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ABSTRACT

In this paperwe presenta new way of treatingthe problem
of extending a narrav-band signal to a wide-bandsignal. For
mary case®of bandwidthextension the high-bandenegy is over-
estimated)eadingto undesirableaudibleartifacts. To overcome
theseproblemswe introducean asymmetriccost-functionin the
estimationprocessf the high-bandthat penalizever-estimates
more than underestimatesof the enepgy in the high-band. We
shav thattheresultingattenuatiorof the estimatechigh-banden-
ey dependon the broadnes®f the a-posterioridistribution of
theenepy giventheextractedinformationaboutthe narrav-band.
Thus,the uncertaintyabouthow to extendthe signalat the high-
bandinfluenceghelevel of extension.Resultsfrom listeningtest
shav thatthe proposedalgorithmproducedessartifacts.

1. INTRODUCTION

A speeclsignalthathaspassedhroughthe public switchedtele-
phory network (PSTN)hasa characteristidow-passguality. This
is dueto thelimited bandwidthof thetelephory channel0.3- 3.4
kHz). Transmittingwide-bandspeechspeectsampledat 16 kHz)
would presere the naturalnes®f the speectsignalthatis other
wise lost. However, changingthe existing PSTNinfrastructureto
handlewide-bandspeechransmissiorwould entailan enormous
cost. Therefore,recovery of the wide-bandspeechsignal by es-
timation of the high- (3.4 - 8 kHz) andlow- (0.1 - 0.3 kHz) fre-
queng bandsfrom the telephory signalwould be of greatuse.
In [1] we shaved that thereis mutual information betweenthe
narrav- and high-bandand that, thereby it is justified to try to
recover the high-bandgiventhe knowledgeof the narrav-band.

The recovery of wide-bandspeech(0.1-8 kHz) given the
narrav-band(0.3-3.4kHz) speechis a challengingtaskandthere
have beena numberof contributionson this topic. In [2] a sim-
ple multi-rate approactto the problemwas presentedandin, for
instance[3, 4] methodshasedon vectorquantizatiorfor themap-
ping betweennarrav-bandandwide-bandwere used. Statistical
approachebave alsobeenappliedto the problem.Thepioneering
paperutilizing a statisticalframevork wasthe paperby Chenget
al. [5], aGaussiaMixture Model (GMM) basednethodwasused
in [6], anda hiddenMarkov model(HMM) in [7].

Regardlessof the bandwidthextensionmethodused,a com-
monproblemis theintroductionof artifactsin the extensionbands
thatmale thebandwidthextendedsignaloftenmoreannging than
the original narrav-bandspeectsignal. Theseartifactsaregener
ally dueto over-estimationof the high-bandeneny.

Thereforejf abandwidthextensionalgorithmis to be usedin
arealtelephory systemijt isimportantthatnoaudibleenegy over-
estimateof the signalin the high- andlow- frequeng bandsare
made.lt is in thatsensebetterto underestimateheenegy in such
regions. This motivatesthe idea of having an asymmetriccost-
function that penalizesover-estimatesnore thanunderestimates
of theenengy in the high-band.

Our aim is to arrive at a confidencecontrolledbandwidthex-
tensionalgorithm. Thatis, we wantto be ableto controlthe level
of extension(enepy, shape)dependingon how confidentwe are
about the estimatesof the high-bandparameterssuch that the
bandwidthextendedsignalis wide-bandandcontainsno artifacts.
This paperis afirst stepin this direction.

2. SYSTEM STRUCTURE

The coreof our bandwidthextensionis a GMM. The GMM mod-
els the joint probability densityfunction, fz(z), of the random
variablefeaturevector Z, andis of theform

M
f2(2) =Y amfz(2l6m), &)
m=1

where M is the numberof mixturescomponentsand a., is the
weightof mixturenumberm. Thedistribution fz (|6, ) is amul-
tivariateGaussiardistribution,

F2(2|6m) = m exp (—(2 = pam) Cra' (2 — iz, 2)

with meanvectoru,, andcovariancematrix C,, bothcollectedin
0m = {pm, Cm }, andd thefeaturevectordimension Herein,the
featurevector z, hasdimension22 andconsistf:
e anarrav-bandspectralervelopepartmodeledby 15 linear
frequeny cepstratoeficients(LFCCs),z = {z1 ... 715},
e a high-bandspectralenvelope part modeledby 5 LFCCs,
y={y1...ys},
e anenegy-ratiovariableg beingthedifferencen log enegy
betweerthe high-andnarrav-band,i.e.,g = yo — o,
e ameasuren thedegreeof voicing, r.
The dggreeof voicing is determineddy the maximumof the nor
malizedautocorrelatiorfunction within thelag rangecorrespond-
ing to 50-400Hz, i.e.,
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Fig. 1. Systemarchitecture.

wheres = s(1)...s(160) is a 20 ms narrav-bandspeechsey-
mentsampledat 8 kHz. The modelparametersy,, and6,,, for
m = 1... M, wereobtainedusingthe EM-algorithmdescribedn
[8] on atraining setextractedfrom the TIMIT databas¢9]. The
sizeof thetrainingsetwasselectedo be 100,000non-overlapping
20 ms sggmentsfrom which the featureswere calculated.In our
experimentsyve used32 mixturecomponent§M = 32).

In contrastto the GMM approachpresentedn [6], we have
choserto usediagonalcovariancematricesn our model. We have
donesomainly for threereasons:

1. A GMM with full covariancesanbe modeledby a higher
orderGMM with diagonalcovarianceg10].

2. Underthe Gaussiarassumptionthe covariancematrix of
thecepstrakoeficientsis approximatelydiagonal[11].

3. Significantlyfewer parameterfiave to be estimated.

A schematioof our bandwidthextensionschemes depicted
in Figure 1. From the narrav-band speech,15 cepstralcoefi-
cients,z, andthedegreeof voicing, r, arederived. Then,usingan
asymmetriccost-functiontogetherwith the a-posterioridistribu-
tion of the enegy-ratio giventhe narrav-bandshapeandnarrov-
band voicing parameter we obtain an estimateof the enegy-
ratio betweenthe narrav- and high-band. The asymmetriccost-
function penalizesover-estimatesof the enegy-ratio more than
underestimatesFurthermoreasis shavn in section2.1,anarrov
a-posterioridistribution of the enegy-ratio resultsin lesspenalty
on the enegy-ratio than a broad distribution. The enegy-ratio
estimate togetherwith the narrav-bandshapeandthe degreeof
voicing, form a new a-posterioridistribution of the high-band
shapeandan MMSE estimateof the high-bandervelopeis com-
puted. A modifiedspectrafolding excitationis thenfiltered with
the enegy-ratio controlled high-bandervelope and addedto the
narrav-bandto form awide-bandspeectsignal.

2.1. Energy-ratio estimation

The most commoncost-functionusedfor parameterestimation
from a conditionedprobabilityfunctionis the quadratic.If we use
the a-posterioridistribution of the enegy-ratio given the narrav-

bandshapeanddegreeof voicing togetherwith a quadraticcost-
function,we obtainthe standardMMSE estimatej.e.,

JMMSE
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Fig. 2. Theasymmetriccost-function.

_ / S amfaxr(g,, T|9m)d
= g
Pyl

Lok fxr(w,7|0k)

= Zwm(x r)/ gfcixr(gle,r,0m)dg

m=1

= Zwm(m,r)/Q 9fc(gl0m)dg

M
= Z Wen (T, ) hgrm » 4)
m=1

wherein the secondast step,we usedthe fact that eachindivid-
ual mixturecomponenhasadiagonalcovariancematrix and,thus,
independentomponentsSincewe perceve over-estimate®f the
enepgy ratioasmoreannging thanunderestimateswe shoulduse
an asymmetriccost-functioninsteadof a symmetriconein order
to penalizeover-estimatesnorethanunderestimates The asym-
metric cost-functiorwe useis shavn in Figure2 andis expressed
as,

C=bU(G-9)+ (35— 9 5)
wherebU (-) is the stepfunctionwith amplitudeb. Theamplitude
of the stepcanbe seenasa tuning parametergiving a possibility
to controlthedegreeof extension.Theestimateof theenepgy-ratio
canthenbewritten as,

j=argmin / (UG — 9)+ (5 9)") ferxn(gle, r)dg. (6)
Q
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The estimates found by differentiatingthe right-handside of (6)
andsetit equalto zero. Assumingthatthe orderof differentiation
andintegrationmaybeinterchangeave canwrite thederivative of
(6) as,
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whichfinally yields,
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which hasto besolvedusinganumericakechniquee.g.,by means
of a grid search.As shawvn in (7) the enegy-ratio estimationde-
pendson the shapeof the posteriordistribution. Thus,the penalty



on the minimum meansquarederror estimateof the enegy ra-
tio dependson the width of the posteriordistribution. If the a-
posterioridistribution fg| x (g, r) is narrav, we aremorecon-
fidenton the MMSE estimatethanif the a-posterioridistribution
is broad.

2.2. High-band envelope estimation

In orderto have a probablecombinationof the high-bandshape
andenepgy-ratio, the high-bandshapeestimationis performedby

conditioningon the enepgy-ratio estimatethe narrav-bandshape,
andthe degreeof voicing in the narrav-bandspeectsegment.By

usinga GMM with diagonalcovariancematricesthe MMSE esti-

mateof the high-bandshapesimply becomes,

gumse = E[Y|X=z,R=rG=j

_ Qm fxRG (2,7, §|0m )y m
= Z uk Cum_(8)
— Y anfxra(z,7, §l6n)
Thus, the estimateof the high-bandis a weightedsum of mean
vectorsfrom thedifferentmixtures,wheretheweightingis simply
the probability of a certainmixture componengiven the narrav-

bandfeaturevectorandthe estimateof the enegy-ratio. This is

closelyrelatedto the methoddescribedn [5].

2.3. Excitation extension

For the extensionof the narrav-bandexcitation, we usea modifi-

cationof spectraffolding techniqudn [12]. Insteadof folding the

spectrumaround4 kHz, which dueto thetelephory channelvould

resultin very low enepy in the region between3.4 and4.6 kHz,

we cut out the part between2 and 3 kHz of the spectrumof the

narrav-bandexcitation andrepeatedlyfold this segment(starting
at 3 kHz) until we have coveredthe frequeng region of interest.
To avoid anoverly periodicexcitationatthe higherfrequenciegor

voicedsggmentswe let theconstructedolded spectrunsmoothly
evolve in frequeny to a white noisespectrum.The amplitudeof

white noisewas chosento be equalto the meanof the amplitude
spectrumof the narrav-bandexcitation. The transitionbetween
the periodic and noiseregion was setad-hocsuchthat abose 6

kHz the noisespectrundominatesotally.

3. SSIMULATIONS

Our simulationsare intendedto shav two importantproperties.
The first one is that the asymmetriccost-functionpenalizesthe

enepy-ratio estimatesnorewhenthe a-posterioridistributionsof

the enepgy-ratiois wide, thanwhenthe a-posterioridistribution is

narrav. Thesecondpropertyis thatregionswith wide conditional
enepgy-ratiodistributionsarepotentialregionswherethe standard
MMSE techniqueover-estimateghe enegy-ratio. In the simula-
tions, we bandwidthextend narrav-bandspeecHiles, usingboth

the standardVIMSE for the estimationof the high-bandshapeand

enepgy-ratio andusingthe proposednethodwith the asymmetric
cost-function. None of the testspeecHiles wereincludedin the

trainingset.

3.1. Asymmetric cost-function

To evaluatethe proposedscheme we analyzedthe behaior of
theasymmetriacost-functiondependingon the a-posterioridistri-
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Fig. 3. Theupperleft andlower left plots shav two examplesof

thedistribution fg  x r(g|z, r) andthe upperright andlower right

plotsshav theassociatedost.Notethat,in theupperright plotthe

distancebetweerthe minima of the asymmetric-andthe squared
error costis greaterthanthe distancebetweenthe minimain the

lower right plot.

bution of the enegy-ratio given the narrav-band shapeand de-
gree of voicing. For wide a-posterioridistributions, the asym-
metric cost-functionimposesa larger penaltythanfor narrov a-
posterioridistribution. This is shavn in Figure 3, wherethe wide
a-posteriordistributionresultsin approximatelyl 1dB attenuation
of the MMSE estimatedenegy-ratio comparedo approximately
6 dB attenuatiorfor the narrawv distribution (the attenuatioris the
distancebetweenthe minima of the asymmetricand squareder-
ror costin the right sub-plotsin Figure 3). Note that, the nar
rower thea-posteriordistributionis, the closeris the minimum of
theasymmetriccost-functiorto the minimumof the squarecerror
cost-function.

3.2. Energy-ratio over-estimation

The bandwidthextendedspectracorrespondingo the wide and
narrav distributions,shavn in Figure3, areshavn in Figure4 and
5, respectiely. FromFigure4, which shavs anurvoicedsegment,
it is clearthatthe MMSE methodproducesanover-estimateof the
enepgy-ratiobetweerthenarrav- andhigh-bandthatwill resultin
anaudibleartifact. The voicedsegmentshavn in Figure5 shaws,
that even thoughthe a-posterioridistribution was narrav, we es-
timatedan enegy-ratio thatis lower thanthe enegy-ratio for the
original signal. However, for voicedseggmentstheunderestimates
of the enepgy-ratio are not that noticeable. For urvoicedregions
with MMSE estimateof the enegy-ratio that arebelow the true
enepy ratio, the proposedalgorithmlowersthe enepgy ratio even
further, thuscreatinga signalwith lessof a wide-bandcharacter
Neverthelessthebandwidthextendedsignalproducedy the pro-
posedalgorithmstill hasa clearwide-bandsensatiorwhencom-
paredto the narrav-bandsignal.

4. LISTENING TEST

To evaluatethe proposedalgorithmwe conducted listeningtest
wherethe subjectwasasledto gradethe degreeof artifactsin the
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Fig. 4. Bandwidthextendedsegmentwherethe enegy-ratiois es-
timatedfrom awide a-posteriordistribution. Hammingwindowed
20 mssgmentswereusedin the computatiorof the spectra.

Degree of artifacts
Method 1.Severe | 2.Moderate| 3.Minor | 4.None
MMSE 4.9% 40.6% 447% | 9.8%
Proposed| 0.4% 17.9% 49.6% | 32.1%

Table 1. Resultsfrom thelisteningtest.
bandwidthextendedsignal. The sametestwas then performed

usingthe standardMMSE estimationof thehigh-bandparameters.

The listenercould choosefrom four ratingswith respectto the

artifacts: 1. Severe,2. Moderate 3. Minor, and4. None. In the

listeningtest,the proposedilgorithmwasusedwith the stepof the

asymmetriccost-functionsetto 500 (b = 500). Seven subjects
wereusedin thelisteningtestandtheresultsareshavn in Tablel.

Fromthelisteningtest,we concludethatthelevel of artifactshave

beenreducedy a significantamount.

5. CONCLUDING REMARKS

The proposedalgorithm for bandwidthextensionshaved by the
listeningtestto have lessartifacts. The asymmetriacost-function
malesit possibleto control the level of extension. An implicit

effect of the asymmetriccost-functionis that it penalizesre-

gionswherethe estimateof the enegy-ratio is lesscertain(wide

a-posterioridistribution) more than regions with more certain
enepy-ratio estimate(narrav a-posterioridistribution). The ex-

isting schemecanbe consideredasconserative in its bandwidth
extension. However, the proposedschemeproducesan extended
signalwhich is clearly wide-bandcomparedto the narrav-band
speectsignal.
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