SNR-DEPENDENT WAVEFORM PROCESSING FOR
IMPROVING THE ROBUSTNESS OF ASR FRONT-END

Dugan Macho”and Yan Ming Cheng

Human Interface Lab, Motorola Labs
1301 E. Algonquin Road, Schaumburg, I11linois 90196, USA
email: dusan@gps.tsc.upc.es, ycheng@labs.mot.com

ABSTRACT

In this paper, we introduce a new concept in advancing the noise
robustness of speech recognition front-end. The presented
method, called SNR-dependent Waveform Processing (SWP),
exploits SNR variability within a speech period for enhancing
the high SNR period portion and attenuating the low SNR
period portion in the waveform time domain. In this way, the
overal SNR of noisy speech is increased, and at the same time,
the periodicity of voiced speech is enhanced. This approach
differs significantly from the well-known speech enhancement
techniques, which are mostly frequency domain based, and we
use it in this work as a complementary technique to them. In
tests with SWP, we present significant clean and noisy speech
recognition performance gains using the AURORA 2 database
and recognition system as defined by ETSI for the robust front-
end standardization process. Moreover, the presented agorithm
isvery smple and it is attractive also in terms of computational
load.

1. INTRODUCTION

As the Automatic Speech Recognition (ASR) technology
becomes more and more appealing to wireless applications,
applications conducted in automobile environments or hands-free
communication, the noise robustness determines the usability of
ASR systems in these applications. The performance of current
ASR systems radically deteriorates when input speech is
interfered by noise (in most cases, background noise or
background speech). This fact reduces the success of an ASR
system in real-world applications. So far, many researchers
interests have been attracted and a large research effort has been
conducted in the field of robustness. A survey of activities and
past achievementsin thisfield can be found in [1][2].

In this contribution, we limit ourselves on improving the
robustness of front-end only, athough, the robustness in both,
front-end and back-end parts of an ASR system should be
considered for practical applications. In the front-end part of
ASR system, some techniques were adopted from the area of
speech enhancement. For example, Spectral Subtraction (SS) and
Wiener Filtering (WF) were successfully used to reduce the
effect of additive noise on ASR spectral parameters. Both, SS
and WF, are based on the idea of estimating noise in the
frequency domain and removing the estimated noise spectrum
from the noisy speech spectrum. For noise estimation, one
usually relies on speech/non-speech detector to select noise

" Dugan Macho is PhD student at UPC, Barcelona, Spain.

frames (or segments) and update the noise estimate. However, a
reliable speech/noise detector can be practically very difficult to
build, especidly in the case of non-stationary noises or low SNR
noisy conditions. Thus, the assumption of good speech/noise
detector is the fundamenta weakness of these techniques.
Recently, methods that do not need explicit speech/noise
information have been proposed and they have been reviewed in

(3.

Degpite these successes, the problem of noise robustness is still
not satisfactorily solved and efforts are still needed for further
improvements in the front-end part of ASR system. In this paper,
we explore a time domain based method as a complementary
approach to the spectrum based speech enhancement techniques.
The basic assumption is the existence of predictable SNR
variability in the waveform time domain of voiced speech due to
the speech periodicity and relatively constant noise energy.

The paper is organized as follows. In the next section, we
describe the proposed agorithm. Then, experiments with the
Aurora 2 database are presented to gain more insights into this
agorithm. Finally, some remarks and conclusions are provided.

2. SNR-DEPENDENT WAVEFORM
PROCESSING ALGORITHM

2.1 Basicidea

Within the period of voiced speech waveform, the instant speech
energy reaches the highest point at the glottal closing instant (due
to the highest glottal excitation) and the high energy will be
sustained during the interval of closed glottis (the vocal tract
damp is minimal). Once is the glottis opened, the instant energy
is radically damped. Therefore, as is well known, the speech
waveform (and also the instant speech energy contour) exhibits
periodically maxima and minima. On the contrary, the
interference noise energy generated by outside sources is
relatively constant within the speech period. Therefore, within
the noisy speech period, SNR is variable. It is relatively high
during closed glottis and relatively low during opened glottis.
Actualy, this SNR variability is observable as long as the
interference noise intensity is not extremely high. If one can
locate the high SNR period portion and increase its energy (or,
vice versa, locate the low SNR period portion and decrease its
energy), the overal SNR of given voiced speech segment is
enhanced. A front-end based on the SNR-enhanced signal is
expected to be more robust. This forms the basis of our presented



method — SNR-dependent Waveform Processing (SWP) — that
can be related to the speech periodicity enhancement methods
collected, e.g., in [4].

2.2 Algorithm description

In ASR systems, a frame-by-frame signal analysis is used to
obtain the time evolution of speech spectral envelope, which is
further used to generate parameters representing speech (usually,
cepstral coefficients and their derivatives). In this process, the
proposed SWP agorithm is applied on signal waveform that has
been preprocessed by a spectral domain based speech
enhancement technique. In this work, we use Two-stage Mel-
warped Wiener Filter (2MWF, [5]) for preprocessing.

In SWP, for each frame, a smoothed instant energy contour is
first computed (see Figure 1). We use the Teager energy
operator [6] to obtain the instant energy value at each sample. On
one hand, for voiced sounds, this smoothed energy contour has
quasi-periodic property and its period depends on the actual
fundamental frequency. On the other hand, for unvoiced sounds
and silence/noise signal portions, a relatively flatter and random
contour can be observed. Next, peaks (or maxima) of the
smoothed energy contour are located by a ssimple peak-picking
strategy. A windowing function w(n) is constructed for each
frame in such away that arectangular unit window of width Wis
placed between each two adjacent maxima found within the
frame (see Figure 1 where the w(n) has been multiplied by a
constant in order to be visible).

Figure 1(a) shows waveform within a clean speech voiced frame
together with both the corresponding smoothed energy contour
and the windowing function obtained from it. Figure 1(b) shows
the same frame with the file SNR equal to 0dB. As it can be
observed from both figures, the rectangular windows are placed
asymmetrically around each maximum since the high SNR
portion (or the glottal close portion) in voiced frames is on the
right side of each maximum. Prior to the mel-spectrum
computation, the portions selected by windowing function are
weighted more than the not selected — low SNR — portions. This
operation, in fact, improves the SNR within voiced frames and
enhances the signal periodicity. The original waveform within
each frame, s(n), is modified by using the windowing function
w(n) and aweighting parameter ¢ as follows

Sanp (n) =f (5) [Snighsnr (n) + &8 uar (n)
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with 0<e<1 and f(£)=1. The parameter ¢ determines the
degree of attenuation of low SNR portions with respect to high
SNR portions and (&) is a function of ¢ that ensures the total
frame energy after processing is the same as that before
processing. Note that both W (the width of the rectangular
function) and & parameters must be experimentally determined.

An important advantage of the SWP is that it does not need a
speech/non-speech detector. On the other hand, the fundamental
weakness is that the interference noise energy should be
sufficiently low to ensure correct maximum detection. However,
as mentioned above, SWP is applied after 2MWF, which would
have already enhanced the SNR to the adequate level.
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Figure 1 Solid line in figure (8) shows typical clean speech
waveform within a voiced frame. Smoothed energy contour
(dashed line) and corresponding windowing function w(n)
(dotted line) are also shown. Figure (b) shows a low SNR
version (SNR= 0dB) of the same frame as in figure (a). Note that
in both cases, the 2-stage mel-warped Wiener filter preprocessing
has been applied.

3. EXPERIMETAL RESULTS

3.1 Database, training-testing conditions and
baseline performances

The AURORA database [7] is a noisy speech database
distributed by the ETSI committee for the purpose of defining
distributed speech recognition front-end standard. The database
consists of clean and noisy connected digits. Both clean and
noisy speech parts were prepared by filtering the Tl database
(both training and testing parts) using a telephone bandwidth
filter (or filters). Additionaly, to generate the noisy part, four
different noises, such as exhibition hall, babble, suburban train
and moving car noises, were artificialy added to the clean TI
data at various SNR levels (20dB, 15dB, 10dB, 5dB, 0dB and —
5dB). AURORA 2 database is a re-release of the AURORA
database with additive noises more representative in terms of
real-world environments than its predecessor. Also, the



AURORA 2 database introduces additional mismatch conditions.
There are two training scenarios: multi-condition training (MCT)
and clean speech training (CST). In MCT, multiple noise types
and SNR levels are used in training. On the other hand, in the
CST scenario, only the clean speech portion of database is
involved in training. Furthermore, within each of the training
scenarios, three kinds of testing are performed: in test A, the
training and testing data are matched in both channel effect and
noise types; in test B, the training and testing data are only
matched in channel effect, but not noise types; and finally, in test
C, the channel mismatch between training and testing data is
introduced.

The AURORA standardization committee provides a training
script using HTK software in order to control the model
topology, mixture specification and training process (generation
of seed model, number of iterations, etc.). HMMs used here are
whole word models for each digit and silence. The recognition
grammar is the unknown length digit string. The committee also
provides the baseline performance obtained by using 12 MFCCs
+ log energy coefficient and their delta and acceleration
coefficients. In our subsequent experiments, we also use 12
MFCCs with log energy coefficient and their delta and
acceleration coefficients appended, however, generated by a
noise robust front-end.

3.2 Experimentson SWP

Two-stage mel-warped Wiener filtering [5] is used as baseline
for SWP, because SWP is used after it as a complementary
technique. Table 1 contains relative error reduction percentages
with respect to the standard mel-cepstrum front-end performance
for both the 2MWF technique aone and the 2MWF+SWP
combination. The SWP technique has two parameters to be
experimentally set: the width W of the high SNR frame portions
and the low SNR portion attenuation factor £ The ratesin Table
1 have been obtained by using reasonable values for both
parameters.

The best results were obtained with W=0.8 (in other words, the
rectangular window width is 80% of the pitch period) and £=0.8.

Note that with these parameter values, the recognition
performance in each condition is considerably improved with
respect to the 2MWF baseline. Furthermore, the improvementsin
the clean speech training case are higher than those in the multi-
condition training case.

From the previous tests we can deduce that the SNR
improvement achieved within voiced frames by applying SWP
leads to an improvement in noise robustness of the front-end.
Actually, SWP improves also the periodicity of voiced speech —
the fact that not only improves noise robustness but also
increases the contrast between voiced and unvoiced speech that
may help in clean speech recognition. In order to verify this
hypothesis, we performed the above recognition tests with clean
data. Error reduction percentages from these tests are shown in
Table 2. Evidently, the SWP technique has doubled the
performance improvement in comparison to the baseline 2MWF
algorithm and, thus, the periodicity improvement may lead also
to the clean speech recognition performance gain.

Additionally to the SWP idea, we thought that a frequency
dependent SWP might further improve the robustness of front-
end. In other words, we divided the speech frequency range into
two bands (low and high frequency band) and we performed
SWP separately for each band with different £ parameter value.
However, we did not observe any further improvement. Since an
insufficient number of experiments were conducted, we are not at
the point to speculate any conclusion for the frequency
dependent SWP approach.

In previous experiments, the width parameter W of the
windowing function was kept constant across all speech
utterances, once it was determined. However, it can be argued
that for the high overall SNR utterances, one can select larger W
in order to avoid speech distortion introduced by windowing. On
the other hand, for low SNR utterances, a smaller W can be
employed to achieve more aggressive noise reduction. For these
purposes, we have modified the SWP algorithm in the way that
W varies according to the frame SNR. The interval of W

: M ulti-Condition Training Clean Speech Training
Technique and parameter set A B C y = c
2MWF (baseline) 26.37 21.54 33.81 47.03 53.76 37.04
2MWF+SWP, W=0.8, &=0.9 27.71 2457 35.09 50.86 55.43 43.86
2MWF+SWP, W=0.8, £=0.8 29.18 25.15 35.38 52.16 55.11 45.89
2MWF+SWP, W=0.8, &=0.7 26.62 2347 33.89 52.92 54.94 47.17
2MWF+SWP, W=0.5, £&=0.9 27.78 25.20 34.52 50.72 55.59 44.16
2MWF+SWP, W=0.5, £=0.8 27.81 24.95 33.64 51.81 55.52 46.13

Table 1 Relative error reduction percentages by using the 2MWF technique (baseline) and the combination of 2MWF and SWP in

comparison to the MFCC standard in the AURORA 2 database.

Technique and parameter set

Multi-Condition Training

Clean Speech Training

Clean Speech Clean Speech
2MWF (baseline) 17.23 6.38
2MWF+SWP, W=0.8, £=0.8 32.43 13.01

Table 2 Clean speech relative error reduction percentages by employing 2MWF and 2MWF+SWP in AURORA 2.




variation was set between 0.5 and 0.8, i.e., when the frame SNR
is low, the rectangular window width is close to 50% of the pitch
period and when the frame SNR is large, the window width is
close to 80% of the pitch period. The frame SNR estimation is
based on the difference between energies at the input and the
output of 2MWF preprocessing. Table 3 lists error reduction
percentages with SNR dependent W.

We can observe dight degradation in multi-condition training
performances with W SNR-dependent, and significantly better
performances for clean speech training with W SNR-dependent,

as well. These results indicate that variable window width W
does have some merit.

As a curiosity, we added an additiona spectra subtraction (SS)
algorithm [8] after SWP. For noise estimation, we used the
waveform portions of each frame that have been indicated by
SWP as low SNR. Table 4 shows that a further improvement can
be obtained by additional SS in clean speech training tests.
However, in the multi-condition training tests, considerable
degradation in performances is observed in the used database.

; M ulti-Condition Training Clean Speech Training
Technique and parameter set A B C A B C
2MWEF, basgline 26.37 21.54 33.81 47.03 53.76 37.04
2MWF+SWP, £=0.8, W=0.8 29.18 25.15 35.38 52.16 55.11 45.89
2MWF+SWP, £=0.8, Wgz=0.5-0.8 28.86 24.93 34.37 54.34 57.18 46.77

Table 3 Relative error reduction percentages by employing variable window width Win SWP (the last row).

. M ulti-Condition Training Clean Speech Training
Technique and parameter set A B c A B C
2MWEF, basdline 26.37 21.54 33.81 47.03 53.76 37.04
2MWF+SWP, €=0.8, W=0.8 29.18 25.15 35.38 52.16 55.11 45.89
2MWF+SWP, £€=0.8, Wgg=0.5-0.8 28.86 24.93 34.37 54.34 57.18 46.77
2MWF+SWP+SS, £=0.8, W z=0.5-0.8 27.26 23.78 33.25 55.98 58.82 47.80

Table 4 Relative error reduction percentages by using 2MWF+SWP and an additional spectral subtraction (the last row).

4. CONCLUSION AND REMARKS

In this paper, we introduced a new approach, SNR-dependent
Waveform Processing (SWP), to improve the robustness of
speech recognition front-end as well as speech recognition
performance in general. The proposed method is based on the
speech waveform processing and speech periodicity enhancement
according to the instant SNR contour. It can be considered as a
complementary  technology to the well-known robust
technologies, which are usualy based on the frequency domain
information.

SWP needs no speech/non-speech detector, which can be
considered as fundamenta weskness of many well-known
technologies. However, it requires that the instant SNR contour
in voiced sounds has a visible contrast, i.e., the interference noise
should be relatively small. Due to this fact, we used SWP after
speech enhancement (two-stage mel-warped Wiener filter).

We showed that by using SWP, both the robustness of existing
front-end and the clean speech performance could be
significantly improved in the AURORA noisy front-end
standardization scenario. Finaly, the small computation load of
SWP makes this method even more attractive.
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