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ABSTRACT
Hybrid filter banks have received increasing attention in the
literature, for applications such as high-speed, high-resolution
A/D and D/A converter design. In the manufacturing process,
however, the filter coefficients of a hybrid filter bank are plagued
with some errors due to technological limitations, particularly
those of the analog filters, leading to degradation of the system
performance.  This work presents a novel method for improving
the mean signal-to-noise-ratio of near-perfect reconstruction filter
banks, taking into account such realization errors.  The method
consists in minimizing the total noise energy derived in an
accurate way by a theoretical expression.

I. INTRODUCTION

Many valuable filter bank design methods have been proposed  in
the literature: the perfect reconstruction (PR) ones try to
completely eliminate amplitude, phase and aliasing distortions,
while the near-perfect reconstruction (NPR) ones allow some
aliasing [1].  However, regardless of the chosen method, the filter
bank performance is usually assessed by parameters, such as the
maximum reconstruction error, which is the difference between
the input and the output of the filter bank [1], that do not take
into account (and are not intended to consider) imperfections
presented by the system after it is manufactured. These
imperfections, usually referred to as realization errors, are
determined by technological limitations and spurious elements,
and impose errors to the filter coefficients. It has been shown that
in practical implementations, realization errors in digital filter
banks can generally be neglected [2]. While realization error
effects in digital filters can be virtually eliminated at the cost of
increasing the number of bits to represent the filter coefficients,
in the analog counterpart the achievable accuracy is limited by
errors due to the fabrication process, degrading the performance
of the resulting system. This is a more and more defying problem
due to the growing interest in hybrid filter banks in applications
such as A/D and D/A conversion [3]-[7].

Considering the stochastic process of the realization errors,
simulations have revealed that the filter banks signal-to-
(reconstruction)noise ratio (SNR) histograms follow a gaussian
distribution.  For PR prototype filters, such histograms have
approximately the same mean value, which is lower than those
obtained when all coefficients are correct.  On the other hand, the
histograms corresponding to NPR filter banks exhibit still lower,
and quite different, mean values.  The design method proposed
here increases the SNR mean values of the NPR filter banks, so
that the SNR obtained by PR designs can be achieved.  This task
is accomplished by minimizing an expression, developed in
Section III, that accurately predicts the histogram mean values.

The following investigations consider uniform, maximally-
decimated, M-channel, length N FIR filter banks. It is assumed
that the analog filters are implemented by discrete-time switched-
capacitor networks, so that they can be directly designed in the z-
domain [3]. Uniform, zero mean white-noise sequences, with
variance σx

2 are applied as inputs. The use of uniform sequences
does not cause any lack of generality, for the results are not based
on the probability density function type.  Ergodicity is assumed.

II. FILTER BANK ERRORS

Letting ( )�hk ⋅  and ( )hk ⋅  represent, respectively, the effective and
the correct impulse responses of the k-th analog analysis filter,
k M= −0 1, ,� , then
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where ( )∆hk ⋅  is the associated realization error sequence.
Similarly, in the case of analog synthesis filters,
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for k M= −0 1, ,� .  The error factors εn hk,  and εn fk,  are zero

mean random numbers with variances σε,h
2  and σε, f

2 ,

respectively.  They are also assumed independent, whether taken
from the same or different filters.  After the filter bank circuit is
built and has its operation conditions fixed, the error factors are
no longer unpredictable, allowing the z-transform to be applied to
Eqs. (1) and (2):

( ) ( ) ( )� ,H z H z H zk k k= + ∆ (3)

( ) ( ) ( )� .F z F z F zk k k= + ∆ (4)

The filter bank effective transfer function [1] can be written as:
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and MjeW π2−= .  In Eq. (5), ( ) ( ) ( )�A z A z A z0 0 0= + ∆  is the

actual filter bank transfer function, while ( ) ( ) ( )�A z A z A zr r r= + ∆ ,
r M= −1 1, ,� , are the aliasing functions.  The PR design
methods do suppress ( )A zr .  However, such functions will be
maintained in the following analysis in order to encompass the
NPR methods.  Substituting Eqs. (6)-(9) in Eq. (5) yields
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Applying the inverse z-transform to Eqs. (10) and (11) one
obtains the sequences
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for 1,,0 −= Mr � .  Both ( )ar ⋅  and ( )∆ar ⋅  are of length
C N= −2 1.  Using Eqs. (5), (12) and (13), the filter bank output
in the presence of realization errors can be written in the z and
time domains, respectively, as
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Eq. (15) shows that the non-suppression of the realization errors
leads to amplitude and phase distortions, besides those due to

( )A z0 , which cause reconstruction errors.  Moreover, there is

aliasing because( )X zWr  is transmitted to the output by the non-

zero terms ( )zAr  and ( )zAr∆ , r M= −1 1, ,� .  As a result, the

factors ej rn M2π  appear in the time domain, not only turning the

output sequence complex, but also forcing the system to be
cyclostationary.  This last property is taken into account by
decomposing ( )⋅x̂  as
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" = −0 1, ,� M , so that
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Similar decomposition can be applied to the input sequence ( )x ⋅ :
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III. SIGNAL-TO-NOISE RATIO

A. Total noise power

The filter bank total noise vector defined by

( ) ( ) ( ),1ˆ +−−= Nnnn xxr (19)

accumulates reconstruction and realization errors. Using
Eqs. (12) and (13), it follows that the variance matrix of ( )r ⋅  can
be written as
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where I  is the identity matrix, and x and ε represent, respectively,
the filter bank input and the realization error stochastic processes.
Due to lack of space, Eq. (20) is not demonstrated here.

In order to express Eq. (20) as a function of the filters
coefficients, it is noted that the summations in r obey to:
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where  ⋅  denotes the largest integer less than or equal to its
argument.  Since Eq. (21) is a diagonal matrix with identical
diagonal elements, the components ( )⋅

"
x̂ , 1,,1 −= M�" , of

the output vector, ( )nx̂ , have identical noise power. Defining
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then Eq. (20) can be rewritten as:

( ) ( ) ( )( )[

( ) ( ) ( ) ( )( ) ,

1121,

1

0

22

22






∆+∆++

−∆+−−=

∑
−

=

C

n

xr

nnnn

NN

αααα

αασεσ εεx

(25)

which determines the filter bank total noise power for a given set
of error factors.  Considering the whole process ε, it follows that

( )σr
2 x ,ε  becomes a random variable with mean value

( ){ } 22 ,E xr σσ Γ=εx                                 (26)
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In the absence of realization errors ( )( )∆α n n= ∀0, , Eq. (26)
reduces to
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which gives noise power due to the reconstruction error alone.

B. Signal-to-noise ratio mean value

Assuming that the variance of ( )σr
2 x ,ε  is much smaller than its

mean value, which is a realistic assumption, and using Eq. (26),
the mean value of the filter bank SNR can be expressed as [8]:
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whose value depends on whether the filters are analog or digital.
Let us assume initially that the analysis and synthesis filters are
analog. Since the error factors εn hk,  and εn fk,  in Eqs. (1) and (2)

are zero mean random variables, then from Eqs. (23) and (24):
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With ( )⋅α  given by Eq. (24) and by virtue of Eqs. (30), it follows
from Eq. (29) that:
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represent, respectively, the contributions of the realization and
reconstruction errors to the filter bank SNR.

For analog analysis filters and digital synthesis filters, which is
the case in A/D conversion applications [3], [4], [6], we have

02
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IV. FILTER BANK DESIGN

This section describes an optimization method for improving the
SNR of cosine-modulated NPR hybrid filter banks.  Assuming
that ( )p ⋅  is the length N impulse response of a prototype filter

( )zP , the remaining filters of an M band NPR bank are
determined by [1]:
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for 10 −≤≤ Mk  and 10 −≤≤ Nn .

In order to obtain the optimized prototype filter that maximizes
the filter bank SNR, the energy in the stopband of the NPR
prototype filter is reduced by minimizing
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j
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where Ms π=ω  is the stopband edge frequency of the NPR

prototype filter.  Including the terms corresponding to the
energies of the realization error (Eq. 33a) and reconstruction
error (Eq. 33b), the cost function becomes

,321 recrealstotal EEEE ααα ++= (38)

where 1α , 2α  and 3α  are fixed weights that control each term

during the optimization process.



The SNR results for different numbers of channels, M, and
prototype filter lengths, N, are shown in Table 1 for the NPR
prototype filters obtained from [9] (old) and for the optimized
filters obtained by minimizing Eq. (38) (new).  These examples
are for A/D conversion.  The analysis filter coefficients are
analog, subject to independent gaussian errors with 01.0, =σε h

and the synthesis filter coefficients are digital, and do not suffer
from errors, for they are represented in floating-point.
Comparisons between the SNR values show improvement in the
system performance with the new NPR design in the presence of
analysis realization errors, therefore confirming the validity of
the proposed method.  Fig. 1 displays the magnitude of the
Fourier transform of the sequence formed by taking the
difference between the filter bank input and output, using the
new 4-channel, 16-coefficient NPR prototype filter.  The
coefficients and main frequency characteristics of this filter are
given in Tables 2 and 3, respectively.
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Fig. 1 – New 4 channel NPR filter reconstruction error.

Table 1 - Optimization results for NPR M channel filter banks.
NPR - old NPR - new

M N recE

(10-4)
realE

(10-4)
SNR
(dB)

recE

(10-9)
realE

(10-4)
SNR
(dB)

4 16 3.83 0.99 33.15 0.62 1.00 40.00
4 32 0.17 1.00 39.30 76.56 1.00 39.99
8 32 10.34 1.00 29.45 0.021 1.00 40.00
16 64 24.85 1.02 25.87 2.35 0.99 40.00

Table 2 – New 4 channel NPR filter impulse response.
( )p 0 -1.354611903524573e-002
( )p 1 -6.091918578065508e-003
( )p 2 7.922632493321435e-003
( )p 3 3.227002151444836e-002
( )p 4 6.708255743790741e-002
( )p 5 1.075398756215563e-001
( )p 6 1.399473570044523e-001
( )p 7 1.597658026608897e-001
( )p 8 1.597658026608897e-001
( )p 9 1.399473570044523e-001
( )p 10 1.075398756215563e-001
( )p 11 6.708255743790741e-002
( )p 12 3.227002151444836e-002
( )p 13 7.922632493321435e-003
( )p 14 -6.091918578065508e-003
( )p 15 -1.354611903524573e-002

Table 3 – New 4 channel NPR frequency characteristics.

Filter
3 dB frequency

(norm.)
Transition band
width (norm.)

Bandstop
attenuation (dB)

new π/4 7.65e-002 -30.5
old π/4 7.33e-002 -29.0

In the presence of realization errors, it has been verified that

realE  prevails over recE  (Eqs. (33)), determining the SNR value

given by Eq. (32).  Besides, for PR methods, it can be found that

( ) 1
1

0
≅ξ∑ −

=

C

n
n , and, in such cases, it is possible to approximate

Eq. (32) and (34), in dB, respectively by:

( ) ( ),log10 2
,

2
,10 fhAA dBSNR εε σ+σ−≅ (39)

( ) ( ).log10 2
,10 hAD dBSNR εσ−≅ (40)

In fact, for the A/D (floating-point) case, where 01.0, =σε h  and

0, =σε f , Eq. (40) gives about 40 dB, which is the maximum

possible value in this situation.  Therefore, the results presented
in Table 1 show that the proposed method increases the SNR of
NPR filter banks to its maximum achievable value by
minimizing, mainly, the realization error noise energy.

VI. CONCLUSIONS

A new analytical expression for the signal-to-noise ratio of
hybrid near-perfect reconstruction filter banks subject to
realization errors was derived. An optimization procedure was
then described to improve the performance of such filter banks,
by minimizing reconstruction and realization error energies. An
illustrative design example was shown to give support to the
theory. The proposed approach can be applied to the design of
analog-digital, digital-analog and analog-analog filter banks.
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