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ABSTRACT bound of the output estimation error is specified. The result-

This paper introduces a constrained version of the recentlymg adaptation aIgonthmg are data—selgctwe which n turn
can reduce the computational complexity of the algorithms

roposed set-membership affine projection algorithm based : .
prop P pro) g considerably. Furthermore, the sparse updating also results

on the set-membership criteria for coefficient update. The | | sadiust b the alaorithms d L uti
algorithm s suitable for linearly-constrained minimum-varian:t%a t?]w _rmsat éuf ”.‘f?;‘d ecauste_ ela_gon TS o%i no ltJ -
filtering applications. The data selective property of the pro- 1ze the Input data 1t it does not Imply innovation. the set-

posed algorithm greatly reduces the computational burden.m('mlbershilo affine projection (SM-AP) algorithm proposed

as compared with a nonselective approach. Simulation re-" [3] generalized the workiin [7] and .[9]’ gnd was shown to
sults show the good performance in terms convergence, finaIaCh'eve fast convergence and low misadjustment.

misadjustment, and reduced computational complexity. _ “f‘ this paper we apply the_ conc_ept_of set-mempership
filtering to the linearly constrained filtering problem in or-

der to derive an efficient algorithm with low computational
complexity and fast convergence. The new algorithm pre-
sented can be seen as a constrained version of the SM-AP
dalgorithm and its recursions are similar to the constrained
affine-projection (CAP) algorithm [6]. The new algorithm
retain the fast convergence of the CAP algorithm, and low
misadjustment is obtained due to the data selective property.

1. INTRODUCTION

Adaptation algorithms which satisfy linear constraints en-
counter application in several areas of signal processing an
communications, such as beamforming, spectral estimation,
multiuser detection for communication systems, etc. A ro-
bust algorithm which does not require reinitialization and
incorporates the constraints into the solution was first intro-
duced by Frost [1]. More recently, other constrained adap- 2. SET-MEMBERSHIP FILTERING

tation algorithms were introduced which are tailored to spe-

cific applications or present advantageous performance re-This section reviews the basic concepts of set-membership
garding convergence and robustness (see, e.g., [2][3]). filtering (SMF). For a more detailed introduction to the con-

The affine-projection (AP) algorithm is among the promi- cept of SMF, the reader is referred to [7]. In SMF, an upper
nent unconstrained adaptation algorithms that may have abound is specified on the magnitude of the output estimation
good compromise between fast convergence and low com-errore;, = d;, — wi x. As a result of the bound constraint,
putational complexity. By adjusting the number of pro- the adaptive filtering algorithms derived within the frame-
jections, performance can be controlled from that of the work of SMF will not perform filter update for all incoming
normalized least mean squares (NLMS) algorithm to that signals, in other words they are data selective. In SMF, alll
of the sliding-window recursive least squares (RLS) algo- vectors that belong to tHeasibility set
rithm [4][5]. A constrained version of the affine-projection
algorithm, the CAP algorithm, was proposed in [6] and was 0= ﬂ {we RN |d—wTx| <~} (1)
shown to achieve fast convergence. However, the fast con- (x,d)ES
vergence comes at the expense of a higher misadjustment.

In order to combat the conflicting requirements often are considered valid estimates, wh&réenotes the set of all
encountered with most adaptive filtering algorithms, the ob- possible input-desired data paies, d) of interest. In many
jective function of the adaptive algorithm needs to be applications itis impossible to predict all possible data pairs
changed. In set-membership filtering (SMF) [7] an upper and, therefore, adaptive methods work with thembership



setsyy, constructed from the observed data pairs, with xj, = [z zp—1 ... mk,N]T andN the filter order. In
order to guarantee that;,; € 1/},’; the elements of;, are

b chosen such thadyy,_; 41| <y fori =1 ... P. Inthe end
Vi = DH" (2) of this section we consider a particular choice of the param-
=t etersgy_;+1 leading to a simplified algorithm. Using the
where method of Lagrange multipliers, the unconstrained function

to be minimized may be expressed by
Hy = {w e RN : |d, — wixi| <7} 3

F(Wii1) = Wk — wil|” + A[[f — CTwipa]
is the constraint seformed by_ thg mput_da_ta pair at_ time + )\;[dk _ XZWkH — gl
instantk. Note that the feasibility set is included in the @8)
membership set and if all possible data pairs are traversed
up to time instank, the membership becomes equal to the Setting the gradient of (w1, A) with respect tow;
feasibility set. Since the membership is not easily solved equal to zero yields

for [7], simple adaptive approaches compute a point esti-

mate provided part of the information in the membership Wiyl = Wi + Cﬁ + Xkﬁ 9)
setyy, e.g., the information provided by the constraint set 2 2
H;y. like in the SM-NLMS [7] algorithm or by utilizingP Solving for the constraints we get
past contraint sets like in the SM-AP algorithm [8].
Wit =P [Wk + thk] +F (20)

3. SET-MEMBERSHIP CONSTRAINED AFFINE where
PROJECTION ALGORITHM T 1 T

tr, = (XpPXg)  (dp — Xpwy — g)

In linearly constrained adaptive filtering, the constraints are — (XTPX.) er — on 11

given by the set of equations ( k '”) S (11)

lTw=f 4) e, = [eg €x—1 ... ek_p+1]T (12)

whereC is a(N + 1) x J constraint matrix and is the with ex—; = dj,_; — x}_,w}, denoting thea posteriorierror
vector of J constraint values. In our SMF formulation we at iterationk — i. The matrix

want to design our filter such that the magnitude of estima- T LT

tion error is bounded. For this formulation we partition the P=I-C(C'C)" C (13)
membership set ag, = F " Nyt wherey} corresponds

. . i . is a projection matrix for a projection onto the homogeneous
to the intersection of th& past constraint sets, i.e.,

hyperplane defined b§ " w;, = 0, and the vector

k T -1
F=C(C'C)~f 14
W= ) # ® €9 (9
i=k—P+1 is used to move the projected solution back to the constraint
hyperplane.

Next we consider the derivation of a data-selective algo-
rithm whose coefficients belong to the hyperplane defined
by equation (4) and also to the partitioned membership set,
i.e.,CTwyy1 = fandwy € 9] . Letus state the follow-
ing optimization criterion whenevev . & 7.

Now, let us look more closely on the constraint vector
gi. Due to the data reusing property of the above algorithm
we havewy € Hi_iy1, i€, |ex—it1| < v, fori # 1.
Therefore, choosingy—;+1 = €x—;+1, fori # 1, will can-
cel all but the first element in the terep, — g, of (11).

In the same way as with the SM-NLMS and the SM-AP
algorithms we can choogg such that the posteriorierror
lies on the closest boundary &y, i.e., g, = ysign(eg).

W1 = argmin ||wg, — w||? subject to

C'wipp =f

d, — Xjwii = gk (6) With the above choices we get
where by = (XZPXk)il Qpepuy (15)
gk =9k k1 - gk pr1] whereu; =[10 ... 0] and

;
dy = [dg dp—1 - - dp—P1] oy — {1 —y/lex| if lex]| >

X =[Xp Xp—1 - - Xp—py1] @) 0 otherwise (16)



is the data dependent step-size. Note that for time instantswith J being a reversal matrix (an identity matrix with all

k < P only knowledge ofH{; fori = 1, ..., k can be
assumed. If an update is needed for the initial time instants
k < P, the algorithm is used with theavailable constraint
sets. The equations of the SM-CAP algorithm is summa-
rized in Table 1, where a small constanwas used to avoid
the inversion of a possible null matrix. For comparison, Ta-
ble 2 shows the CAP algorithm proposed in [6]. In both
algorithms given below the simplificatiddw ;, + F = wy,
should be avoided to prevent the solution to drift away from
the constraint plane in a finite precision implementation [1].

Table 1. The set-membership constrained affine projection
algorithm.

SM-CAP Algorithm

for eachk
{
e = dk- - X{Wk
if |6k| >y
ar =1—/lex|

tr = [X] P Xy +0I] " arepm

Wit1 = P [wy + X, tx] + F
else

Wit+1 = Wk

Table 2. The constrained affine projection algorithm.
CAP Algorithm

for eachk

{
e, =di — ngk
tr = [XzPXk +(5I]71ek
Wit =P [wi + pXp tp] + F

}

4. SIMULATIONS

4.1. Experiment 1

A first experiment was carried out in a system-identification
problem where the filter coefficients were constrained to
preserve linear phase at every iteration. For this example
we madeN = 10 and, in order to fulfill the linear phase
requirement, we made

In/o
of

—Jny2

C= (17)

lines in reversed order), and

f=100---0" (18)

This didactic setup was employed to show the improve-
ment of the convergence speed wheris increased. Due
to the symmetry ofC and the fact thaf is a null vector,
more efficient structures could be used [10]. The input sig-
nal consists of zero-mean unity-variance colored noise with
eigenvalue spread arouB@i00 and the reference signal was
obtained after filtering the input by a linear-phase FIR filter
and adding observation noise with variance equaDto!°.
The value ofy in the SM-CAP algorithm was chosen equal
to 30,,. A higher value would result in less frequent updates
but in slightly higher final misadjustment. Fig. 1 shows the
learning curves for the SM-CAP and CAP algorithms for
P =1,P = 2 andP = 4. Fig. 1 clearly shows the
increase in convergence speed obtained by incred3iag
can be expected. Itis also clear from this figure that the mis-
adjustment with the SM-CAP algorithm is lower than the
CAP algorithm, and that the misadjustment increases more
slowly whenP is increased. The only way for the CAP al-
gorithm to achieve the low misadjustment of the SM-CAP is
through the introduction of a step-size resulting in a slower
convergence. Furthermore, in 500 iterations the SM-CAP
algorithm performed updates in 485, 111, and 100 time in-
stants forP = 1, P = 2, andP = 4, respectively. In other
words, the SM-CAP algorithm witl? = 4 had a better per-
formance than the CAP algorithm while performing updates
for only a fraction of data.
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Fig. 1. Learning curves for the CAP and the SM-CAP al-
gorithms withP = 1, P = 2, andP = 4 data reuses,
o2 =10719, v = 30, and colored input signal.



4.2. Experiment 2 5. CONCLUSIONS

A second experiment was conducted where the received sig-A constrained version of the set-membership affine projec-

nal consists of three sinusoids in white noise: tion (SM-CAP) algorithm was presented. The algorithm is
based on the concept of set-membership filtering, and uti-
xp = sin(0.3k7) + sin(0.325k7) + sin(0.7k7) + ny lizes consecutive data-pairs in order to construct a space of

(29) feasible solutions for the updates. The data selective feature
can, in certain applications, reduce substantially the num-
wheren,, is white noise with power such that the SNR is ber of required updates as compared with the conventional
40dB. The filter is constrained to pass frequency compo- constrained affine projection algorithm (CAP). Simulations
nent of 0.1rad/s and 0.25rad/s undistorted resulting in the confirmed that the proposed algorithm leads to fast conver-
following constraint matrix and vector: gence speed, low misadjustment, and a substantial reduction
in the number of updates.
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