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ABSTRACT

In this paper, a new method for blind spatial signal filtering
is proposed. It utilizes the selectivity property of the higher-
order cyclostationary statistics exhibited by the signal of in-
terest to accurately estimate its unknown steering vector,
also in the presence of strong frequency-overlapped inter-
fering signals, which would render the standard stationarity-
based techniques ineffective. The method is useful when the
desired signal cannot be accurately extracted by exploiting
its second-order cyclostationarity properties, as proposed in
[1]. The performance analysis, carried out by computer sim-
ulations in the case of QAM-modulated signals with par-
tially overlapping bands, substantiates the effectiveness of
the proposed method.

1. INTRODUCTION

The problem of wideband spatial filtering received by a sen-
sor array is relevant in many areas of signal processing and
communications systems [2, 3]. Often the direction-of-ar-
rival of the desired signal, and, therefore, its spatial signa-
ture (steering vector) cannot be assumed to be known. A
first approach to solve this problem is based on the use of a
training sequence. In order to avoid the associated waste of
bandwidth, one can exploit [1, 4] the cyclostationarity prop-
erties [5] of the signal of interest, in order to achieve a blind
approximation of the optimum spatial filter, on the basis of
the only received data. The peculiar advantage of such an
approach is given by its inherent signal-selectivity, that is,
by the fact that the obtained approximation of the optimum
filter is asymptotically (as the observation interval tends to
infinity) independent of the power of both the noise and the
interfering signals, provided that there exists at least one
known cyclostationarity feature of the desired signal that is
not shared by any of the interferers.

The method proposed in [1] exploits the signal-selecti-
vity associated with second-order statistics, which is a rea-
sonable choice, since they can be accurately estimated with

low computational burden. However, when second-order
signal-selectivity does not apply, one must resort to higher-
order cyclostationarity (HOCS) properties of the received
signal.

In this paper, we propose a method for blind wideband
spatial filtering of signals received by an array of sensors,
which exploits higher-order signal-selectivity. More pre-
cisely, the proposed method, which is an extension of that
proposed in [6] for the narrowband spatial filtering case, es-
timates the steering vector of the desired signal, which is
needed to implement the optimal minimum mean-square er-
ror (MMSE) spatial filter, on the basis of the cyclic cross-
polyspectra of the received signals. The paper is organized
as follows: in Section 2, we introduce the MMSE non-blind
wideband filter; in Section 3, the new method is proposed;
in Section 4, the performances of the proposed method are
evaluated by computer simulations.

2. MMSE WIDEBAND SPATIAL FILTERING

Let us consider D signals impinging on an array of N sen-
sors. The received signal at the ith sensor is given by:

xi(t) =
D∑

k=1

sk(t− dik) + ni(t) , (1)

where sk(t) is the kth signal, dik is the delay of the kth
signal at the ith sensor, and ni(t) is the additive (antenna
plus thermal) noise at the ith sensor. Therefore, the complex
envelope of xi(t), defined with respect to frequency f0, can
be expressed as:

x̃i(t) =
D∑

k=1

s̃k(t− dik)e−j2πf0dik + ñi(t) , (2)

where s̃k(t) and ñi(t) are the complex envelopes of sk(t)
and ni(t), respectively.

In the wideband array case, namely, when the usual as-
sumption of approximating s̃k(t− dik) with s̃k(t) does not



apply, it is convenient to resort to the finite-time Fourier rep-
resentation of (2):

X̃i(f)T �
D∑

k=1

S̃k(f)T e−j2π(f+f0)dik + Ñi(f)T , (3)

where X̃i(f)T , S̃k(f)T , and Ñi(f)T are the finite-time Fou-
rier transforms of x̃i(t), s̃i(t), and ñi(t), respectively, and
the approximation holds provided that the observation time
T � maxi,k[|dik|]. By adopting a vectorial notation, equa-
tion (3) can be rewritten more concisely as:

X̃(f)T �
D∑

k=1

S̃k(f)T ak(f) + Ñ(f)T , (4)

where X̃(f)T
�
= [X̃1(f)T , . . . , X̃N (f)T ]T , ak(f)

�
=

[e−j2π(f+f0)d1k , . . . , e−j2π(f+f0)dNk ]T , and Ñ (f)T
�
=

[Ñ1(f)T , . . . , ÑN(f)T ]T .
Let us assume, with no loss of generality, that the signal

to be extracted is s1(t); under the assumption that the sig-
nals are zero-mean and independent of each other and of the
noise signals, the MMSE filter is [3]:

W MMSE(f) = Ps1 (f)R−1
XX(f)a1(f) , (5)

where Ps1(f) is the power spectral density of s̃1(t),

RXX(f)
�
= lim

T→∞
1
T
E[X̃(f)T X̃

H
(f)T ] , (6)

with E[·] denoting ensemble averaging, and a1(f) is the
steering vector of the desired signal.

3. HOCS-BASED BLIND SPATIAL FILTERING

If the delays dik are assumed to be unknown, an estimate of
a1(f) is needed to implement the MMSE filter. To perform
such an estimation, it is convenient to rewrite equation (2)
as:

x̃i(t) =
D∑

k=1

hik(t) ⊗ s̃k(t) + ñi(t) , (7)

where hik(t)
�
= δ(t − dik) e−j2πf0dik is the impulse re-

sponse of an ideal delay element, whose Fourier transform

Hik(f)
�
= e−j2π(f+f0)dik coincides with the ith compo-

nent of the steering vector ak(f). Such a formulation al-
lows one to turn the steering vector estimation problem into
a system identification one.

We propose here to perform system identification by
resorting to an approach based on cyclic polyspectra [7].
Therefore, let n denote the order of the polyspectrum, and

define, for a fixed i ∈ {1, 2, . . . , N}, the n-dimensional
column vector:

xi(t)
�
= [x̃1(t)(∗)1 , x̃1(t)(∗)2 , . . . , x̃1(t)(∗)n−1︸ ︷︷ ︸

n−1 times

, x̃i(t)(∗)n ]T ,

(8)

where the superscript (∗)j denotes an optional conjugation,
and consider the nth-order cyclic polyspectrum with cycle
frequency β of the vector xi(t), which can be shown to be:

P
β

xi
(f ′)n =

D∑
k=1

{
H

(∗)n

ik [(−)n(β − 1T f ′)]

×

n−1∏

j=1

H
(∗)j

1k [(−)jfj]


P

β

sk
(f ′)n


 + P

β

ni
(f ′)n , (9)

where f ′ = [f1, f2, . . . , fn−1]T , the symbol (−)j denotes
an optional minus sign, and ni(t) is defined analogously to
xi(t). Equation (9) is a straightforward generalization to the
case of multiple LTI systems of equation (33) of [7], which
refers to the case of a single LTI system.

Under the assumption that, for a given choice of the op-
tional conjugations, only the signal to be extracted exhibits
nth-order cyclostationarity with cycle frequency β, equa-
tion (9) reduces to:

P
β

xi
(f ′)n = H

(∗)n

i1 [(−)n(β − 1T f ′)]

×

n−1∏

j=1

H
(∗)j

11 [(−)jfj ]


P

β

s1
(f ′)n . (10)

By collecting the polyspectra P
β

xi
(f ′)n for i = 1, 2, . . . ,

N in the vector P
β

x(f ′)n = [P
β

x1
(f ′)n, . . . , P

β

xN
(f ′)n]T ,

one has:

P
β

x(f ′)n = P
β

s1
(f ′)n


n−1∏

j=1

a
(∗)j

11 [(−)jfj ]




× a
(∗)n

1 [(−)n(β − 1T f ′)]

= P
β

s1
(f ′)n


n−1∏

j=1

a11(fj)


a1(β − 1T f ′) , (11)

where we have taken into account that the elements of a1(f)
are complex exponentials. Note that we can assume d11 = 0
with no loss of generality, since this merely amounts to a
shift of the time origin. Therefore, in this case, a11(f) = 1
and, therefore, equation (11) simplifies to:

P
β

x(f ′)n = P
β

s1
(f ′)n a1(β − 1T f ′) . (12)



Equation (12) is the key result upon which our method is

based. Indeed, it shows that the vector P
β

x(f ′)n is pro-
portional to the steering vector a1(β − 1T f ′), provided

that P
β

s1
(f ′)n �= 0. Therefore, for any frequency value f

of interest, by appropriately choosing f ′ = g(f) so that

f = β − 1T f ′ and P
β

s1
(f ′)n �= 0, an estimate of the the

polyspectra slices P
β

x[g(f)]n can be utilized instead of the
unknown steering vector a1(f) to implement a blind ap-
proximation of the MMSE filter (5). To further investigate

this point, replace a1(f) with P
β

x[g(f)]n in (5), obtaining

W BLIND(f)
�
= Ps1(f)R−1

XX(f)P
β

x[g(f)]n

= Ps1 (f)R−1
XX(f)P

β

s1
[g(f)]n a1(f)

= P
β

s1
[g(f)]n W MMSE(f) . (13)

As shown in (13), the blind filter can be regarded as the
cascade of the MMSE filter and the LTI filter with transfer
function P

β

s1
[g(f)]n. If the signal polyspectrum slice can

be reasonably assumed flat within the band of interest, the

filtering effect of P
β

s1
[g(f)]n can be neglected, otherwise

it must be equalized (to within a scale factor) in order not
to introduce a significant amount of distortion in the recov-
ered signal. Note that if the signal modulation format is
known, the signal polyspectrum can be analytically evalu-
ated (to within a scale factor).

Since polyspectrum estimates exhibit slow convergence,
a more effective strategy can be based on the estimation of
the unknown delays dik as an intermediate step for con-
structing an approximate steering vector. This is motivated
by the fact that the algorithms for delay estimation converge
relatively faster (with respect to the observation time) than
the algorithm for polyspectrum estimation. For this reason,
in the simulation experiments we have adopted such a two-
step strategy.

4. SIMULATION RESULTS

In this section we analyze the performance of the proposed
method operating in a digital communications scenario.

We assume that the D signals are QAM-modulated with
root raised cosine pulses with 100 % excess bandwidth, iden-
tical baud-rates T−1

S and partially overlapping bands, so
that they cannot be separated with classical time-filtering
techniques. Moreover, we assume that the lowest radio fre-
quency is 0.6 times the highest, which renders the band-
width of the impinging signals wide enough to make the
standard narrowband techniques largely ineffective. The
noise is modeled as stationary complex white Gaussian, un-
correlated from sensor to sensor. Finally, observe that the
choice of QAM modulation with identical baud-rates for all

the signals precludes the utilization of second-order cyclic
features [1].

In the simulations, we set D = 2 and we consider a non-
uniform linear array of three sensors, where the distance
between the first and the second one is γ (set to one-half
of the wavelenght corresponding to the highest frequency in
the useful signal) and the distance between the first and the
third is bγ. The directions-of-arrival of the desired signal
and the interfering one are 40o and 36o, respectively, eval-
uated with respect to array broadside. The separation be-
tween the center frequencies of the two signals is set to one
quarter of their bandwidth and the offset f1 of the desired
signal is 2.3 times this separation.

At each sensor, we first perform matched filtering of the
received signal and, then, oversampling with period T c =
Ts/p. Then, the discrete-time version of the complex enve-
lope of the desired signal at the output of the matched filter
of the first sensor can be written as

s1[n] = s̃m,1(nTc)ej2πf1nTc , (14)

where s̃m,1(t) denotes the complex envelope of the conti-
nuous-time desired signal at the output of the matched filter
and f1 is the carrier frequency offset. Thus, the complex
envelope of the third-sensor useful output can be written as

s3[n] = s̃m,1(nTc + ∆)ej2πf1(nTc+∆)ej2πf0∆ , (15)

where ∆ = −d31 is the delay between the third and the
first sensor. Denoting with x1[n] and x3[n] the discrete-
time outputs of the first and third sensors, it can be shown,
under simple conditions on the offset frequencies of the use-
ful signal and the interfering one, that

|r4ν1
x1x1x1x3

[m + L]| � |r4ν1
x1x1x1x1

[m]| (16)

where r4ν1
x1x1x1xk

[m] denotes the fourth-order moment among
x1[n], x1[n], x1[n] and xk[n −m] at cycle frequency 4ν1,
ν1 = f1Tc, and L is such that ∆ = LTc + ∆1 with ∆1 ∈
(−0.5Tc, 0.5Tc). Moreover, since

arg
{
r4ν1
x1x1x1x3

[L]
} − arg

{
r4ν1
x1x1x1x1

[0]
}

2π
=

(f0∆ + f1∆1)mod1 , (17)

it is possible to obtain an estimate ∆̂ of ∆, and, therefore,
of the steering vector of the desired signal, by utilizing an
estimate of the moment function slices.

Note that we utilize the third sensor only to obtain an
estimate ∆̂

b of the delay between the second sensor and the
first one, under the assumption that b has been calibrated
with sufficient accuracy; then, we utilize only the first two
sensors to perform spatial filtering.

We consider a scenario in which there is a strong in-
terfering signal (with signal-to-interference ratio equal to



M 1 4 8 16 32 128
MSE 1.28 0.90 5.5e-2 2.3e-2 6e-3 5e-3

Table 1. MSE of the optimum MMSE filter versus the num-
ber M of taps of the FIR filters.

0 dB) and a high signal-to-noise ratio (40dB); we also set
b = 100 and p = 5. As performance measure, we uti-
lize the MSE (obtained by averaging the results of 20 in-
dependent trials) between the reconstructed signal and the
desired one. The following methods are compared: (i) the
optimum MMSE spatial filtering; (ii) the non-blind MMSE
filter, where the steering vector a1(f) is known and the ma-
trix RXX(f) in (5) is estimated from the received data; (iii)
the proposed blind MMSE filter, where both RXX(f) and
a1(f) are estimated from the received data.

As a preliminary step, Tab. 1 shows the results for the
optimum MMSE filter versus the number of taps M of the
FIR filters at the first two sensors. Let us note that the nar-
rowband approach (M = 1) is not able to separate the two
signals [see also Fig. 1 (a)]; moreover, the performances
improve with increasing values of M [compare the results
in Fig. 1 (b)]. Therefore, in the next experiment, we choose
M = 128 for all the methods under comparison. Then,
we evaluate the performance of both non-blind and blind
MMSE methods for a sample size equal to 25600. We found
for the two methods the same value of MSE, equal to 2.2e-2,
which compares favorably with the value 5e-3 of Tab. 1 cor-
responding to the optimum MMSE filter for M = 128. To
show how effective is the proposed method, we also present
in Fig. 1 the eye diagrams of the considered methods. The
similarity of the eye diagrams of Figs. 1(c) and 1(d) con-
firms that, in this scenario, delay estimation converges much
faster than RXX(f) estimation and, hence, does not suffer
of the typically slow convergence of sample higher-order
statistics, making the proposed algorithm well suited for
real-time implementation.

5. CONCLUSIONS

In this paper we have proposed a new method for blind
wideband spatial filtering, which exploits the higher-order
cyclostationarity properties of the received signals. In par-
ticular, under the assumption that the desired signal exhibits
higher-order cyclostationarity at a cycle frequency different
from those of the interfering signals, we have proposed to
utilize the cross-polyspectra of the received signals to esti-
mate the unknown steering vector. The performance anal-
ysis, carried out by computer simulations in the case of
QAM-modulated signals with partially overlapping bands,
shows the effectiveness of the proposed blind method in sit-
uations where the existing second-order techniques (such as
the one proposed in [1]) cannot work.
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Fig. 1. The eye diagrams relative to the following methods:
(a) optimum MMSE single-tap (narrowband) filter; (b) op-
timum MMSE filter (M = 128); (c) non-blind MMSE filter
(M = 128); (d) proposed blind MMSE filter (M = 128).
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