of a word (overflowhandling or at the LSB side of a word
(quantizationhandling. Fixed-pointlibrarieslike in System®f-
fervariousgenericoverflov andquantizatiorhandlingmodeswhich
malke theman efficient meansof modelingof fixed-pointsystems.
For DSPimplementatiorthe castoperationdave to bemappedo
thetamgethardwarein anefficient manner The C62x offers built-
in saturatiorhardwarewhich canbe usedby thebackend. Thisis
illustratedby thefollowing example:

3.2.1. CastMode: Satuation

A castof an expressionto a wl-bit two’s complementdatatype
with integerword lengthiwl applyingsaturatiorasoverflov mode
is modeledn SystemCasfollows:

result=sc_fix(expr,w,iw,..., SC SAT);

An implementationof this code constructutilizing plain C code
first testsif the rangeof datatype is exceeded.If soit setsthe
resultingvalueto the minimumor maximumof this type:

MAX = 2iwl+lbp71 _ 2lblffu)l

MIN = —giwi+ibp=1 4 olbl—fuwl _ q

Thusthe codeconstrucigenerateds:

int tnp;
resul t =((t np=expr) >MAX) ?MAX:

(tmp<M N) ?M N: t np;

Introducinganadditionaltemporaryvariableavoids multiple eval-
uationsof expr .

OntheC62xthe _sshl intrinsic (SaturatingShift L eft) canbe
usedto performthe saturatioroperation:

resul t =(si gned) _sshl (expr, SH FT) >>SH! FT;

whereSHIFTis givenby mwl — (iwl + lbp). Utilizing the built-
in saturatiorhardware of the C62xvia the _sshl intrinsic allows
the generatiorof codewith linear control flow in contrastto the
forked control flow in the ANSI-C implementation.This signifi-
cantlyspeedsipthecode.

3.3. Datatype Selection

Thefinal stepin thetransformatiorprocesss the selectiorof suit-
ableintegral datatypesfor fixed-pointvariables.Theinternalbit-
true specificatiorof thealgorithmfeaturesarbitraryword lengths.
With the System@adk endthisis no problem,sincethe SystemC
datatypesaregenericandmaybeof ary bit lengththatis required.
The C62xbackendon the otherhandonly hasthelimited pool of
thebuilt-in datatypessupportedy theC62x,char ,short ,i nt,
andl ong. Similar to the Ibp alignmentalgorithm, several con-
straintsfor the mwl have to be met: of courseiwl + lbp < mwl
mustalways be fulfilled. Additional constraintsoccurin caseof
arraysandpointers:all arrayelementsnustbe of the sametype,a
pointerandits targetlocationmustbe of the sametype. In caseof

aliasingof dataelementsg.g. a pointerpointingto differentdata
elementsadwancedalgorithmsfor datatype selectionareimple-
mentedn the FRIDGE C62xbackend.

In contrastotheconceptpresentedh [11], theFRIDGEdesign
environmentdetermineghe fixed-pointparameterby ananalyti-
cal approacttombinedwith simulationdatainsteadof puresimu-
lation basedangeestimation.In the FRIDGE C62xbackend,the
choiceof the mwl for eachvariableis flexible, basedn thevalues
of iwl andlbp.

4. EXPERIMENT AL RESULTS

We have benchmarkd the cycle-countperformanceof the gener
ated C62x integer C-codeusing typical signal processingkernel
functions:

e FIR 17-tapFIR filter

e DCT 8x8 JPEGdiscretecosinetransformation
e Autocorr 25 elementsbth orderautocorrelation
e |IR 3rdorderlIR filter

e Matrix 4x4 matrix multiplication

e Dotprod 64 elementdot product

The codehasbeentranslatedusing TI's C6x compilerversion
4.0[179 andthe performancéhasbeencomparedwvith threerefer
encecodes:

e C67xfloating-point C-code
The C67xfloating-pointDSPis code-compatibl¢éo the C62xand
its C-compileris mostlyidenticalto the C62xC-compiler thusthe
performancef the generatedixed-pointC-codecanbe compared
to the original floating-pointC-code.

e C62xfloating-point emulation
The floating-pointemulationlibrary which is part of the C62x
compilersruntimelibrary allowstheuserto performfloating-point
arithmeticon the C62x processor The floating-pointoperations
areexecutedasfunctioncalls.

e C62xinteger ANSI-C code
A specialversionof the FRIDGE back end allows the designer
to generateANSI-C fixed-pointcodewithout C62x specificopti-
mization. This code canalso be compiledand executedon the
C62x processor The efficiengy of the target specific code opti-
mizationcanbe benchmar&d usingthis code.

floating- float generic target
point emulation | ANSI-C | specificC

Device C67x C62x C62x C62x
FIR 132 1304 523 234
DCT 331 34163 1509 622
Autocorr 564 6581 3057 1041
IR 73 708 82 81
Matrix 108 4999 1600 233
Dotprod 95 9436 1300 406

Table 1. CycleCount

Table 1 presentsthe benchmarkingresultsfor the six kernel
functions.Figure3illustratestherelative cycle count. As the C67x
floating-pointcodehasbeenusedasa referencejt wasscaledto

100%. For readabilitythe resultsof the floating-pointemulation
have beenomittedin the bargraph.

As depictedin Table 1 the C62x floating-pointsoftware emu-
lation hasa cycle countwhich is by a factorof 9.7 to 103 higher
thanthe cycle countof the samecodecompiledfor the floating-
point processor

The genericANSI-C integer code without C62x specificlan-
guageextensionsis by a factor of 1.1 to 14.8 slower than the
floating-pointcode. The integer code performsadditional shift-
andbit-maskingoperationgo ensurethe bit-true behaior. Some
of the cast-operationsannoteasilybe modeledin genericANSI-
C. Thusa significantoverheadis introducedfor kernelfunctions
wheremary castoperationsareinsertedoy the interpolation(e.g.
the DCT).

The performancecan be improved by matchingthe generated
codeto the targetarchitecture.E.g. utilizing the _sshlintrinsic is
a convenientway to accesshe C62xsaturatiorhardwaredirectly.
This reduceghe overheadintroducedby the additionalshift and
castoperationgo afactorof 1.1to 4.3 comparedo the floating-
pointcode.

For the floating-pointcodeof the Dotprod kernelfunction, the
compilerwas ableto generateefficient code using 95 cycles for
64 vector elements. For the fixed-pointcode, the additional op-
erationsneededor castoperationsn the inner loop prevent the
compilerfrom achievzing similar efficiency. Remaing all scaling
shifts and overflov protectionfrom the inner loop of the fixed-
point codefor this kernelyields a cycle countof 83. Introducing
asinglescalingshift in theinnerloop bringsthecycle countup to
147,addingoverflow protectionyields406 cycles. Similar effects
appeain the Matrix kernelbenchmark.

427%
DOTPROD] 1368%

100%
216%
MATRIX] 1481%
[|

2%

77%
FIR 396%

100")r,

0% 200% 400% 600% 800% 1000% 1200% 1400% 1600%

‘I:Iﬂoating-point C67x OANSI-C C62x Moptimized C62x ‘

Fig. 3. Cycle CountRelative to FloatingPointCode

5. CONCLUSIONS

In this papemwe have presented designervironmentfor floating-
pointto fixed-pointcorversionandfor thegeneratiorof optimized
C62xC-codeusingintegral datatypes.Theconceptandtheneces-
sarycodetransformatiorstepshave beenpresentedTo proof the

conceptdntroducedn this papemwe have implementeda software
tool andwe have benchmarkd the generated”62x codeagainst
floating-pointreferencecoderunningona C67xDSPandANSI-C

integercode.

The FRIDGE C62x designervironmentenablesa seamlessle-
signflow from afloating-pointcodeto C62x C-codeusingintegral
datatypes.Thegeneratedodeyieldsbit-by-bitthesameresultsas
the bit-true SystemCcodefor hostsimulation,enablingcompara-
tive simulationto the referencemodel. A tool which generates
C62x C-codewith scalingshifts, integer constantsand castoper
ationsfreesthe designerfrom the tediousanderror pronetask of
manuallyportingthe codeto the C62x platformandreducedime
to marlet.

Futureresearctwork will focuson adwancedoop optimization
techniquedor the C62xto exploit thefeaturesof the C62xproces-
sorandits C-compiler

6. REFERENCES

[1] S.Kim, K. Kum, andW. Sung, “Fixed-PointOptimization
Utility for C andC++ BasedDigital SignalProcessindg’ro-
grams; in Workshopon VLS| and Signal Processing95,
OsakaNov. 1995,pp.197-206.

[2] FrontierDesigninc., 9000Crow Caryon Rd., Darville, CA
94506,USA, A|RT Library User's andRefeenceDocumen-
tation, 1998.

[3] Synopsysinc., CoWare,Inc., FrontierDesigninc., SystemC
User's Guide Version1.0, 2000.

[4] RecommendationrGSM 06.10, GSM Full Rate Speeh
Transcoding ETSI/TCSMG, 1992.

[5] M. Coors,O. Wahlen,H. Keding, O. Lithje,andH. Meyr,
“C62x Compiler Benchmarkingand PerformanceCoding
Technique$, in Proc. Int. Conf on Signal ProcessingAp-
plication and Technolagy (ICSFAT), Orlando,Nov. 1999.

[6] V. Zivojnwié,J.Martinez,C. SchigerandH. Meyr, “DSP-
stone: A DSP-orientedbenchmarkingmethodology in
Proc.of ICSFAT'94 - Dallas, Oct. 1994.

[7] M. Willems, V. Birsgens,H. Keding, T. Grotker, and
H. Meyr, “SystemLevel Fixed-PointDesignBasedon an
Interpolative ApproacH, in Proceedingof the DesignAu-
tomationConfeence(DAC), Anaheim,Jun.1997,pp. 293—
298.

[8] H.Keding,M. Willems, M. Coors,andH. Meyr, “FRIDGE:
A Fixed-PointDesignandSimulationEnvironment; in Pro-
ceeding®ofthe EuropeanConfeenceon Design,Automation
andTest(DATE), Paris,Feh 1998,pp.429-435.

[9] O. Luthje, H. Keding,and M. Coors, “High Performance
CodeAnalysisby AbstractExecution; in Proc.of DSPGer
many200Q Munich, Oct. 2000.

[10] MichaelJ. Wolfe, High PerformanceCompiles for Paral-
lel Computing Addison-Wesley Publishing,Redwood City,
CA, 1996.

[11] JiyangKang Ki-Il Kum and Wonyong Sung, “A floating-
point to integer ¢ converter with shift reductionfor fixed-
point digital signalprocessors, in Proceedingof the IEEE
International Confeenceon Acoustics,Speeh and Signal
ProcessindICASSP)1999,pp.2163-2166.

[12] TexasInstrumentsUSA, TMS320C600@ptimizingCom-
piler User’s Guide March2000.

