
DATA AND INSTRUCTION MEMORY EXPLORATION OF EMBEDDED SYSTEMS
FOR MULTIMEDIA APPLICATIONS

M. Dasigenis, N. Kroupis,
A. Argyriou, K. Tatas, D. Soudris

VLSI Design and Testing Center,
ECE Dept., Democritus University of Thrace,

67 100 Xanthi, Greece

N. Zervas

VLSI Design Lab
ECE Dept., University of Patras,

26500, Patras, Greece

ABSTRACT

A methodology for power optimization of the data memory hier-
archy and instruction memory, is introduced. The effect of the
methodology on a set of widely used multimedia application ker-
nels, namely Full Search (FS), Hierarchical Search (HS), and Par-
ellel Hierarchical One Dimension Search (PHODS), is demon-
strated . Three different target architecture models are used. The
issues of the data memory power reduction and instruction mem-
ory are tackled separately. We find the power optimal data memory
hierarchy applying the appropriate data-use transformation, while
the instruction power optimization is done using suitable cache
memory. Using data-reuse transformations, performance opti-
mizations techniques, and instruction-level transformations, we
perform exhaustive exploration of all the possible alternatives to
reach power efficient solutions. The experimental results prove
the efficiency of the methodology in terms of power for all the
multimedia kernels.

1. INTRODUCTION

In multimedia and other applications that make use of large mul-
tidimensional array type data structures, a very large amount of
memory is required. In the past, the major concerns of the VLSI
engineers were designing efficient circuits in terms of area and per-
formance; power considerations were rarely dealt with. In recent
years however, designers have begun to study equal the subject of
power consumption along with these traditional factors, and have
tried to find heuristic approaches for power and area efficient de-
signs. Several factors have contributed to this attitude change. The
most important factor was the increasing need for wireless systems
or portable multimedia applications. The portability of a device
is heavily bound with the power consumption of it, since power
consumption affects the battery service life and weight, packaging
costs as well as the circuit reliability. For this reasons, power con-
sumption has emerged as a very significant design constraint, that
has to be tackled, especially in the high levels of design, where the
most significant savings can be achieved[1] .

Generally speaking, two possible implementations exist in or-
der to meet the processing constraint, that is the use of a dedicated
hardware architecture or a number of embedded programmable
cores. In particular custom hardware designs are area and power

This work was supported by the project PENED ’99 funded by
G.S.R.T of Greek Ministry of Development.

efficient but they lack of the flexibility, since it is possible to ex-
ecute only one algorithm every time. On the other hand, the pro-
grammable embedded cores are less efficient in terms of power
consumption and chip area, but they are more versatile since it
allow us to execute multiple algorithms in the same target archi-
tecture. Thus, a broader class of applications can be implemented,
reducing the design cycle.

Multimedia applications, are data-dominated applications that
need a lot of memory to store the data being processed. The data
transfers between the memories and the data paths, have a huge
impact on power consumption. As it was demonstrated in recent
studies [2], the memory system is the main power consuming unit
in multimedia systems. Two are the major reasons for this behav-
ior: (i) the data dominated nature of multimedia applications, as it
was stated before, and(ii) the power consumed in accessing off-
chip memories, which is significant more than normal arithmetic
or logical operations. Thus, it is necessary to perform hardware
and software power optimization techniques, in order to design a
power efficient system.

The problem of designing power and area efficient embedded
systems, is rather new and thus, the bibliography is relatively small
[2], [3], [4]. Specifically, Catthour et. al. [2] proposed a system-
atic methodology for the reduction of memory power consump-
tion in custom architectures. Zervas et. al [3] presented another
research work, which target single programmable processor-based
systems. All of these approaches do not tackle with the problem
of partitioning and thus, they cannot apply on multiprocessor en-
vironments. Partitioning approaches were presented in [5], [4],
improving the memory utilization. However, these approaches are
limited by the two-level memory hierarchy, while the class of algo-
rithms expressed in Weak Single Assignment Code form [6]. Re-
cently, some novel partitioning techniques are presented in [7], [8],
stating for the first time the importance of the instruction memory
power consumption on embedded systems.

Except from the impact of the data memory, embedded sys-
tems are characterized by one additional critical component that
has a significant part in the power budget, which is the instruction
memory of the programmable memory that stores the algorithm to
be executed. From our experiments, the task of designing power
and area efficient systems, comprises of two distinct problems:(i)
the data memory optimization using small on-chip memories, and
(ii) the instruction memory optimization using appopriate caches.

In this paper we perform an exhaustive exploration of data-
reuse transformations, performance optimizations and power
transformations, in terms of area, power and performance for mul-



timedia applications executed on embedded cores. After we have
find an optimal data memory hierarchy, we perform instruction
power optimization by using a suitable cache memory. Experi-
mental results, illustrate the efficiency of our proposed methodol-
ogy.

2. TARGET ARCHITECTURE AND DEMONSTRATION
APPLICATIONS

Our target architecture model is illustrated in Fig. 1, and consists
of: (i) multiple processing cores,N , each of which has its indi-
vidual on-chip instruction memory,(ii) instruction cache memory,
and (iii) data memory hierarchy. This architecture is an exten-
sion of a previous architecture [7], but is extended to include not
only the instruction memory but also it’s corresponding cache. The
used target architecture models are the Distributed Memory Archi-
tecture (DMA), Shared Memory Architecture (SMA) and Share-
Distributed Memory Architecture (SDMA)[7], [6]. For experi-
mental purposes, we consider four different algorithms, with two
processor cores (N = 2), and without any restriction about data
memory hierarchy levels.

As demonstration applications we select three well-known
Motion Estimation (ME) kernels, used in a great number of video
processing applications, which are the FS, the HS, and the PH-
ODS. Our experiments were carried out using the luminance com-
ponents of QCIF frame (144x176) format. Reference window was
selected to include 15x15 candidate blocks, while blocks of 16x16
pixels were considered. All these algorithms calculate the motion
vectors of two images, but they differ in the granularity, the pre-
cision and the complexity. Specifically, FS is the most computa-
tional expensive but guarantees finding the optimal motion vectors,
HS is a fast ME scheme that use a combination of search strategies
that use both fewer search locations and fewer pixels in computing
the motion vectors, while PHODS belongs to the class of very fast
algorithms that reduce motion-estimation complexity by reducing
the number of search locations that are used in determining the
motion vectors.

Fig. 1. Target Architecture Model

3. PROPOSED METHODOLOGY

The structure of the proposed methodology is shown in Fig. 2.
We aim at the determination of the optimal data memory hierar-
chy for reducing power due to a number of off-chips transfers, and
the optimal cache memory for reducing instruction memory power
consumption. Actually, there exist two distinct paths regarding the
power consumption estimation, the corresponding data memory
hierarchy (D-Memory) and the power estimation of the cache and
instruction memory (I-Memory). The first path studied in detailed
in [7]. [8]. Here, we will emphasis on the second path. The moti-
vation behind this decision was the results obtained from previous
work, that revealed the dominant role of the I-Memory power in
the total memory power budget. Of course, this is valid when pro-
grammable processor cores are assumed.

Fig. 2. The proposed Methodology: Estimation of D-Mem, I-
Mem, I-Cache power consumption

3.1. Data Memory Methodology

The first step of our data memory methodology consists of three
types of high level transformations; namely data-reuse, perfor-
mance and instruction level transformations. The second step is
to map the transformed algorithm to the physical memories.

Employing data reuse transformations [2], we determine the
certain data sets, which are heavily re-used in a short period of
time. The re-used data can be stored in smaller on-chip memo-
ries, which require less power per access. In this way, redundant
accesses from large off-chip memories are transferred on chip, re-
ducing power consumption related to data transfers. Of course,
data reuse exploration has to decide which data sets are appropri-
ate to be placed in separate memory. Otherwise, we will need a lot
of different memories for each data set resulting into a significant
area penalty. Here, we applied 21 data-reuse transformations [7]
to all target architecture models for the three ME kernels.

Another type of transformations applied was the performance
optimizations, like common sub-expression elimination. Of course
this kind of transformation has an impact in the instruction power
budget. The tradeoff in this case was between the increase in the
instructions due to the extra assignments in one hand, and the de-
crease in the instructions due to sub-expression elimination on the
other hand. Sub-expressions are useful to eliminate when they
have to be executed in a great number of loops. When the number
of loops is small the overhead produced by the assignment retracts
the benefits of the elimination.



The third type of transformations are the instruction level
transformations, which are processor dependent. Indeed, a pro-
gram written in high level language, eg. C, can be re-written sub-
stituting power hungry instructions with power efficient ones. For
example we have found that the multiply operation in the ARM
processor could be substituted with summation operations.

The final step is the mapping process. For all the data-
memory architectures models a shared background (probably off-
chip) memory module is assumed. Thus, in all cases special care
must be taken during the scheduling of accesses to this memory,
to avoid violating data-dependencies and to keep the number of
memory ports as small as possible in order to keep the power
per access cost as small as possible. With DMA, a separate data-
memory hierarchy exists for each processor. In this way all mem-
ories modules of the memory hierarchy are single ported, but also
area overhead is possible in cases of large amount of common data
to be processed by theN processors. The second data-memory
architecture-model (i.e. SMA) implies a common hierarchy of
memory levels for theN processors. Since, in the data-dominated
programmable parallel processing domain, it is very difficult and
very performance inefficient to sequentially schedule all memory
accesses, we assume that the number of ports for each memory
block equals the maximum number of parallel accesses to it. Fi-
nally, SDMA is a combination of the above two models, where the
common data to theN processors are placed in a shared memory
hierarchy, while a separate data memory hierarchy also exist for
the lowest levels of the hierarchy.

3.2. Instruction Cache Methodology

In this point of the methodology, we have reached to some (in
our case 21) transformed versions of our algorithm. These trans-
formed algorithms imply the use of a specific data-memory hier-
archy. Having this in mind we make measurements in order to
evaluate the performance of the algorithms. In this way we cre-
ate a pool of possible solutions for further study. From this pool
of candidate algorithms we choose those that have relatively low
execution time and they also have reduced data-memory power.
This is a way to reduce the huge search space and help us reach a
near-optimal solution more quickly. After having selected some of
the candidate algorithms we then run a simulation again to attain
their exact instruction trace. This trace is then fed to the DineroIV
cache simulator [10] for various cache parameters. At the end, we
select the algorithm with a big hit ratio and as small memory size
as possible. After this last step we have selected a very good in-
struction cache that reduces the power produced by the fetching of
the instructions from the instruction memory.

The combination of the data and instruction memory explo-
ration/optimization provide a complete approach to the problem of
excessive power consumption in an embedded system’s memory.

4. EXPERIMENTAL RESULTS

Comparison among the three target architectures DMA, SMA and
SDMA in terms of power consumption or three well-known ME
algorithms, are shown in Fig. 3-8. Emphasis of this contribution
is on the reduction of the instruction memory consumption the use
of appropriate cache memory. The issue of data memory, perfo-
mance, and area has been studied detailed manner in [7],[8].

Using the proposed methodology, in the first phase we perform
exhaustive exploration applying 21 data re-use transformations to

estimate the instruction power without the use of cache and the
optimized data memory power consumption. Then, we perform
instruction power optimization for the data re-use transformations.
Here we provide the results corresponding to the minimum and
maximum instruction power consumption. The derived results for
all ME kernels and target architectures are shown in Fig. 3 - 5
For each target architecture we perform three pairs of measure-
ments with and without cache memory, that is,(i) original ker-
nel, (ii) transformed kernel (using appropriate data-use transfor-
mation) that corresponds to MIN instruction power consumption,
and(iii) transformed kernel (using appropriate data-use transfor-
mation) that corresponds to MAX instruction power consumption.

From Fig. 6 - 8, we inferred that the existence of cache mem-
ory affect significantly the instruction memory power consump-
tion. More specifically, FS exhibits the most computational com-
plexity is dominated by instruction power (Fig. 6). The corre-
sponding cache analysis proves that the power savings almost for
all target architecture models varries from 10% to 90%. The re-
maining two ME kernels have similar instruction power savings.
However, the existence of cache memory has smaller impact on
the SDMA model than the SMA and DMA model.

The larger is the computational complexity of an algorithm the
larger the instruction power savings, for instance FS kernel. On the
other hand, HS and PHODS kernels have similar complexity and
their corresponding power analysis shows similar power consump-
tion and eventually, similar cache optimization results.

For our experiments we use cache memory size 128 bytes,
with block line L=2 bytes, and associativity a=1. These optimal
values came after power exploration of cache memory.

The final conclusions after the exhaustive exploration both in
data and instruction memory are:(i) for FS kernel the most power
efficient model (with cache) is the DMA,(ii) for HS kernel the
most power efficient is the SMA, and(iii) PHODS kernel the most
power efficient is the SDMA model. Consequently, the power op-
timized solutions depended on the chosen application and the as-
sumed target architecture model.

Fig. 3. Total and Instruction power consumption in FS Algorithm

5. CONCLUSIONS-FUTURE WORK

A complete methodology for designing power-efficient embedded
systems for ME kernels, was presented. Application specific, data-
memory hierarchy and instruction memory, as well as embedded
programmable processing elements, were assumed. The proposed
methodology had two goals: First, to design of an efficient data
memory hierarchy, and second to use of a suitable instruction
cache to reduce the heavy impact of the programmable instuction
memory on total power consumption. The experimental results



Fig. 4. Total and Instruction power consumption in HS Algorithm

Fig. 5. Total and Instruction power consumption in PHODS Algo-
rithm

Fig. 6. Cache Analysis for the Full Search Algorithm

Fig. 7. Cache Analysis for the Hierarchical Search Algorithm

prove that an effective solution either in terms of power, can be
acquired from the right combination of processor core structure
model, data-reuse transformation and suitable instruction cache.

Fig. 8. Cache Analysis for the PHODS Algorithm

Aknowledgments

The authors would like to thank Professors E. Macii and M. Pon-
cino from the “Politechnico di Torino”, for their help in DineroIV
cache simulation application.

6. REFERENCES

[1] A. P. Chandrakasan, R. W. Brodersen,“Low Power Digital
CMOS Design”, Kluwer Academic Publishers 1998.

[2] F. Catthoor, et al.,“Custom Memory Management Method-
ology,” Kluwer Academic Publishers, Boston, 1998.

[3] N. D. Zervas, K. Masselos, C.E. Goutis,“Data-reuse explo-
ration for low-power realization of multimedia applications
on embedded cores”,Proc. of PATMOS’99, October 1999,
pp. 71-80.

[4] S. Wuytack, J. P. Diguet, F. Catthoor, D. Moolenaar and
H. De Man “Formalized Methodology for Data Reuse Ex-
ploration for Low-Power Hierarchical Memory Mappings”,
IEEE Trans. on VLSI Systems, Dec. 1998, pp. 529-537.

[5] U. Eckhardt, R. Merker,“Hierarchical Algorithm Partition-
ing at System Level for an Improved Utilization of Memory
Structures”, IEEE Trans. on CAD, pp. 14-23, Jan. 1999.

[6] L. Nachtergaele, B. Vanhoof, F. Catthoor, D. Moolenaar,
and H De Man,“System-level power optimizations of video
codecs on embedded cores: a systematic approach,”Jour-
nal of VLSI Signal Processing Systems, Kluwer Academic
Publishers, Boston, 1998.

[7] D. Soudris, et. al.,“Data-Reuse and Parallel Embedded Ar-
chitectures for Low-Power, Real-Time Multimedia Applica-
tions”, Proc. of 10th Int. Workshop PATMOS 2000, Sep.
2000, pp. 243-254.

[8] K.Tatas, et. al., “Memory Hierarchy Optimization of Mul-
timedia Applications on Programmable Embedded Cores”,
accepted in Int. Symp. on Quality of Electronic Design
(ISQED) March 26-28, 2001, San Jose, USA.

[9] V. Bhaskaran and K. Kostantinides,“Image and Video Com-
pression Standards”,Kluwer Academic Publishers, 1998.

[10] Jan Edler and Mark D. Hill, “A cache
simulator for memory reference traces”,
http://www.neci.nj.nec.com/homepages/edler/d4


