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ABSTRACT
This paperpresentsa methodologywhich enablesthe generation
of C62x optimizedfixed-pointC-codefrom a floating-pointde-
scriptionof analgorithm.TheFRIDGEdesignenvironmenttrans-
forms floating-pointANSI-C codewith local fixed-pointannota-
tionsinto aninternalbit-truerepresentation.Fromthis representa-
tion wegenerateC62xoptimizedintegerC codeutilizing thecode
transformationtechniquesillustratedin this paper. A benchmark
is presentedcomparingthe efficiency of the generatedcodewith
C67x C-code,C62x floating-pointemulationandgenericinteger
ANSI-C code.

1. INTR ODUCTION

Algorithm designfor digital signal processingsystemstypically
startsin thefloating-pointdomainto abstractfrom implementation
effects. On theotherhandthe implementationis usuallydoneon
fixed-pointdevicesdueto theadvantageof fixed-pointsystemsin
termsof power consumption,chipsize,andpriceperunit.

Priorto theactualsystemimplementationatransformationfrom
thefloating-pointto afixed-pointsystemis necessary, i.eanexplo-
rationof thefixed-pointdesignspacewith respectto quantization
noise,performance,andoperandword lengths.

Modeling the fixed-pointbehavior of signal processingalgo-
rithms is frequently done on a PC or a workstationutilizing a
C/C++-basedsystem-level designenvironment.For efficientmod-
eling of finite word length effectsgenericfixed-pointdatatypes
arenecessary. ANSI-C doesnot offer suchdatatypesandhence
fixed-pointmodelingusingpureANSI-C becomesa very tedious
anderrorpronetask.

Genericfixed-pointdata types implementedin C++ basedli-
braries[1, 2, 3] offer a high modelingefficiency. They alsosup-
ply variouscastingmodesfor overflow andquantizationhandling.
Neverthelessthesefixed-pointdatatypesarenot suitedfor DSP
implementation,asthe currentlyavailableDSPcompilersdo not
supportC++fixed-pointdatatypesfor fixed-pointdesign.Theup-
cominggenerationof DSPcompilerswill supportC++ language
constructs,but compilingthefixed-pointlibrariesfor theDSPis no
viablealternative asthe implementationof thegenericdatatypes
makesextensive useof operatoroverloading,templates,anddy-
namicmemorymanagement.This will renderfixed-pointopera-
tions ratherinefficient comparedto integer arithmeticperformed
ona DSP.

ANSI C-basedfixed-pointlibrariessuchastheETSIbasicarith-
meticoperationsusedin [4] offer a setof two or threefixed-point
datatypesandsomedatapathelementslike they are frequently
encounteredon programmableDSPs.Here,the lack of flexibility
restrictsthefixed-pointdesignprocess.

Thusasignificantgapin thedesignflow isevident:amanualim-
plementationon theDSPandtargetspecificcodeoptimizationis
necessary, increasingtime-to-market andmakingdesignchanges
very tedious,errorprone,andcostly.

TheFRIDGEC62xdesignenvironmentpresentedin this paper
enablesa seamlessdesign-flow from floating-pointto optimized
C62xC-codeutilizing integral datatypes.Generatinga C62xop-
timizedversionof a signalprocessingalgorithmusinga different
set of fixed-pointparametersbecomesa matterof hoursinstead
of daysor weeksusingtheconventionalmanualtechniques.The
C62xintegercodegeneratedby thedesignenvironmentyieldsbit-
by-bit thesameresultsasthefixed-pointcodeutilizing C++ simu-
lationclasseson thehostmachine.Thusacomparative simulation
to the ’golden referencemodel’ givesthe designera high degree
of confidencein thegeneratedcode.

TheC62xhasbeenchosenasatargetdevicefor severalreasons:� The C62x is a popularhigh performancefixed-pointDSP
platform which is intendedto be programmedin C. An efficient
C compilerfor theC62xis availablefrom TI.

� TheC62xC compilerallows directaccessto thebuilt-in ar-
chitecturalfeaturesof theprocessorvia intrinsics.Thusotherwise
computationallyexpensive fixed-pointoperationscanbe directly
mappedto thehardware.Additionalinformationaboutthecontrol-
anddata-flow in thealgorithmcanbepassedon to thecompiler.

� An evaluationof the C62x compiler [5] utilizing the DSP-
stonebenchmarkingmethodology[6] hasshown thatdramaticim-
provementsof theperformanceof thecompiledcodecanbeachie-
ved by targetspecificcoderestructuringandoptimization. Some
of the optimization techniquesdevelopedduring the evaluation
have also beenimplementedin the FRIDGE C62x designenvi-
ronmentutilizing theinformationpresentin theinternalrepresen-
tationof thealgorithm.

This paperis organizedas follows: section2 will briefly in-
troducetheFRIDGEfixed-pointdesignenvironmentwhich forms
thebasisfor theC62xcodegeneration.In themainsection3 the
transformationprocessis presented.In section4 we provide com-
parative benchmarkingdatafor varioussignal processingkernel
functions.Section5 concludesthepaper.

2. FRIDGE DESIGN ENVIR ONMENT

Thework presentedin thispaperis basedontheFixed-PointPRo-
grammIngDesignEnvironment(FRIDGE)whichsupportsthede-
signerin the floating-pointto fixed-pointtransformationprocess.
FRIDGErelieson dataflow analysisandinformationpropagation



asdescribede.g. in [7, 8] to transforma signalprocessingalgo-
rithm into a fully bit-true representation.The transformationis
basedonanalyticalrangeandprecisionpropagationof fixed-point
operands.Fig. 1 highlights the designflow. Startingpoint is a
floating-pointdescriptionof the algorithm in ANSI-C. First the
designeraddslocal fixed-pointannotationsto thealgorithm,spec-
ifying the bit-true format for input- andkey-operands.The local
annotationsarespecifiedusingthe fixed-pointdatatypesof Sys-
temC. The result is a hybrid description, i.e. partsarespecified
in fixed-pointwhereasthe majority of the operandsstill remains
floating-point. In a first stepthe FRIDGE front end parsesthe
hybrid descriptioninto an intermediaterepresentation(IR). Then
rangeandprecisionpropagationis performedto determinethebit-
trueformatfor all operands.During this processcontrol-anddata
flow analysisis alsocarriedout. Theinformationgainedis stored
in theIR. Theadvancedalgorithmsusedfor theanalysishavebeen
describedin [9].

Fig. 1. Fixed-Pointsystemdesignflow with FRIDGE

After thisprocesstheIR holdsabit-truedescriptionof thealgo-
rithm with additionalcontrol- anddataflow information. These
data structuresform the basisfor the transformationstepsper-
formedin the FRIDGE backendsthat target different languages
andplatforms.TheSystemCback endtransferstheIR into aquan-
tizedalgorithmusingtheSystemCfixed-pointdatatypes.

For the C62x integer codegeneration,further transformation
stepsarenecessary. The C62xback endalsorequiresadditional
informationcollectedduring the control- anddataflow analysis.
After a numberof IR refinements,a C-coderepresentationof the
algorithmusingonly integral datatypescanbe derived from the
IR. It is importantto notethat thetransformationin thebackend,
in contrastto thefloat-to-fixedtransformationin the IR, doesnot
changethe behavior of the algorithm. The fully quantizedalgo-
rithm codedin SystemCandtheinteger-basedalgorithmyield bit-
by-bit identicalresults.

3. TRANSFORMATION

3.1. LBP Alignment

A fixed-pointoperandis specifiedby a3-tuple �����	��
����
����
������
wherewl is the word lengthof the operand,iwl the integer word
lengthandsign the sign encodingused. For the embeddingof a
fixed-pointoperandinto a registerof the DSPwith the machine

word lengthmwl theminimumrequirementis
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Fig. 2 illustratesdifferentoptionsfor embeddinganoperandwith
a word lengthof 5 bits into a given machineword lengthmwl of
8. Obviously for � ���#�$��� a degreeof freedomfor choosingthe
location of binary point lbp exists:
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Fig. 2. Embeddinga 5 bit word into an8 bit register

Besidesthis degreeof freedomtherearealsoa numberof limi-
tationsfor theselectionof the lbp:0 Operation constraints: certainoperationsrequire the lbp
to be at the sameposition for both operands,e.g. additionsor
comparisons.

0 Control and data-flow constraints: generallya readaccess
to a storageelementmustusethesame132
4 astheprecedingwrite
accessto thestorageelement.Thisimpliesthatif awrite operation
to a memorylocationoccursin alternative control-flow branches,
the lbp mustbe at the samepositionin both write operations,as
no run time informationaboutthe lbp is availablein a following
readoperation.The sameappliesto ambiguouswrite operations
to arraysandwrite operationsvia pointers.

0 Interface constraints: for interfaceelements,e.g. function
parametersor globalvariablesthe lbp mustbepredefined.Other-
wise the datawritten to or readfrom thesedataelementscanbe
misinterpretedby thecalling function(s).

Thelbp alignmentalgorithmimplementedin theFRIDGEC62x
backendis designedto take advantageof the degreeof freedom
describedby equation2, while meetingthe constraintsspecified
above. For meetingtheseconstraintsandmaintainingtheconsis-
tency of thelbpsonerequirespreciseinformationaboutthecontrol
anddataflow of thealgorithm.To obtainthis informationweused
thedataflow analysismethoddescribedin [9]. Thedataflow in-
formation is representedbasicallyas define-use(du) chains and
use-define(ud) chains[10], but with additionalandmoreaccurate
informationaboutambiguouscontrolflow.

As initial stepfor theembeddingwechooselbp=fwl for all oper-
ands. Thusall operandsareright aligned. In aniterative process,
thedataflow informationis usedto adjustthe lbpsby insertionof
shift operationsto meet

1. theinterfaceconstraints

2. thecontrol-anddataflow constraints

3. theoperationconstraints



For eachconstraintthealgorithmterminateswhenall conditions
arefulfilled andthe lbps did not changeduring the last iteration.
Theembeddingof constantscanbedonein awaythattherequired
shift operationswhenusingthemareminimized.

3.2. CastMode Transformation

Castoperationscanreduceor limit the word lengthat the MSB
sideof a word (overflowhandling) or at the LSB sideof a word
(quantizationhandling). Fixed-pointlibrarieslike in SystemCof-
fervariousgenericoverflow andquantizationhandlingmodeswhich
make themanefficient meansof modelingof fixed-pointsystems.
For DSPimplementationthecastoperationshave to bemappedto
thetargethardwarein anefficient manner. TheC62xoffersbuilt-
in saturationhardwarewhichcanbeusedby thebackend.This is
illustratedby thefollowing example:

3.2.1. CastMode:Saturation

A castof an expressionto a wl-bit two’s complementdatatype
with integerword lengthiwl applyingsaturationasoverflow mode
is modeledin SystemCasfollows:

result=sc_fix(expr,wl,iwl,...,SC_SAT);

An implementationof this codeconstructutilizing plain C code
first testsif the rangeof datatype is exceeded.If so it setsthe
resultingvalueto theminimumor maximumof this type:5/6�798;:=<?>A@CB�@EDGF=H�IKJL:M@ED
@3HANO>A@5QP�RS8TJ�: <)>A@CBU@EDGFVHWIYX : @ED	@3HUNZ>A@ J$[
Thusthecodeconstructgeneratedis:

int tmp;
result=((tmp=expr)>MAX)?MAX:

(tmp<MIN)?MIN:tmp;

Introducinganadditionaltemporaryvariableavoidsmultipleeval-
uationsof expr.

On theC62xthe sshl intrinsic (SaturatingShift Left) canbe
usedto performthesaturationoperation:

result=(signed)_sshl(expr,SHIFT)>>SHIFT;

whereSHIFT is givenby \^]�_ J'`�a ]�_ X _3b+cAd . Utilizing thebuilt-
in saturationhardwareof theC62xvia the sshl intrinsic allows
the generationof codewith linear control flow in contrastto the
forked control flow in the ANSI-C implementation.This signifi-
cantlyspeedsup thecode.

3.3. Data type Selection

Thefinal stepin thetransformationprocessis theselectionof suit-
ableintegral datatypesfor fixed-pointvariables.Theinternalbit-
truespecificationof thealgorithmfeaturesarbitraryword lengths.
With theSystemCback endthis is no problem,sincetheSystemC
datatypesaregenericandmaybeof any bit lengththatis required.
TheC62xbackendon theotherhandonly hasthelimited pool of
thebuilt-in datatypessupportedby theC62x,char,short,int,
andlong. Similar to the lbp alignmentalgorithm,several con-
straintsfor the \^]�_ have to bemet: of course

a ]�_ X _3b+c&e/\f]�_
mustalwaysbe fulfilled. Additional constraintsoccurin caseof
arraysandpointers:all arrayelementsmustbeof thesametype,a
pointerandits targetlocationmustbeof thesametype. In caseof

aliasingof dataelements,e.g. a pointerpointing to differentdata
elements,advancedalgorithmsfor datatype selectionareimple-
mentedin theFRIDGEC62xbackend.

In contrastto theconceptspresentedin [11], theFRIDGEdesign
environmentdeterminesthefixed-pointparametersby ananalyti-
cal approachcombinedwith simulationdatainsteadof puresimu-
lationbasedrangeestimation.In theFRIDGEC62xbackend,the
choiceof themwl for eachvariableis flexible, basedon thevalues
of iwl andlbp.

4. EXPERIMENT AL RESULTS

We have benchmarked thecycle-countperformanceof thegener-
atedC62x integer C-codeusing typical signalprocessingkernel
functions:� FIR 17-tapFIR filter� DCT 8x8 JPEGdiscretecosinetransformation� Autocorr 25elements5thorderautocorrelation� IIR 3rd orderIIR filter� Matrix 4x4 matrix multiplication� Dotprod 64elementdotproduct

The codehasbeentranslatedusingTI’s C6x compilerversion
4.0[12] andtheperformancehasbeencomparedwith threerefer-
encecodes:� C67x floating-point C-code
TheC67xfloating-pointDSPis code-compatibleto theC62xand
its C-compileris mostlyidenticalto theC62xC-compiler, thusthe
performanceof thegeneratedfixed-pointC-codecanbecompared
to theoriginal floating-pointC-code.

� C62x floating-point emulation
The floating-pointemulationlibrary which is part of the C62x
compiler’sruntimelibraryallowstheusertoperformfloating-point
arithmeticon the C62x processor. The floating-pointoperations
areexecutedasfunctioncalls.

� C62x integer ANSI-C code
A specialversionof the FRIDGE back end allows the designer
to generateANSI-C fixed-pointcodewithout C62x specificopti-
mization. This codecan also be compiledand executedon the
C62x processor. The efficiency of the target specificcodeopti-
mizationcanbebenchmarkedusingthis code.

floating-
point

float
emulation

generic
ANSI-C

target
specificC

Device C67x C62x C62x C62x
FIR 132 1304 523 234
DCT 331 34163 1509 622
Autocorr 564 6581 3057 1041
IIR 73 708 82 81
Matrix 108 4999 1600 233
Dotprod 95 9436 1300 406

Table1. CycleCount

Table 1 presentsthe benchmarkingresults for the six kernel
functions.Figure3 illustratestherelativecyclecount.As theC67x
floating-pointcodehasbeenusedasa reference,it wasscaledto



100%. For readabilitythe resultsof the floating-pointemulation
have beenomittedin thebargraph.

As depictedin Table1 the C62x floating-pointsoftwareemu-
lation hasa cycle countwhich is by a factorof 9.7 to 103higher
thanthe cycle countof the samecodecompiledfor the floating-
pointprocessor.

The genericANSI-C integer codewithout C62x specific lan-
guageextensionsis by a factor of 1.1 to 14.8 slower than the
floating-pointcode. The integer codeperformsadditionalshift-
andbit-maskingoperationsto ensurethebit-truebehavior. Some
of thecast-operationscannoteasilybemodeledin genericANSI-
C. Thusa significantoverheadis introducedfor kernel functions
wheremany castoperationsareinsertedby the interpolation(e.g.
theDCT).

The performancecan be improved by matchingthe generated
codeto the targetarchitecture.E.g. utilizing the sshl intrinsic is
a convenientway to accesstheC62xsaturationhardwaredirectly.
This reducesthe overheadintroducedby the additionalshift and
castoperationsto a factorof 1.1 to 4.3 comparedto thefloating-
point code.

For the floating-pointcodeof theDotprod kernelfunction, the
compilerwasable to generateefficient codeusing95 cycles for
64 vectorelements.For the fixed-pointcode,the additionalop-
erationsneededfor castoperationsin the inner loop prevent the
compilerfrom achieving similar efficiency. Removing all scaling
shifts and overflow protectionfrom the inner loop of the fixed-
point codefor this kernelyieldsa cycle countof 83. Introducing
a singlescalingshift in theinnerloop bringsthecycle countup to
147,addingoverflow protectionyields406cycles.Similar effects
appearin theMatrix kernelbenchmark.

Fig. 3. CycleCountRelative to FloatingPointCode

5. CONCLUSIONS

In thispaperwe havepresentedadesignenvironmentfor floating-
point to fixed-pointconversionandfor thegenerationof optimized
C62xC-codeusingintegraldatatypes.Theconceptandtheneces-
sarycodetransformationstepshave beenpresented.To proof the

conceptsintroducedin thispaperwehave implementedasoftware
tool andwe have benchmarked the generatedC62x codeagainst
floating-pointreferencecoderunningonaC67xDSPandANSI-C
integercode.

TheFRIDGEC62xdesignenvironmentenablesa seamlessde-
signflow from afloating-pointcodeto C62xC-codeusingintegral
datatypes.Thegeneratedcodeyieldsbit-by-bit thesameresultsas
thebit-trueSystemCcodefor hostsimulation,enablingcompara-
tive simulationto the referencemodel. A tool which generates
C62x C-codewith scalingshifts, integerconstantsandcastoper-
ationsfreesthedesignerfrom the tediousanderrorpronetaskof
manuallyportingthecodeto theC62xplatformandreducestime
to market.

Futureresearchwork will focuson advancedloop optimization
techniquesfor theC62xto exploit thefeaturesof theC62xproces-
sorandits C-compiler.
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