NEW FEATURESIN THE CU-HTK SYSTEM FOR TRANSCRIPTION OF
CONVERSATIONAL TELEPHONE SPEECH

T. Hain, P.C. Woodland, G. Evermann & D. Povey
Cambridge University Engineering Department,

Trumpington Street, Cambridge, CB2 1PZ, UK
e-mail: {th223,pcw,ge204,dp10006} @eng.cam.ac.uk

ABSTRACT

This paper discusses new features integrated into the Cambridge
University HTK (CU-HTK) system for the transcription of conver-
sational tel ephone speech. Major improvements have been achieved
by the use of maximum mutua information estimation in training
as well as maximum likelihood estimation; the use of a full vari-
ance transform for adaptation; the inclusion of unigram pronunci-
ation probabilities; and word-level posterior probability estimation
using confusion networks for use in minimum word error rate de-
coding, confidence score estimation and system combination. Im-
provements are demonstrated via performance on the NIST March
2000 evaluation of English conversational telephone speech tran-
scription (HUb5E). In this evaluation the CU-HTK system gave an
overall word error rate of 25.4%, which was the best performance
by a statistically significant margin.

1. INTRODUCTION

The transcription of conversational telephone speech is one of the
most challenging tasks for speech recognition technology with state-
of-the-art systems yielding high word error rates. The primary
focus for research and development of such systems for US En-
glish has been the Switchboard/Call Home English corpora along
with the regular NIST “Hub5” evaluations. This paper describes
changes to the September 1998 Cambridge University HTK Hub5
evaluation system [5] made while developing the March 2000 sys-
tem.

Major system changes include the use of HMMs trained using
maximum mutual information estimation (MMIE) in addition to
standard maximum likelihood estimation (MLE); the use of pro-
nunciation probabilities; improved speaker/channel adaptation us-
ing a global full variance transform; soft-tying of states for the
MLE based acoustic models; and the use of confusion networks
for minimum word error rate decoding, confidence score estima-
tion and system combination. In addition, several minor changes
were made and these include the use of additional training dataand
revised transcriptions; acoustic data weighting; and an increased
vocabulary size.

The rest of the paper is arranged as follows. First an overview
of the 1998 HTK Hub5 system is given. This is followed by a
description of the data sets used in the experiments and then by
sections that discuss each of the major new features of the sys-
tem. Finally the complete March 2000 Hub5 evaluation system is
described and the results of each stage of processing presented.

2. OVERVIEW OF 1998 HTK HUB5 SYSTEM

The HTK system used in the 1998 Hub5 evaluation served as the
basis for development. In this section a short overview of its fea-
turesis given (see [5] for details).

The system uses perceptual linear prediction cepstral coeffi-
cients derived from a mel-scale filterbank (MF-PLP) covering the
frequency range from 125Hz to 3.8kHz. A total of 13 coeffi-
cients, including co, and their first and second order derivatives
were used. Cepstral mean subtraction and variance normalisation
are performed for each conversation side. Vocal tract length nor-
malisation (VTLN) was applied in both training and test.

The acoustic modelling used gender independent (GI) and gen-
der dependent (GD) versions of cross-word triphone and quin-
phone hidden Markov models (HMMSs) trained using maximum
likelihood estimation. Decision tree state clustering was used to
select a set of context-dependent equivalence classes. Mixture
Gaussian distributions for each tied state were then trained using
iterative mixture splitting. The triphone models were phone posi-
tion independent, while the quinphone models included questions
about word boundaries as well as +2 phone context.

The system used a 27k vocabulary that covered all words in
the acoustic training data. N-gram word-level language models
were constructed by training separate models on transcriptions of
the Hub5 acoustic training data and on Broadcast News data and
then merging the resultant language models to effectively interpo-
late the component N-grams. The word-level 4-grams used were
smoothed with a class-based trigram model.

The decoding was performed in multiple stages with succes-
sively more complex acoustic and language models being applied
in later stages. Iterative maximum likelihood linear regression
(MLLR) was used for speaker/channel adaptation. The transcrip-
tion output of two passes was combined using the ROVER pro-
gram[2]. The system gave a39.5% word error rate on the Septem-
ber 1998 evaluation data.

3. TRAINING AND TEST DATA

The Hub5 acoustic training data is from two corpora: Switch-
boardl (Swbl) and Call Home English (CHE). The January 2000
release of Swhl transcriptions from Mississippi State University
(MSU) was used for experiments. The complete training data set
(h5train00) contains 265 hours of speech and was used for all ex-
perimentsin this paper. Since only asmall proportion of thistrain-
ing set comes from the CHE corpus (17 hours), 3-fold CHE data
weighting was used for acoustic model training [6].



The 1998 evaluation data set (eval98) was used as test data
for system development, which contains 40 conversation sides of
Switchboard2 (Swb2) and 40 CHE sides (in total about 3 hours of
data). Furthermore results are given for the March 2000 eval uation
data set, eval 00, which has 40 sides of Swb1 and 40 CHE sides.

4. MMIE TRAINING

The acoustic model parameters in HMM based speech recogni-
tion systems are normally estimated using Maximum Likelihood
Estimation (MLE), which aimsto find model parameters that max-
imisethelikelihood of the correct transcription of thetraining data.
In contrast to MLE, discriminative training schemes, such as Max-
imum Mutual Information Estimation (MMIE), take account of
possible competing word hypotheses and try to reduce the proba-
bility of incorrect hypotheses. The objective function to maximise
in MMIE isthe posterior probability of the true word transcriptions
given the training data.

For R training observation sequences {O1,...,O,,...Or}
with corresponding transcriptions {w; }, the MMIE objective func-
tion is given by

R
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where M., isthe composite model corresponding to the word se-
quence w and P(w) is the probability of this sequence as deter-
mined by the language model. The summation in the denominator
of (1) istaken over all possible word sequences w allowed in the
task and can be replaced by

PA(Or|[Maen) = pr(orww)P(w) @)

where M qen €ncodesthe full recognition acoustic/language model.

As discussed in [11] the denominator of (1) can be approx-
imated by using a word lattice which is generated once to con-
strain the number of word sequences considered. This lattice-
based framework can be used to generate the necessary statistics
to apply the Extended-Baum Welch (EBW) agorithm [9] to it-
eratively update the model parameters. The implementation we
have used hereisrather different to the onein [11] and performs a
full forward-backward pass constrained by (a margin around) the
phone boundary times that make up each lattice arc. Furthermore
the smoothing constant in the EBW equations is computed on a
per-Gaussian basis for fast convergence and a novel weight up-
date formulation is used. The computational methods that we have
adopted for Hub5 MMIE training are discussed in detail in [12].

While MMIE is very effective at reducing training set error a
key issue is generalisation to test data. It is very important that
the confusable data generated during training (as found from the
posterior distribution of state occupancy for the recognition | attice)
is representative to ensure good generalisation. If the posterior
distribution is broadened, then generalisation performance can be
improved. Two methods were investigated: the use of acoustic
scaling and a weakened language model.

Normally thelanguage model probability and the acoustic model
likelihoods are combined by scaling the language model log prob-
abilities. This approach leads to a very large dynamic range in the
combined likelihoods and a very sharp posterior distribution in the
denominator of (1). An aternative is to scale down the acoustic

model log likelihoods and as shown in [12] this acoustic scaling
aids generalisation performance. Furthermore, it is important to
enhance the discrimination of the acoustic models without overly
relying on the language model to resolve difficulties. Therefore
a unigram language model was used during MMIE training [10]
which also improves generalisation performance [12].

Table 1 shows word error rates using triphone HMMs trained
on h5train00. These experiments required the generation of nu-
merator and denominator lattices for each of the 267,611 training
segments. It was found that two iterations of MMIE re-estimation
gavethe best test-set performance [12]. Comparing thelinesin Ta-
ble 1 show that, the overall word error rate reduction from MMIE
training is 2.4% absolute on eval98. MMIE was also used to train
quinphone HMMs, where similar gains were found.

[ Iteration [| Swb2 | CHE [ Totd |
MLE 425 | 477 | 451
1 40.7 | 46.2 | 435
2 403 | 451 | 427

Table 1. %WER on eval98 using VTLN Gl triphone models and
atrigram language model.

5. SOFT-TYING

The soft tying of states[7] allows Gaussians from aparticular state
to be used in other mixture distributions with similar acoustics. In
a simplified approach [6] for each state the two acoustically most
similar states were found based on a single Gaussian version of
the model set. All of the mixture components from the two near-
est states and the original state of the original mixture Gaussian
HMM are then used in a mixture distribution for the state. Thus
the complete soft-tied system has the same number of Gaussians
astheoriginal system and three times as many mixture weights per
state. After this revised structure has been created al system pa-
rameters are re-estimated. This approach allows the construction
of both soft-tied triphone and quinphone systems in a straightfor-
ward manner.

System Triphones Quinphones
Type Swb2 | CHE [ Totd || Swh2 | CHE | Totd
Gl 25 | 477 | 451 21 | 473 | 447
ST/GI 421 | 474 | 448 | 415 | 469 | 442
ST/GD 414 | 470 | 44.2 410 | 46.1 | 436
ST/GD/PP || 40.1 | 455 | 428 39.2 | 446 | 419

Table 2. WER on eval98 using VTLN Gl triphone/quinphone
models trained on h5train00 and a trigram LM. ST denotes soft-
tied models and PP the use of pronunciation probabilities.

Theresults of using soft-tied (ST) triphone and quinphone sys-
temson eval98 isshown in Table 2. Thereisareductionin WER of
0.3% absol ute for triphones and 0.5% for quinphones and a further
0.6% absolute from using GD models.

6. PRONUNCIATION PROBABILITIES

The pronunciation dictionary used in thistask contains on average
1.1 to 1.2 pronunciations per word. Unigram pronunciation prob-
abilities, that is the probability of a certain pronunciation variant
for a particular word, were estimated based on an alignment of the




training data. The dictionaries in the HTK system explicitly con-
tain silence models as part of a pronunciation. Experiments with
or without inclusion of silence into the probability estimates were
conducted. The most successful scheme used three separate dic-
tionary entries for each real pronunciation which differed by the
word-end silence type: no silence; a short pause preserving cross-
word context; and a general silence model altering context. An
estimate for the pronunciation probability is found separately for
each of these entries and the distributions are smoothed with the
overall silence distributions. Finally all dictionary probabilities
are renormalised so that the pronunciation for each word which
has the highest probability is set to one. During recognition the
(log) pronunciation probabilities are scaled by the same factor as
used for the language model.

Table 2 shows that the use of pronunciation probabilities gives
areduction in WER of 1.4-1.7% absolute on eval98. Similar im-
provements have been found on other test sets.

7. FULL VARIANCE TRANSFORMS

A side-dependent block-full variance (FV) transformation [4], H,
of theform S = HXHT was investigated. This can be viewed as
the use of a speaker-dependent global semi-tied block-full covari-
ance matrix and can be efficiently implemented by transforming
both the means and the input data. In our implementation, the full
variance transform was computed after standard mean and vari-
ance maximum likelihood linear regression (MLLR). Typically a
WER reduction of 0.5% to 0.8% was obtained. However asaside
effect, we found that there were reduced benefits from multiple
MLLR regression classes when used with a full variance trans-
form.

8. CONFUSION NETWORKS

Confusion networks allow estimates of word posterior probabili-
tiesto be obtained. For each link in a particular word lattice (from
standard decoding) a posterior probability is estimated using the
forward-backward algorithm. The lattice with these posteriors is
then transformed into a linear graph, or confusion network (CN),
using alink clustering procedure [8]. This graph consists of a se-
guence of confusion sets, which contain competing single word
hypotheses with associated posterior probahilities. By picking the
word with the highest posterior from each set the sentence hypoth-
esiswith the lowest overall expected word error rate can be found.

The estimates of the word posterior probabilities encoded in
the confusion networks can be used directly as confidence scores,
but they tend to be over-estimates of the true posteriors. Therefore
the posteriors are mapped to confidence scores using a piece-wise
linear function based on a decision tree.

The confusion networks with their associated word posterior
estimates were a so used in an system combination scheme. Con-
fusion network combination (CNC) can be seen as ageneralisation
of ROVER [2] to confusion networks, i.e. it uses the linear graph
and the word posteriorsinstead of only considering the most likely
word hypothesised by each system.

The use of the confusion network output consistently reduced
the WER by about 1% absolute. A more detailed description of
the use of word posterior probabilities and their application to the
Hubb5 task can be found in [1].

9. MARCH 2000 HUB5 EVALUATION SYSTEM

The overall system operates in multiple passes through the data:
initial passes are used to generate word lattices and then these
lattices are rescored using four different sets of adapted acoustic
models. The fina system output comes from combining the con-
fusion networks from each of these re-scoring passes.

9.1. Acoustic Models

The VTLN acoustic models used in the system were either tri-
phones (6165 speech states/16 Gaussians per state) or quinphones
(9640 states/16 Gaussians per state) trained on h5train00. Details
on the performance of these modelswas given in previous sections.
It should be emphasised that the MMIE models were all gender in-
dependent while the MLE models were all gender dependent and
used soft-tying.

9.2. Word List & Language Models

The word list was taken from two sources: the 1998 27k word
list [5] and the most frequent 50,000 words occurring in 204 mil-
lion words of broadcast news (BN) training data. This gave a new
combined word list with 54,537 words. Thisword list reduced the
out-of-vocabulary (OOV) rate on eval 98 from 0.94% to 0.38%.
The MSU Swb1 training transcriptions were used for language
modelling but were found to be significantly different to the origi-
nal transcripts provided. In order to accommodate both transcript
styles both sets of data were used along with broadcast news data.
Bigram, trigram and 4-gram LMs were trained on each data set
(LDC Hub5, MSU Hub5, BN) and merged to form an effective 3-
way interpolation. Furthermore, as described in [5] a class-based
trigram model using 400 automatically generated word classeswas
built to smooth the merged 4-gram language model by afurther in-
terpolation step to form the language model used in lattice rescor-

ing.

9.3. Stages of Processing

Thefirst three passes through the data (P1-P3) are used to generate
word lattices. Thefirst pass Pl isidentical to the 1998 P1 setup [5]
and its output was used solely for VTLN warp-factor estimation
and assignment of a gender label for each test conversation side.
All subsequent passes used the 54k dictionary and VTLN-warped
test data. Stage P2 used MMIE Gl triphones to generate the tran-
scriptions for unsupervised test-set MLLR adaptation [3] with a4-
gram LM. A global transform? for the means (bl ock-diagonal) and
variances (diagonal) was computed for each side. In stage P3 word
| attices were generated using the adapted GI MMI E triphones and
ahbigram language model. These |attices were expanded to contain
language model probabilities generated by the interpolation of the
word 4-gram and the class trigram.

Subsequent passes rescored these |attices and operated in two
branches: a branch using GI MMIE trained models (branch “a")
and abranch using GD, soft-tied, MLE models (branch “b"). Stage
P4a/P4b used triphone models with standard global MLLR, aFV
transform, pronunciation probabilities and confusion network de-
coding. The output of the respective branches served as the adap-
tation supervision to stage P5a/P5h. These were as P4a/P4b but

1A “global transform” denotes one transform for speech and a separate
transform for silence.



were based on quinphone acoustic models. Finally for the MMIE
branch only, a pass with two MLLR speech transforms was run
(P6a). The final system word output was found by using CNC
with the confusion networks from P4a, P4b, P6a and P5b.

9.4. System Results

Table 3 gives results for each processing stage for both the 1998
and 2000 evaluation sets. Word error rates on eval 00 are approxi-
mately 10% absolute lower than on eval98. Possible explanations
for this difference are alower disfluency rate on the Swb1l part of
eval00 and overall a higher signal-to-noise ratio.

The large difference (6.8% absolute in WER on both test sets)
between the P1 and P2 results is due to the combined effects of
VTLN, MMIE models, the larger vocabulary and a 4-gram LM.
MLLR adaptation and the smoothing with a class LM resultsin a
further reduction in WER of 2.5% absolute. The second adaptation
stage which includes MLLR and a FV transform, pronunciation
probabilities and confusion network decoding (P4a) reduces the
WER by afurther 2.9% absolute (2.1% on eval 00), which is 0.8%
absolute better than the result of the corresponding MLE soft-tied
GD triphone models (P4b). The relative performance on eval00 is
again similar with 0.6% difference in WER.

eval98 eval00
Swb2 | CHE | Total || Swbl | CHE | Total
P1 470 | 51.6 | 493 317 | 454 | 386
P2 400 | 449 | 425 255 | 381 | 318
P3 375 | 424 | 40.0 229 | 357 | 29.3
P4a 345 | 396 | 37.1 209 | 335 | 27.2
P4b 355 | 403 | 379 219 | 337 | 278
P5a 339 | 384 | 36.2 203 | 327 | 26.6
P5b 345 | 395 | 37.0 21.0 | 328 | 26.9
P6a 336 | 384 | 36.0 203 | 326 | 265

[CNC ] 325 [ 374 | 350 [ 193 | 314 | 254 |
Table 3. % WER on eval 98 and eval 00 for all stages of the evalua-

tion system. Thefina system output is acombination of P4a, P4b,
P6a and P5b.

The use of quinphone modelsinstead of triphone models gives
a further gain of 0.6-0.9% for both branches. The gain from a
second adaptation stage with two speech transforms for the quin-
phone MMIE model only brings a relatively small gain of 0.1-
0.2% WER absolute. Thefinal result after 4-fold system combina-
tion is 35.0% on eval98. Thisisan 11% reduction in WER relative
to the CU-HTK evaluation result obtained on the same data set in
1998 (39.5%). The combination of the 4 outputs using confusion
network combination (CNC) was found to be 0.4% absolute bet-
ter than using the ROVER approach. Confidence scores based on
confusion networks give an improved normalised cross entropy of
0.225 compared to 0.145 from the 1998 CU-HTK evaluation sys-
tem which used N-best homogeneity based confidence scores.

On eval 00 the combination of the outputs of the MLE systems
(P4b+P5b) gave 26.5% WER whereas a combination of outputs
generated by the MMIE model sets (P4a+P6a) resulted in an error
rate of 25.6% absolute. In spite of the 0.9% difference the inclu-
sion of the MLE system outputs gives a 0.2% WER absolute im-
provement. Thefinal error rate on eval00 from the system (25.4%)
was lowest in the March 2000 Hub5E evaluation by a statistically
significant margin.

10. CONCLUSIONS

This paper has discussed the substantial improvements in system
performance that have been made to our Hub5 transcription sys-
tem since the 1998 evaluation. The largest improvement stems
from MMIE HMM training, however the MLE model setsin their
current configuration were shown to still work well. On the 1998
evaluation set a relative reduction in word error rate of 11% was
obtained. The system presented here gave the lowest word error
rate in the March 2000 Hub5E evaluation.
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