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ABSTRACT 
In this paper, we introduce a new concept in advancing the noise 
robustness of speech recognition front-end. The presented 
method, called SNR-dependent Waveform Processing (SWP), 
exploits SNR variability within a speech period for enhancing 
the high SNR period portion and attenuating the low SNR 
period portion in the waveform time domain. In this way, the 
overall SNR of noisy speech is increased, and at the same time, 
the periodicity of voiced speech is enhanced. This approach 
differs significantly from the well-known speech enhancement 
techniques, which are mostly frequency domain based, and we 
use it in this work as a complementary technique to them. In 
tests with SWP, we present significant clean and noisy speech 
recognition performance gains using the AURORA 2 database 
and recognition system as defined by ETSI for the robust front-
end standardization process. Moreover, the presented algorithm 
is very simple and it is attractive also in terms of computational 
load. 

1. INTRODUCTION 

As the Automatic Speech Recognition (ASR) technology 
becomes more and more appealing to wireless applications, 
applications conducted in automobile environments or hands-free 
communication, the noise robustness determines the usability of 
ASR systems in these applications. The performance of current 
ASR systems radically deteriorates when input speech is 
interfered by noise (in most cases, background noise or 
background speech). This fact reduces the success of an ASR 
system in real-world applications. So far, many researchers’ 
interests have been attracted and a large research effort has been 
conducted in the field of robustness. A survey of activities and 
past achievements in this field can be found in [1][2].  

In this contribution, we limit ourselves on improving the 
robustness of front-end only, although, the robustness in both, 
front-end and back-end parts of an ASR system should be 
considered for practical applications. In the front-end part of 
ASR system, some techniques were adopted from the area of 
speech enhancement. For example, Spectral Subtraction (SS) and 
Wiener Filtering (WF) were successfully used to reduce the 
effect of additive noise on ASR spectral parameters. Both, SS 
and WF, are based on the idea of estimating noise in the 
frequency domain and removing the estimated noise spectrum 
from the noisy speech spectrum. For noise estimation, one 
usually relies on speech/non-speech detector to select noise 

frames (or segments) and update the noise estimate. However, a 
reliable speech/noise detector can be practically very difficult to 
build, especially in the case of non-stationary noises or low SNR 
noisy conditions. Thus, the assumption of good speech/noise 
detector is the fundamental weakness of these techniques. 
Recently, methods that do not need explicit speech/noise 
information have been proposed and they have been reviewed in 
[3]. 

Despite these successes, the problem of noise robustness is still 
not satisfactorily solved and efforts are still needed for further 
improvements in the front-end part of ASR system. In this paper, 
we explore a time domain based method as a complementary 
approach to the spectrum based speech enhancement techniques. 
The basic assumption is the existence of predictable SNR 
variability in the waveform time domain of voiced speech due to 
the speech periodicity and relatively constant noise energy. 

The paper is organized as follows. In the next section, we 
describe the proposed algorithm. Then, experiments with the 
Aurora 2 database are presented to gain more insights into this 
algorithm. Finally, some remarks and conclusions are provided.  

2. SNR-DEPENDENT WAVEFORM 
PROCESSING ALGORITHM 

2.1 Basic idea 

Within the period of voiced speech waveform, the instant speech 
energy reaches the highest point at the glottal closing instant (due 
to the highest glottal excitation) and the high energy will be 
sustained during the interval of closed glottis (the vocal tract 
damp is minimal). Once is the glottis opened, the instant energy 
is radically damped. Therefore, as is well known, the speech 
waveform (and also the instant speech energy contour) exhibits 
periodically maxima and minima. On the contrary, the 
interference noise energy generated by outside sources is 
relatively constant within the speech period. Therefore, within 
the noisy speech period, SNR is variable. It is relatively high 
during closed glottis and relatively low during opened glottis. 
Actually, this SNR variability is observable as long as the 
interference noise intensity is not extremely high. If one can 
locate the high SNR period portion and increase its energy (or, 
vice versa, locate the low SNR period portion and decrease its 
energy), the overall SNR of given voiced speech segment is 
enhanced. A front-end based on the SNR-enhanced signal is 
expected to be more robust. This forms the basis of our presented 



method – SNR-dependent Waveform Processing (SWP) – that 
can be related to the speech periodicity enhancement methods 
collected, e.g., in [4].  

2.2 Algorithm description  

In ASR systems, a frame-by-frame signal analysis is used to 
obtain the time evolution of speech spectral envelope, which is 
further used to generate parameters representing speech (usually, 
cepstral coefficients and their derivatives). In this process, the 
proposed SWP algorithm is applied on signal waveform that has 
been preprocessed by a spectral domain based speech 
enhancement technique. In this work, we use Two-stage Mel-
warped Wiener Filter (2MWF, [5]) for preprocessing. 

In SWP, for each frame, a smoothed instant energy contour is 
first computed  (see Figure 1). We use the Teager energy 
operator [6] to obtain the instant energy value at each sample. On 
one hand, for voiced sounds, this smoothed energy contour has 
quasi-periodic property and its period depends on the actual 
fundamental frequency. On the other hand, for unvoiced sounds 
and silence/noise signal portions, a relatively flatter and random 
contour can be observed. Next, peaks (or maxima) of the 
smoothed energy contour are located by a simple peak-picking 
strategy. A windowing function w(n) is constructed for each 
frame in such a way that a rectangular unit window of width W is 
placed between each two adjacent maxima found within the 
frame (see Figure 1 where the w(n) has been multiplied by a 
constant in order to be visible). 

Figure 1(a) shows waveform within a clean speech voiced frame 
together with both the corresponding smoothed energy contour 
and the windowing function obtained from it. Figure 1(b) shows 
the same frame with the file SNR equal to 0dB. As it can be 
observed from both figures, the rectangular windows are placed 
asymmetrically around each maximum since the high SNR 
portion (or the glottal close portion) in voiced frames is on the 
right side of each maximum. Prior to the mel-spectrum 
computation, the portions selected by windowing function are 
weighted more than the not selected – low SNR – portions. This 
operation, in fact, improves the SNR within voiced frames and 
enhances the signal periodicity. The original waveform within 
each frame, s(n), is modified by using the windowing function 
w(n) and a weighting parameter ε as follows 
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with 10 ≤< ε  and ( ) 1≥εf . The parameter ε determines the 
degree of attenuation of low SNR portions with respect to high 
SNR portions and f(ε) is a function of ε that ensures the total 
frame energy after processing is the same as that before 
processing. Note that both W (the width of the rectangular 
function) and ε parameters must be experimentally determined.  

An important advantage of the SWP is that it does not need a 
speech/non-speech detector. On the other hand, the fundamental 
weakness is that the interference noise energy should be 
sufficiently low to ensure correct maximum detection. However, 
as mentioned above, SWP is applied after 2MWF, which would 
have already enhanced the SNR to the adequate level. 

3. EXPERIMETAL RESULTS 

3.1 Database, training-testing conditions and 
baseline performances 

The AURORA database [7] is a noisy speech database 
distributed by the ETSI committee for the purpose of defining 
distributed speech recognition front-end standard. The database 
consists of clean and noisy connected digits. Both clean and 
noisy speech parts were prepared by filtering the TI database 
(both training and testing parts) using a telephone bandwidth 
filter (or filters). Additionally, to generate the noisy part, four 
different noises, such as exhibition hall, babble, suburban train 
and moving car noises, were artificially added to the clean TI 
data at various SNR levels (20dB, 15dB, 10dB, 5dB, 0dB and –
5dB). AURORA 2 database is a re-release of the AURORA 
database with additive noises more representative in terms of 
real-world environments than its predecessor. Also, the 

(a) 

(b) 

Figure 1 Solid line in figure (a) shows typical clean speech
waveform within a voiced frame. Smoothed energy contour
(dashed line) and corresponding windowing function w(n)
(dotted line) are also shown. Figure (b) shows a low SNR
version (SNR= 0dB) of the same frame as in figure (a). Note that
in both cases, the 2-stage mel-warped Wiener filter preprocessing
has been applied. 
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AURORA 2 database introduces additional mismatch conditions. 
There are two training scenarios: multi-condition training (MCT) 
and clean speech training (CST). In MCT, multiple noise types 
and SNR levels are used in training. On the other hand, in the 
CST scenario, only the clean speech portion of database is 
involved in training.  Furthermore, within each of the training 
scenarios, three kinds of testing are performed: in test A, the 
training and testing data are matched in both channel effect and 
noise types; in test B, the training and testing data are only 
matched in channel effect, but not noise types; and finally, in test 
C, the channel mismatch between training and testing data is 
introduced. 

The AURORA standardization committee provides a training 
script using HTK software in order to control the model 
topology, mixture specification and training process (generation 
of seed model, number of iterations, etc.). HMMs used here are 
whole word models for each digit and silence. The recognition 
grammar is the unknown length digit string. The committee also 
provides the baseline performance obtained by using 12 MFCCs 
+ log energy coefficient and their delta and acceleration 
coefficients. In our subsequent experiments, we also use 12 
MFCCs with log energy coefficient and their delta and 
acceleration coefficients appended, however, generated by a 
noise robust front-end. 

3.2 Experiments on SWP 

Two-stage mel-warped Wiener filtering [5] is used as baseline 
for SWP, because SWP is used after it as a complementary 
technique. Table 1 contains relative error reduction percentages 
with respect to the standard mel-cepstrum front-end performance 
for both the 2MWF technique alone and the 2MWF+SWP 
combination. The SWP technique has two parameters to be 
experimentally set: the width W of the high SNR frame portions 
and the low SNR portion attenuation factor ε. The rates in Table 
1 have been obtained by using reasonable values for both 
parameters. 

The best results were obtained with W=0.8 (in other words, the 
rectangular window width is 80% of the pitch period) and ε=0.8. 

Note that with these parameter values, the recognition 
performance in each condition is considerably improved with 
respect to the 2MWF baseline. Furthermore, the improvements in 
the clean speech training case are higher than those in the multi-
condition training case. 

From the previous tests we can deduce that the SNR 
improvement achieved within voiced frames by applying SWP 
leads to an improvement in noise robustness of the front-end. 
Actually, SWP improves also the periodicity of voiced speech – 
the fact that not only improves noise robustness but also 
increases the contrast between voiced and unvoiced speech that 
may help in clean speech recognition. In order to verify this 
hypothesis, we performed the above recognition tests with clean 
data. Error reduction percentages from these tests are shown in 
Table 2. Evidently, the SWP technique has doubled the 
performance improvement in comparison to the baseline 2MWF 
algorithm and, thus, the periodicity improvement may lead also 
to the clean speech recognition performance gain.  

Additionally to the SWP idea, we thought that a frequency 
dependent SWP might further improve the robustness of front-
end. In other words, we divided the speech frequency range into 
two bands (low and high frequency band) and we performed 
SWP separately for each band with different ε parameter value. 
However, we did not observe any further improvement. Since an 
insufficient number of experiments were conducted, we are not at 
the point to speculate any conclusion for the frequency 
dependent SWP approach. 

In previous experiments, the width parameter W of the 
windowing function was kept constant across all speech 
utterances, once it was determined. However, it can be argued 
that for the high overall SNR utterances, one can select larger W 
in order to avoid speech distortion introduced by windowing. On 
the other hand, for low SNR utterances, a smaller W can be 
employed to achieve more aggressive noise reduction. For these 
purposes, we have modified the SWP algorithm in the way that 
W varies according to the frame SNR. The interval of W 

 

Multi-Condition Training Clean Speech Training Technique and parameter set 
A B C A B C 

2MWF (baseline) 26.37 21.54 33.81 47.03 53.76 37.04 
2MWF+SWP, W=0.8, ε=0.9 27.71 24.57 35.09 50.86 55.43 43.86 
2MWF+SWP, W=0.8, ε=0.8 29.18 25.15 35.38 52.16 55.11 45.89 
2MWF+SWP, W=0.8, ε=0.7 26.62 23.47 33.89 52.92 54.94 47.17 
2MWF+SWP, W=0.5, ε=0.9 27.78 25.20 34.52 50.72 55.59 44.16 
2MWF+SWP, W=0.5, ε=0.8 27.81 24.95 33.64 51.81 55.52 46.13 

 

 

Multi-Condition Training Clean Speech Training Technique and parameter set 
Clean Speech Clean Speech 

2MWF (baseline) 17.23 6.38 
2MWF+SWP, W=0.8, ε=0.8 32.43 13.01 

 

Table 1 Relative error reduction percentages by using the 2MWF technique (baseline) and the combination of 2MWF and SWP in
comparison to the MFCC standard in the AURORA 2 database. 

Table 2 Clean speech relative error reduction percentages by employing 2MWF and 2MWF+SWP in AURORA 2. 



 

 

variation was set between 0.5 and 0.8, i.e., when the frame SNR 
is low, the rectangular window width is close to 50% of the pitch 
period and when the frame SNR is large, the window width is 
close to 80% of the pitch period. The frame SNR estimation is 
based on the difference between energies at the input and the 
output of 2MWF preprocessing. Table 3 lists error reduction 
percentages with SNR dependent W. 

We can observe slight degradation in multi-condition training 
performances with W SNR-dependent, and significantly better 
performances for clean speech training with W SNR-dependent, 

as well. These results indicate that variable window width W 
does have some merit. 

As a curiosity, we added an additional spectral subtraction (SS) 
algorithm [8] after SWP. For noise estimation, we used the 
waveform portions of each frame that have been indicated by 
SWP as low SNR. Table 4 shows that a further improvement can 
be obtained by additional SS in clean speech training tests. 
However, in the multi-condition training tests, considerable 
degradation in performances is observed in the used database. 

 

Multi-Condition Training Clean Speech Training Technique and parameter set 
A B C A B C 

2MWF, baseline 26.37 21.54 33.81 47.03 53.76 37.04 
2MWF+SWP, ε=0.8, W=0.8 29.18 25.15 35.38 52.16 55.11 45.89 
2MWF+SWP, ε=0.8, WSNR=0.5-0.8 28.86 24.93 34.37 54.34 57.18 46.77 

 

 

Multi-Condition Training Clean Speech Training Technique and parameter set 
A B C A B C 

2MWF, baseline 26.37 21.54 33.81 47.03 53.76 37.04 
2MWF+SWP, ε=0.8, W=0.8 29.18 25.15 35.38 52.16 55.11 45.89 
2MWF+SWP, ε=0.8, WSNR=0.5-0.8 28.86 24.93 34.37 54.34 57.18 46.77 
2MWF+SWP+SS, ε=0.8, WSNR=0.5-0.8 27.26 23.78 33.25 55.98 58.82 47.80 

 

 

 

4. CONCLUSION AND REMARKS 
In this paper, we introduced a new approach, SNR-dependent 
Waveform Processing (SWP), to improve the robustness of 
speech recognition front-end as well as speech recognition 
performance in general. The proposed method is based on the 
speech waveform processing and speech periodicity enhancement 
according to the instant SNR contour. It can be considered as a 
complementary technology to the well-known robust 
technologies, which are usually based on the frequency domain 
information. 

SWP needs no speech/non-speech detector, which can be 
considered as fundamental weakness of many well-known 
technologies. However, it requires that the instant SNR contour 
in voiced sounds has a visible contrast, i.e., the interference noise 
should be relatively small. Due to this fact, we used SWP after 
speech enhancement (two-stage mel-warped Wiener filter).  

We showed that by using SWP, both the robustness of existing 
front-end and the clean speech performance could be 
significantly improved in the AURORA noisy front-end 
standardization scenario. Finally, the small computation load of 
SWP makes this method even more attractive. 
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Table 3 Relative error reduction percentages by employing variable window width W in SWP (the last row). 

Table 4 Relative error reduction percentages by using 2MWF+SWP and an additional spectral subtraction (the last row). 


