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ABSTRACT

This paper introduces a constrained version of the recently
proposed set-membership affine projection algorithm based
on the set-membership criteria for coefficient update. The
algorithm is suitable for linearly-constrained minimum-variance
filtering applications. The data selective property of the pro-
posed algorithm greatly reduces the computational burden
as compared with a nonselective approach. Simulation re-
sults show the good performance in terms convergence, final
misadjustment, and reduced computational complexity.

1. INTRODUCTION

Adaptation algorithms which satisfy linear constraints en-
counter application in several areas of signal processing and
communications, such as beamforming, spectral estimation,
multiuser detection for communication systems, etc. A ro-
bust algorithm which does not require reinitialization and
incorporates the constraints into the solution was first intro-
duced by Frost [1]. More recently, other constrained adap-
tation algorithms were introduced which are tailored to spe-
cific applications or present advantageous performance re-
garding convergence and robustness (see, e.g., [2][3]).

The affine-projection (AP) algorithm is among the promi-
nent unconstrained adaptation algorithms that may have a
good compromise between fast convergence and low com-
putational complexity. By adjusting the number of pro-
jections, performance can be controlled from that of the
normalized least mean squares (NLMS) algorithm to that
of the sliding-window recursive least squares (RLS) algo-
rithm [4][5]. A constrained version of the affine-projection
algorithm, the CAP algorithm, was proposed in [6] and was
shown to achieve fast convergence. However, the fast con-
vergence comes at the expense of a higher misadjustment.

In order to combat the conflicting requirements often
encountered with most adaptive filtering algorithms, the ob-
jective function of the adaptive algorithm needs to be
changed. In set-membership filtering (SMF) [7] an upper

bound of the output estimation error is specified. The result-
ing adaptation algorithms are data-selective which in turn
can reduce the computational complexity of the algorithms
considerably. Furthermore, the sparse updating also results
in a low misadjustment because the algorithms does not uti-
lize the input data if it does not imply innovation. The set-
membership affine projection (SM-AP) algorithm proposed
in [8] generalized the work in [7] and [9], and was shown to
achieve fast convergence and low misadjustment.

In this paper we apply the concept of set-membership
filtering to the linearly constrained filtering problem in or-
der to derive an efficient algorithm with low computational
complexity and fast convergence. The new algorithm pre-
sented can be seen as a constrained version of the SM-AP
algorithm and its recursions are similar to the constrained
affine-projection (CAP) algorithm [6]. The new algorithm
retain the fast convergence of the CAP algorithm, and low
misadjustment is obtained due to the data selective property.

2. SET-MEMBERSHIP FILTERING

This section reviews the basic concepts of set-membership
filtering (SMF). For a more detailed introduction to the con-
cept of SMF, the reader is referred to [7]. In SMF, an upper
bound is specified on the magnitude of the output estimation
errorek = dk �wT

k x. As a result of the bound constraint,
the adaptive filtering algorithms derived within the frame-
work of SMF will not perform filter update for all incoming
signals, in other words they are data selective. In SMF, all
vectors that belong to thefeasibility set

� =
\

(x;d)2S

fw 2 RN+1 : jd�wTxj � 
g (1)

are considered valid estimates, whereS denotes the set of all
possible input-desired data pairs(x; d) of interest. In many
applications it is impossible to predict all possible data pairs
and, therefore, adaptive methods work with themembership



sets k constructed from the observed data pairs,

 k =
k\
i=1

Hi (2)

where

Hk = fw 2 RN : jdk �wTxkj � 
g (3)

is theconstraint setformed by the input data pair at time
instantk. Note that the feasibility set is included in the
membership set and if all possible data pairs are traversed
up to time instantk, the membership becomes equal to the
feasibility set. Since the membership is not easily solved
for [7], simple adaptive approaches compute a point esti-
mate provided part of the information in the membership
set k, e.g., the information provided by the constraint set
Hk like in the SM-NLMS [7] algorithm or by utilizingP
past contraint sets like in the SM-AP algorithm [8].

3. SET-MEMBERSHIP CONSTRAINED AFFINE
PROJECTION ALGORITHM

In linearly constrained adaptive filtering, the constraints are
given by the set of equations

CTw = f (4)

whereC is a (N + 1) � J constraint matrix andf is the
vector ofJ constraint values. In our SMF formulation we
want to design our filter such that the magnitude of estima-
tion error is bounded. For this formulation we partition the
membership set as k =  k�Pk \ Pk where Pk corresponds
to the intersection of theP past constraint sets, i.e.,

 Pk =

k\
i=k�P+1

Hi (5)

Next we consider the derivation of a data-selective algo-
rithm whose coefficients belong to the hyperplane defined
by equation (4) and also to the partitioned membership set,
i.e.,CTwk+1 = f andwk+1 2  

P
k . Let us state the follow-

ing optimization criterion wheneverwk 62  
P
k .

wk+1 = argmin kwk+1 �wkk
2 subject to

CTwk+1 = f

dk �XT
kwk+1 = gk (6)

where

gk = [gk gk�1 : : : gk�P+1]
T

dk = [dk dk�1 : : : dk�P+1]
T

Xk = [xk xk�1 � � � xk�P+1] (7)

with xk = [xk xk�1 : : : xk�N ]
T andN the filter order. In

order to guarantee thatwk+1 2  Pk the elements ofgk are
chosen such thatjgk�i+1j � 
 for i = 1 : : : P . In the end
of this section we consider a particular choice of the param-
etersgk�i+1 leading to a simplified algorithm. Using the
method of Lagrange multipliers, the unconstrained function
to be minimized may be expressed by

f(wk+1) = kwk+1 �wkk
2 + �

T
1 [f �CTwk+1]

+ �
T
2 [dk �XT

kwk+1 � gk]
(8)

Setting the gradient off(wk+1;�) with respect towk+1

equal to zero yields

wk+1 = wk +C
�1

2
+Xk

�2

2
(9)

Solving for the constraints we get

wk+1 = P [wk +Xktk] + F (10)

where

tk =
�
XT
kPXk

��1 �
dk �XT

kwk � gk
�

=
�
XT
kPXk

��1
(ek � gk) (11)

ek = [ek �k�1 : : : �k�P+1]
T (12)

with �k�i = dk�i�xTk�iwk denoting thea posteriorierror
at iterationk � i. The matrix

P = I�C(CTC)�1CT (13)

is a projection matrix for a projection onto the homogeneous
hyperplane defined byCTwk = 0, and the vector

F = C(CTC)�1f (14)

is used to move the projected solution back to the constraint
hyperplane.

Now, let us look more closely on the constraint vector
gk. Due to the data reusing property of the above algorithm
we havewk 2 Hk�i+1, i.e., j�k�i+1j � 
, for i 6= 1.
Therefore, choosinggk�i+1 = �k�i+1, for i 6= 1, will can-
cel all but the first element in the termek � gk of (11).

In the same way as with the SM-NLMS and the SM-AP
algorithms we can choosegk such that thea posteriorierror
lies on the closest boundary ofHk, i.e., gk = 
sign(ek).
With the above choices we get

tk =
�
XT
kPXk

��1
�keku1 (15)

whereu1 = [1 0 : : : 0]T and

�k =

�
1� 
=jekj if jekj > 


0 otherwise
(16)



is the data dependent step-size. Note that for time instants
k < P only knowledge ofHi for i = 1; : : : ; k can be
assumed. If an update is needed for the initial time instants
k < P , the algorithm is used with thek available constraint
sets. The equations of the SM-CAP algorithm is summa-
rized in Table 1, where a small constantÆ was used to avoid
the inversion of a possible null matrix. For comparison, Ta-
ble 2 shows the CAP algorithm proposed in [6]. In both
algorithms given below the simplificationPwk + F = wk

should be avoided to prevent the solution to drift away from
the constraint plane in a finite precision implementation [1].

Table 1. The set-membership constrained affine projection
algorithm.

SM-CAP Algorithm
for eachk
f
ek = dk � x

T

kwk

if jekj > 

�k = 1 � 
=jekj

tk =
�
X
T

k PXk + ÆI
�
�1

�keku1
wk+1 = P [wk +Xk tk] + F

else
wk+1 = wk

g

Table 2. The constrained affine projection algorithm.
CAP Algorithm

for eachk
f

ek = dk �X
T

kwk

tk =
�
X
T

k PXk + ÆI
�
�1
ek

wk+1 = P [wk + �Xk tk] + F

g

4. SIMULATIONS

4.1. Experiment 1

A first experiment was carried out in a system-identification
problem where the filter coefficients were constrained to
preserve linear phase at every iteration. For this example
we madeN = 10 and, in order to fulfill the linear phase
requirement, we made

C =

2
4 IN=2

0T

�JN=2

3
5 (17)

with J being a reversal matrix (an identity matrix with all
lines in reversed order), and

f = [0 � � � 0]T (18)

This didactic setup was employed to show the improve-
ment of the convergence speed whenP is increased. Due
to the symmetry ofC and the fact thatf is a null vector,
more efficient structures could be used [10]. The input sig-
nal consists of zero-mean unity-variance colored noise with
eigenvalue spread around2000 and the reference signal was
obtained after filtering the input by a linear-phase FIR filter
and adding observation noise with variance equal to10�10.
The value of
 in the SM-CAP algorithm was chosen equal
to 3�n. A higher value would result in less frequent updates
but in slightly higher final misadjustment. Fig. 1 shows the
learning curves for the SM-CAP and CAP algorithms for
P = 1, P = 2, andP = 4. Fig. 1 clearly shows the
increase in convergence speed obtained by increasingP as
can be expected. It is also clear from this figure that the mis-
adjustment with the SM-CAP algorithm is lower than the
CAP algorithm, and that the misadjustment increases more
slowly whenP is increased. The only way for the CAP al-
gorithm to achieve the low misadjustment of the SM-CAP is
through the introduction of a step-size resulting in a slower
convergence. Furthermore, in 500 iterations the SM-CAP
algorithm performed updates in 485, 111, and 100 time in-
stants forP = 1, P = 2, andP = 4, respectively. In other
words, the SM-CAP algorithm withP = 4 had a better per-
formance than the CAP algorithm while performing updates
for only a fraction of data.
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Fig. 1. Learning curves for the CAP and the SM-CAP al-
gorithms withP = 1, P = 2, andP = 4 data reuses,
�2n = 10�10, 
 = 3�n, and colored input signal.



4.2. Experiment 2

A second experiment was conducted where the received sig-
nal consists of three sinusoids in white noise:

xk = sin(0:3k�) + sin(0:325k�) + sin(0:7k�) + nk
(19)

wherenk is white noise with power such that the SNR is
40dB. The filter is constrained to pass frequency compo-
nent of 0.1rad/s and 0.25rad/s undistorted resulting in the
following constraint matrix and vector:

CT =

2
664
1 cos(0:2�) � � � cos [(N � 1)0:2�]
1 cos(0:5�) � � � cos [(N � 1)0:5�]
0 sin(0:2�) � � � sin [(N � 1)0:2�]
0 sin(0:5�) � � � sin [(N � 1)0:5�]

3
775
(20)

fT = [1 1 0 0] (21)

In this example the reference signal is set to zero, i.e.,ek =
�xTkwk. The norm of the mean output energy (MOE) is
shown in Figure 2 for the SM-CAP and the CAP algorithms
for P = 3. The threshold
 was set to4�n. A step size
�CAP = 0:15 was used with the CAP to obtain a steady-
state close to the SM-CAP algorithm. We see from the
figure that the SM-CAP curve is less noisy than the CAP
curve during the initial 1500 iteratians. After the conver-
gence both algorithm have similar steady-state value. In
5000 iterations, the average number of updates for the SM-
CAP algorithm was 790 as compared with 5000 updates for
the CAP algorithm.
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Fig. 2. The mean output power

5. CONCLUSIONS

A constrained version of the set-membership affine projec-
tion (SM-CAP) algorithm was presented. The algorithm is
based on the concept of set-membership filtering, and uti-
lizes consecutive data-pairs in order to construct a space of
feasible solutions for the updates. The data selective feature
can, in certain applications, reduce substantially the num-
ber of required updates as compared with the conventional
constrained affine projection algorithm (CAP). Simulations
confirmed that the proposed algorithm leads to fast conver-
gence speed, low misadjustment, and a substantial reduction
in the number of updates.
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