CHAOTIC AR(1) MODEL ESTIMATION

Carlos Pantaleon, David Luengo and Ignacio Santamaria

Dpto. Ing. Comunicaciones, ETSII y Telecom. University of Cantabria
Avda. Los Castros, 39005 Santander, Spain
e-mail: carlos@gtas.dicom.unican.es

ABSTRACT

Chaotic signals generated by iterating nonlinear dif-
ference equations may be useful models for many nat-
ural phenomena. In this paper we propose a family
of chaotic models for signal processing applications.
The chaotic signals generated by this family of first or-
der difference equations have autocorrelations identical
to stochastic first-order autoregressive (AR) processes.
After considering the huge computational cost and the
inconsistency of the optimal model estimator in the
maximum-likelihood (ML) sense we propose low cost,
suboptimal estimation approaches. Computer simula-
tions show the good performance of the proposed mod-
eling approach.

1. INTRODUCTION

Chaotic signals, signals generated by a non-linear dy-
namical system in chaotic state, have received much
attention in the past years. Chaotic models have been
proposed, for example, for sea clutter [1], speech wave-
forms [2], wind velocity fields [3], biomedical signals
and in experimental physics, where many processes give
rise to chaotic phenomena. However, chaotic modeling
has several special properties. For example, the high
sensitivity to initial conditions makes signal regenera-
tion quite hard but, at the same time, it may be consid-
ered an advantage in representing anomalous behavior
of signals over short periods of time [2].

The application of chaotic modeling is also condi-
tioned by the lack of a family of chaotic models that
combine a certain generality with easily computable es-
timation algorithms. Chaotic modeling with the Duff-
ing equation has been considered in [2]. Neural net-
works as chaotic models have also been proposed in
[1] and [3]. In these two cases the effect of noise is
not considered and, in the case of neural networks, the
models are impossible to analyze. Ideally, we would
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search for the chaotic equivalent of the ARMA models.
To some extent, chaotic signals generated by piecewise-
linear (PWL) maps of the unit interval could claim this
title, since they have rational spectra [4].

Restricting the models to PWL maps on the unit in-
terval allows the analysis of maximum likelihood (ML)
signal estimators for a known map. The ML estima-
tor is inconsistent, so the asymptotic distribution for
large data records is invalid. However, for a high Sig-
nal to Noise Ratio (SNR), the ML estimator is asymp-
totically unbiased and attains the Cramer-Rao lower
bound (CRLB) [5]. The ML estimator for chaotic sig-
nals generated by iterating known PWL maps is de-
rived in [6]. Parameter estimation for chaotic systems
has received much less attention, relying mostly on lin-
ear approaches, although ML estimators may be con-
sidered [7].

In this paper we develop parameter and signal esti-
mators for a class of chaotic difference equations that
produce signals with autocorrelations identical to those
produced by stochastic first-order autoregressive pro-
cesses. Our objective is to propose these models as the
chaotic alternative to the AR(1) model. The numer-
ical instability of the signal generation is avoided by
generating the signal by backward iteration, where in-
stead of error amplification [2], error reduction occurs.
The exact ML model estimator is considered, but its
computational cost and inconsistency makes it useless.
Therefore, a combination of a prediction error mini-
mization parameter estimation, by exploiting only the
dependence between one sample and the next, with a
ML signal estimator, which produces a low computa-
tional cost approach with good performance, is consid-
ered.

2. CENTERED SKEW-TENT MAPS

The signals z[n]| that we consider in this work are gen-
erated according to
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where F'(-) is the so called centered skew-tent map
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for some parameter —1 < a < 1.

This map produces sequences that are chaotic with
invariant density p(x) uniform in the range [—1, 1], [8].
The phase space of non-linear maps can be divided in a
collection of non-overlapping regions. If a symbol from
a known alphabet is assigned to each of the regions, the
dynamics of the map may be characterized by follow-
ing the different regions that the map visits during its
dynamical evolution. In the particular case of the cen-
tered skew-tent map, we divide the phase space in two
regions £y = [—1,a] and By = [a,1] and we associate
a symbol s[n] to each z[n] according to

sn) = sign(aln] — a) (3)

This sign sequence s = s[0], ..., s|N — 1], also called
itinerary, can be considered a symbolic coding of the
chaotic signal. As the centered skew-tent maps are
onto, all the itineraries are possible, and therefore, there
are 2%V regions in the phase space.

It is easy to verify that F'(z[n]) can be expressed as
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with b = 1 — a?. Using the symbol s[n]

F(aln]) = (14 2as[n]+a )b— 2(s[n] 4+ a)z[n] (5)

Chaotic signals generated according to the previous
model have interesting statistical properties, that make
them the equivalent of AR(1) models. As the invariant
density is uniform in [—1,1], the autocorrelation may
be computed as
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The final autocorrelation function, obtained chang-
ing variables in both integrals and integrating, becomes

Ryx[m] =
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with 7o = 1/3. Therefore, the parameter a has the
same relation with the autocorrelation as in the case of
AR(1) processes [8].

3. ESTIMATION OF AR(1) CHAOTIC
MODELS

3.1. Problem Statement
The signal model we are considering is

yln] =2z[n]+wn] n=0,1,...,N (7)

where z[n] is generated using (2) by iterating some un-
known z[0] € [—1, 1] according to (1) for some unknown
parameter —1 < a < 1. w[n] is a stationary, zero-mean,
white Gaussian noise with variance o2, and represents
all the additive effects that have distorted the chaotic
signal. A moderately high SNR situation is assumed
(at least 10 dB). Model estimation demands obtaining
an estimate of parameter a and of the initial condition
x[0] to reproduce x[n].

ML model estimation produces the initial condition
and the parameter that minimize

N
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This problem as it is stated has not been solved yet.
Nonetheless, ML estimators for chaotic signals gener-
ated by PWL maps with known parameter have been
developed [6]. The main point is that the ML esti-
mator is feasible, although of high computational cost.
Minimizing (8) will demand the computation of 2%V es-
timates, and for each one a gradient descent algorithm
should be applied on a highly complex cost function.
Furthermore, the inconsistency of these kind of estima-
tors will imply that the performance will saturate for
very short registers [7].

3.2. Parameter estimation

Using the known structure of the autocorrelation we
can consider an equivalent to the normal equations for
this problem. Due to the additive noise, however, we
should use the modified Yule-Walker equations, obtain-
ing the following estimator
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where 7, [k] is the usual estimator of the autocorre-
lation. This estimator shows similar performance in
this case as in the estimation of AR(1) models. A bet-
ter performance, however, may be obtained by exploit-
ing the deterministic relation that exists between each
sample and the next. Using (4) we can attempt the
minimization of the sum of the error squares
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This nonlinear minimization problem may be solved by
gradient descent approaches (using Newton-Raphson
for example). However, the dependence of the itinerary
on the parameter a will hinder the performance of the
estimator. The proposed alternative consists of decom-
posing the problem in a set of linear ones as a function
of the itinerary. Denoting d[i] = 2y[i]+ s[i](y[i+1] —1),
we can define

d, =
z = [1+y[1],1+y[2],..,

[d[0], d[1]...,d[N — 1]]"
1+y[N]"

where s is the vector of the sign components, and the
subscript s stresses the dependence of d with the itin-
erary. Thus the error vector is es = dg — za and the
sum of the error squares becomes

Js(a) = |les|3 = [|ds — zal[3 (11)

where || - [|3 is the squared Euclidean norm. Obtaining
the least squares (LS) solution requires considering the
2NV possible itineraries and minimizing (11) for each
one. For a known itinerary the LS estimate of a is

as = (sz) -

However, in a high SNR situation, it is reasonable
to consider only the N+42 possible itineraries produced
by sorting the data samples and dividing them in two
continuous sets. Thus we will obtain a Hard-Censoring
LS (HCLS) estimate of the itinerary s, which is the one
among the N + 2 sign sequences that minimizes

Js(as) = ||(I- 2B, '2")ds[3 = [[Bds[[3  (13)

z7dg = z7d, (12)

where E, = z”z is the squared norm of z. Note that

E does not depend on s. Finally,the HCLS parameter
estimate is computed applying (12) using the itinerary
that minimizes (13).

3.3. Signal Estimation

Once the parameter estimate has been obtained, we
can apply the ML estimator in [6] to obtain the signal
estimate. For a given sign sequence s, and parameter a
the ML estimate of z[N] is the value which minimizes
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In our approach the parameter a, and itinerary s will
be the ones obtained from the parameter estimation
algorithm. To obtain a closed form expression for the
estimate of 2[N] we need an expression for F~"(-)
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where k[n] = (1 + 2as[n] + a?), S§ = 1, and
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Note that we estimate x[N] instead of x[0] to avoid the
numerical instability characteristic of the generation of
chaotic signals by forward iteration. The rest of the
signal x[0],---,2[N — 1] will be obtained by iterating
backwards from Z[N] using (15), with the sign sequence
s obtained from the parameter estimation algorithm.

4. SIMULATION RESULTS

In this section we analyze the performance of the pa-
rameter and signal estimation algorithms. Concerning
parameter estimation we compare the HCLS solution,
the gradient descent approach, and the method based
on the known structure of the autocorrelation. We have
simulated 1000 cases for each parameter value with dif-
ferent SNR values. For each case a chaotic signal with
N = 100 and random initial condition has been gener-
ated. From figure 1 it can be inferred that the HCLS
improves the performance of the gradient descent al-
gorithm, achieving both of them a considerably better
performance than the autocorrelation based estimator.

In figure 2 we show the MSE obtained for different
SNRs in the signal generation using the parameter and
itinerary estimated with the HCLS technique to apply
the ML signal estimator. The best performance of the
modeling approach considered is achieved for low abso-
lute values of the parameter a. Finally, figure 3 shows
an AR(1) process and an AR(1) chaotic signal with the
same parameter a. The figure shows the different mod-
eling capabilities of both approaches, even though they
share the same spectral density.
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Figure 1: Comparison of different alternatives of pa-
rameter estimation for N = 100, a = 0.5.
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Figure 2: Comparison of the MSE of the model esti-
mator (HCLS+ML) for N = 100, and different SNRs.

a) AR(1) process

b) AR(1) chaos

Figure 3: Comparison of interpolated signals from a)
AR(1) process and b) AR(1) Chaotic process, both
with a = —0.6.

5. CONCLUSIONS

In this work we have shown a chaotic alternative to
AR(1) models, and developed parameter and signal es-
timators. The ML estimator has been considered, but
its huge computational cost and inconsistency make it
useless. Therefore, we have divided the model esti-
mation problem in two stages: parameter and signal
estimation. In the parameter estimation stage we have
compared an estimator based on the autocorrelation, a
gradient descent technique, and a Hard-Censoring LS
(HCLS) estimator. In the signal estimation stage, the
parameter and itinerary obtained previously are used
to calculate the ML estimate of the signal. To avoid
numerical instability we estimate the last point of the
sequence, and iterate backwards. The combination of
the HCLS and ML estimators has a low computational
cost and shows good performance. Further lines of
research include developing estimators for other maps
and searching for chaotic AR(p) models.
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