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ABSTRACT

This paper investigates the performance of reduced rank space-
time processors in the context of anti-jam mitigation for an M-
Code based GPS receiver utilizing a circular array. Several adap-
tive processing algorithms are discussed utilizing power minimiza-
tion techniques. It is assumed an INS (Inertial Navigation System)
or direction finding algorithm is incorporated into the receiver for
satellite look direction based algorithms. Reduced rank space-time
processing is accomplished via the innovative Multistage Wiener
filter (MSWF). It is demonstrated that the MSWF does not require
matrix inversion, thereby reducing computational complexity. The
processing algorithms are compared in terms of available degrees
of freedom and distortion of the GPS cross correlation function
(CCF).

1. INTRODUCTION

A power minimization processing filter prior to the GPS correla-
tors is one of several methods for suppressing jammers. This fil-
ter simply minimizes the output power of the preprocessor (since
the satellite signals are well below the noise floor) while hav-
ing the added advantage not being integrated with the GPS re-
ceiver. However, this type of algorithm does not account for DOA
(direction-of-arrival) information associated with the satellites in
the FOV (field-of-view). A substantial improvement in SINR can
be achieved by accounting for satellite direction information with
power minimization, but an increase in computational complexity
is often incurred for both space and space-time processing. Space-
time processing is preferred since the available degrees of freedom
to mitigate narrowband jammers increases dramatically relative
to space-only processing. However, space-time processing oper-
ates in a larger dimension, therefore increasing the dimensionality
of the space-time weight vector. This higher dimensionality can
translate into a large computational burden and slow convergence.
To increase convergence and lower computational complexity, this
paper investigates reduced dimension space-time power minimiza-
tion processor algorithms based on the MSWF [1]. The simula-
tions presented herein reveal the rapid convergence of the MSWF
implementation of the power minimization based space-time pro-
cessors. Furthermore, an analysis of their computational complex-
ity will show their efficacy in adapting to environmental dynamics
characterizing a high performance fighter aircraft while minimiz-
ing signal processing resources.

2. ADAPTIVE SPACE-TIME POWER MINIMIZATION
PROCESSING

Let’s definexn as anM � 1 vector containing samples across the
M antennas at then-th time instant sampled at a rate above or
equal to the Nyquist rate for the M-code.

xn = [x1(n); x2(n); :::; xM(n)]T (1)

TheMN � 1 space-time snapshot,~x(n), is formed from concate-
natingxn, n = 1; 2; :::; N � 1, as

~x(n) = [x1;x2; :::;xN�1] (2)

where ; implies concatenating the vectors into a single column.
Similarly, theM tap weights across theM antennas at then-th
time instant are placed as the components of anM � 1 vector as

hn = [h1(n); h2(n); :::; hM (n)]T : (3)

and the entire set of space-time weights is formed from a concate-
nation ofhn, n = 1; :::; N � 1, as

h = [h1;h2; :::;hN�1]: (4)

The output power of the space-time preprocessor is

EfjhH ~x(n)j2g = h
H
Kh; where:K = Ef~x(n)~xH(n)g: (5)

2.1. Per Satellite Power Minimization Space-Time Processor

The Space-Time Power Minimization (ST-PM) based preprocessor
utilizing the space-time reference approach does NOT yield max-
imal SINR for any GPS satellite, but rather attempts to “pass” all
GPS satellite signals in the FOV as undistorted as possible while
canceling the interference[3]. The shortcoming of this type of ST-
PM based preprocessor is that it does not attempt to minimize
distortion to any one GPS satellite signal. It is proposed that an
estimate of the DOA vector for a given GPS satellite,a(r̂gpsk ),
obtained via INS data or DOA algorithm, be used to maximize
SINR for a given GPS satellite in the FOV. The array manifold,
a(r̂gpsk ), denotes the relative phases across the circular array of
the kth satellite in the field of view wherêrgpsk is a unit vector
defined as

r̂
gps
k = [cos�ksin�k; sin�ksin�k; cos�k]

T (6)

pointing from the origin of the array towards thekth GPS satellite.
Note that a different ST-PM preprocessor is required for each of



theK GPS satellites in the FOV. Efficient implementation of the
K parallel constrained ST-PM preprocessors using the MSWF is
discussed in Section 3. Since a different space-time weight vector
is formed for each satellite, this is denoted by placing a superscript
k on the weight vectorh.

For thek-th satellite, constrain the inner product betweenâk

and theM �1 vector of weights associated with thesametime in-
stant but spanning theM antennas,~h(k)

n = [h
(k)
1 (n); h

(k)
2 (n); :::;

h
(k)
M (n)]T to be unity for each of theN “tap times” comprising

the space-time adaptive filter structure. This leads to power mini-
mization withN linear constraints:

Minimize
h
(k) h

(k)H
Kh

(k) (7)

Subject to: a(r̂gpsk )Hh(k)
n = 1; n = 0; 1; :::; N � 1

Accommodating theN linear constraints consumesN out ofMN
degrees of freedom. One can rewrite the multiple constrained
problem of (7) as

Minimize
h
(k) h

(k)H
Kh

(k) (8)

subject to: AH
k h

(k) = �

whereAk = I 
 a(r̂gpsk ) and� is aN � 1 vector containing all
ones, and
 is denoted as the Kronecker product operator. The
solution to (8) using Lagrange multipliers yields

h
(k) = K

�1
Ak

h
A
H
k K

�1
Ak

i
�1

� (9)

If one rewritesh(k) in terms of an orthogonal decomposition then

h
(k) = Akc�Bkh

(k)
r (10)

whereBk (MN�MN�1) is chosen suchBH
k Ak = 0. One can

solve forc (that guarantees the desired constraint) by multiplying
both sides of (10) withAH

k yieldingc =
�
A
H
k Ak

�
�1
�. Let (10)

equal (9) and solve forh(k)
r to get

h
(k) = Akc�Bk

h
B
H
k KBk

i
�1

B
H
k KAkc (11)

One can show the important fact thatAkc = ��
a(r̂gpsk ) where
� is an arbitrary scaling factor. This implies that our multiple con-
straint problem for each satellite can be written in terms of a single
space-time weight vector. Selecting the� to be a vector of ones
induces distortion on the GPS signal. However, one can minimize
GPS signal distortion and force each filter per satellite to have a
known fixed group delay by letting� = Æn where theN�1 vec-
tor Æn = [0; 1; ::; 0; ::; 0]T where the 1 is located according to the
n� th time instant across antennas that yields a linear-phase filter.
Simulations involving this technique will be discussed in Section
4.

2.2. Joint Satellite Power Minimization Space-Time Processor

If one desires to reduce computational complexity by not utilizing
a space-time processor for each satellite, one can try to find one set
of space-time weights for all satellites in the FOV based on DOA
information. This one set of weights will, naturally, not maximize
the SINR per satellite but instead maximize the overall SINR of
the combined satellites in the FOV. Let us define our space-time

constraint�
 a(r̂gpsk ) = ak. Then the joint satellite power mini-
mization problem can be stated as

Minimize
h

h
H
Kh (12)

subject to: hHak = 1; k = 1; :::; K

This type of power minimization leads to minimization of the beam-
former output power subject to a unity gain constraint in the re-
spective directions of each GPS satellite in the FOV. This allows
suppression of interference from all other directions. Applying the
method of Lagrange Multipliers to (12) yields the solution

h = K
�1
Agps[A

H
gpsK

�1
Agps]

�1
1K (13)

where1K is aK � 1 vector containing all ones andAgps is an
MN � K matrix whereAgps = [a1; a2; :::; aK ]. It is assumed
that the DOA information of the GPS satellites in the FOV is ob-
tained for necessary operation of the algorithm. Again, this infor-
mation can be gathered from the INS or DOA algorithm.

3. MSWF ALGORITHM FOR SPACE-TIME
PROCESSING

The MSWF algorithm is summarized below. The interpretation
of the “desired” signald0(n) varies amongst the different type of
space-time processors.

� Initialization: d0(n) and~x0(n) = ~x(n)

� Forward Recursion:Fork = 1; 2; :::; D:

hk = Efd�k�1(n)~xk�1(n)g=jjEfd
�

k�1(n)~xk�1(n)gjj

dk(n) = h
H
k ~xk�1(n)

~xk(n) = ~xk�1(n)� hkdk(n)

� Backward Recursion:Fork = D;D�1; :::; 1, with eD(n) =
dD(n):

wk = Efd�k�1(n)ek(n)g=Efjek(n)j
2g

ek�1(n) = dk�1(n)� w�kek(n)

It follows that the matrixTD = [h1 h2 ::: hD] contains orthonor-
mal columns and that the reduced dimensionD � D correlation
matrixTH

DKTD is tri-diagonal [1].
A low complexity implementation of the MSWF is depicted

in Figure 1 for multiple space-time weight constraints. From our
previous analysis,S = Agps or S = Ak. For the single con-
straint case, replaceS with � 
 a(r̂gpsk ) = ak and replacec with
the scalar1. This figure clearly displays the multiple stages and
modular structure highlighted by the dashed box. Operating in a
D-dimensional space is tantamount to “terminating” all stages be-
yond theD-th stage. It is important to notice that all operations
of the MSWF involve complex vector-vector products, not com-
plex matrix-vector products (for the single space-time weight con-
straint), thereby implying computational complexityO(MND)
per snapshot. This particular implementation of the MSWF was
first discovered by Ricks and Goldstein [4]. To reduce implemen-
tation complexity, they exploited the structure of the full dimen-
sion orthogonal projection matrix. Compared to other space-time



or space-frequency algorithms having operations ofO(MN)3 or
O(QM)3J (where Q=processing order and J=number of bins) re-
spectively, the MSWF is by far more computationally efficient.
The impressive capabilities of the MSWF are demonstrated in the
next section for the case of space-time power minimization based
processing.
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Fig. 1. Efficient implementation of the multiple constrained
MSWF based on Correlations Subtractive Structure(CSS).

4. SIMULATIONS

A seven element circular array with isotropic gain and no mu-
tual coupling is used to illustrate the effectiveness of using MSWF
based space-time power minimization algorithms to effectively can-
cel both wideband and narrowband jammers. It is illustrated that
a reduction in computational complexity and sample support can
be achieved while operating in a reduced-rank mode. Consider
the caseM = N = 7. These definitions imply anM = 7 element
equi-spaced circular array withN = 7 taps at each antenna.

The space-time processors are constrained utilizing the space-
time reference constraint,� = 1N , � = Æn, and multiple con-
strained� = Æn with respect to four GPS satellite DOA vectors.
Each of these constrained processors are respectively labeled as
Delta Con.,Single Con.(all ones), Single Con.(delta), and Multiple
Con.(delta) in the figures. Table 1 summarizes the values used for
each space-time processor. The power levels of all thirteen jam-
mers were chosen in such a way to yield a J/S of 88 dB when all
jammers are active (Scenario 2). Since we are assuming a30MHz
receiver bandwidth at each antenna, the noise floor was determined
to be approximately -129 dBW after filtering at each antenna. The
satellite locations where chosen assuming position from Billerica,
MA at some arbitrary time. All simulations assume Satellite 1 as
having the desired look direction.

Reduced Dimension Performance. Figure 2 illustrate the SINR
of the space-time power minimization processing algorithms be-
fore decorrelation based on the MSWF as a function of subspace
dimension. The maximum achievable ideal SINR assumes no in-
terference with prior knowledge of the DOA associated with the
desired satellite in the FOV. Scenario 1 (1 wideband(WB) and 1
narrowband(NB) jammer) provided a non-saturated interfering en-
vironment in terms of not using all the available degrees of free-
dom associated with the filter to suppress the jammers. The sin-
gle DOA constrained space-time processing filter outperformed
the other processors as expected for scenario 1, but Figure 2 il-
lustrates that in a saturated jamming environment where all spatial

degrees of freedom have been used, the single DOA constraint and
space-time reference based algorithm (Delta Con.) yield similar
performances. In the saturated jammer environment notice that
the algorithms are able to operate at rank 22 (out of 49). Both
scenarios illustrate a reduction in computational complexity using
the MSWF since the processor can operate in a reduced dimension
rather than the full dimension by exploiting the filter structure of
Figure 1.

Convergence Performance/Low Sample Support/Complexity.
The previous simulations associated with the power minimization
algorithms gave insight into what rank would yield a desired ideal
SINR. It is necessary to consider the effects of sample support and
understand the tradeoff between sample support needed and de-
sired SINR for a specific algorithm. In a non-saturated jammer
environment at a lower rank versus the full rank solution, Figure
3 illustrates that a higher SINR can actually be achieved. For sce-
nario 1, Figure 4 illustrates that all MSWF based filtering only
requires 50 samples at rank 5 to yield the best SINR for each par-
ticular power minimization algorithm. This implies that in order
to completely null the jammers in Scenario 1 the MSWF would
needO(49 � 5 � 50) operations whereMN = 49,D = 5, and
samples = 50.

Cross Correlation Function (CCF) Distortion. It was discussed
previously that a proper choice of� when forming the space-time
weight vector can ensure that the distortion of the GPS signal
will be minimized with a known fixed group delay, i.e. linear
phase filter. It can be shown that if the effective filter response
for the space-time processor has a linear phase then the CCF as-
sociated with a GPS signal passed through such a filter will have
minimal distortion. Figure 5 illustrates the effects of using the
different space-time weight vectors on the ideal CCF. The ideal
CCF was generated based on a formulation from [2]. Notice that
choosing the space-time weight vector such that� = Æn (Single
Con.(delta)) yielded minimal distortion to the ideal CCF.

Table 1. Simulation Parameters for Circular Array
Code Type SNR (�; �)

Satellite 1,2,3&4 -157 dBW (51Æ; 35Æ) (53Æ; 75Æ)
(247Æ; 27Æ) (307Æ; 39Æ)

Jammer Type SNR (�; �)
WB Jammers -80 dBW (15Æ; 80Æ) (45Æ; 80Æ)

(90Æ; 80Æ) (135Æ; 80Æ)
(180Æ; 80Æ)(225Æ; 80Æ)
(270Æ; 80Æ)(315Æ; 80Æ)

Jammer Type SNR (�; �)
NB Jammers -80 dBW (5Æ; 80Æ) (240Æ; 80Æ)

(120Æ; 80Æ) (216Æ; 80Æ)
(288Æ; 80Æ)

5. CONCLUSION

The MSWF based space-time processor was shown to exhibit ex-
ceptional nulling performance for both wideband and narrowband
jammers at low rank while maintaining reduced complexity. The
reduced dimension subspace selected by the MSWF exhibits rapid
convergence in SINR implying adaptive null tracking in a dynamic
jamming environment. Distortion of the ideal CCF using a prop-
erly constrained power minimization algorithm was shown to be
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Fig. 2. Reduced Rank Performance of Power Minimization Algo-
rithms for Scenario 2.
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Fig. 3. Reduced Rank Performance of Power Minimization Algo-
rithms for Scenario 1 with 500 Samples.
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Fig. 4. Reduced Rank Performance of Power Minimization Algo-
rithms for Scenario 1 with varying Sample Support .
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