
ADAPTIVE DELAY CONCEALMENT FOR INTERNET VOICE APPLICATIONS WITH
PACKET-BASED TIME-SCALE MODIFICATION

Fang Liu, JongWon Kim, C.-C. Jay Kuo

Integrated Media Systems Center and Dept. of Electrical Engineering - Systems
University of Southern California, Los Angeles, CA 90089-2564

ABSTRACT

Much effort has been involved in packet-level error con-
trol and delay jitter concealment for Internet audio appli-
cations. A packet-based time-scale modification scheme
for speech signals is developed to provide adaptive delay
concealment at the receiver for an Internet voice session in
this work. The adaptive playout algorithm strives to min-
imize packet droppings for late-arrival packets and prema-
ture packets while maintaining the end-to-end delay con-
straint. By stretching the length of voice segments and in-
corporating silence intervals, the proposed algorithm is able
to accommodate fluctuating delays including delay spikes
quickly. It is verified by experiments that the proposed adap-
tive playout algorithm improves the received speech intelli-
gence under a tightly bounded average playout delay.

1. INTRODUCTION

Research on Internet audio streaming has focused on er-
ror control and delay concealment in the presence of delay
jitter and packet loss recently [1, 2, 4, 6]. Given a fixed
receiver buffer and a tight end-to-end delay bound, some
packets sent to the receiver may still be discarded since the
receiver buffer is adjusted to accommodate the average end-
to-end delay. For example, late arrival packets, which ar-
rive after its scheduled playout time, are discarded. Some-
times, a packet arrives too early for its scheduled playout
time. The premature packet has to be discarded since there
is no place to hold it in the buffer. A delay spike happens
when several consecutive packets arrive at the receiver al-
most simultaneously. This happens when audio packets pile
behind a large Internet load [3]. Packet droppings at the re-
ceiver caused by network delay jitter are added to increase
the network packet loss rate, and thus result in degradation
of audio/speech playout.

To recover from network packet loss, redundant For-
ward Error Correction (FEC) packets [4] and time-domain
stretching [6] were considered before. Another approach is
to adaptively adjust the silence length between talk spurts to
reduce the jitter/loss effect [1, 2]. Most late-arriving packets
can be salvaged instead of being thrown away. The adaptive

playout based solely on the silence interval could work, if
the network is relatively stable (which means the statisti-
cal estimation based on the previous talk-spurt could hold
for the current) and the employed silence detection is effec-
tive. However, since the algorithm in [1] only uses the first
packet within a talk-spurt to adapt to the delay, it is not ef-
fective if a delay spike happens in the middle of a talk spurt.
The algorithm has to wait until the next spurt. Thus, the per-
formance result depends on audio/speech contents and the
network situation.

In this work, we extend the silence interval-based adap-
tive playout algorithm by exploiting the time-scale modi-
fication scheme. By applying a varying degree of stretch-
ing for each packet (although it is important to maintain
the stretching factor within a talk-spurt), every packet could
contribute in adapting to the network delay jitter/spike as
well as packet loss. For time-scale modification, the syn-
chronized overlap-and-add (SOLA) scheme is adopted in
our work and modified into a packet-based version. The
time-scale modification factor of each packet will be esti-
mated for each packet depending on the delay constraint,
delay statistics, and the number of late-arrival packets. This
estimated stretching is then bounded by certain upper/lower
bounds that are calculated based on speech contents. Fi-
nally, the performance of the proposed adaptive playout al-
gorithm is demonstrated via an end-to-end evaluation with
a modeled packet delay/loss behavior of the Internet.

2. PROPOSED ADAPTIVE PLAYOUT
FRAMEWORK

The proposed adaptive playout framework that employs the
fixed-interval packet-based (i.e. frame-based) speech is il-
lustrated in Fig. 1. Chunks of voice inputs are generated at
the sender for each fixed-size interval (e.g. 20ms) and then
relayed to a content analysis block, where the short-time
energy En(i) and the zero crossing rate (ZCR) Zn(i) are
calculated. With these, the sender classifies the partitioned
input speech into several categories such as silence, tran-
sient and general segments. The classification rule adopted
is as follows. If En(i) < En(i)=8 and Zn(i) < 30, this

segment is classified as the silence segment, where En(i) =

En(i� 1) + (1�
)En(i) represents a weighted average
of En(i). Note that parameter
 is introduced to give more
weight to the most recent En. If En(i)=En(i � 1) > 1:6
and En(i) > En(i) � 2, or En(i)=En(i � 1) < 1=1:6 and
En(i � 1) > En(i� 1) � 2, it is classified into a transient
segment. Otherwise, it is classified to a general segment.

Delay jitter model Internet
traffic

Packet loss
model
Random
dropper

Receiver buffer

Decode Stretch and playout

Voice
traffic

Adaptive playout
algorithm

Internet

Sender

Receiver

Content analysis Encode
Voice
input

Voice
output

Fig. 1. The proposed adaptive playout framework.

Fig. 2 shows the timings associated with packet i. Af-
ter encoding and packetization along with the content clas-
sification information, packet i is sent out to the Internet
at transmission time ti. The silence part may be taken out
from transmission. Then, a transmitted packet experiences
network delay ni, which consists of a fixed propagation de-
lay Dprop and the network queuing delay v i. It arrives at
the receiver with arrival time ai and waits for its processing
with scheduling time qi. It then goes through the processing
delay Dcalc = Ddec+DTM , which includes decoding time
Ddec and processing timeDTM for time-scale modification.
The processing delay is assumed to be constant. The end-
to-end delay for packet i is denoted by d i. The varying part
of the end-to-end delay is denoted by b i, which is the sum
of the receiver buffer delay (qi) and the network queueing
delay (vi). Finally, packet i is played out at playout time p i.
Its original playout duration (i.e. without time-scale modi-
fication) and modified playout duration (i.e. with time-scale
modification) are denoted by l (O)

i
and l(P)

i
, respectively.

Let us examine typical models for the Internet traffic.
As shown in the network traffic part of Fig. 1, we employ
the FIFO queuing model as described in [3, 4]. In this work,
we consider two categories of Internet traffic, i.e. light and
heavy Internet traffics. The light Internet traffic corresponds
to the situation given in [3] when packets almost never ac-
cumulate. In contrast, under heavy traffic, packets are piled
up and experience consecutive packet delays called the de-
lay spike. In Fig. 3, we show the delay correlation of con-
secutive packets of simulated heavy Internet traffic, where

Sender

Receiver

it

ia
ip

id

ivpropD
in

iq

ib

calcD

t

1+ip

)(P
il

1+it

)(O
il

Fig. 2. Timings associated with packet i.

the horizontal and vertical axes represent the network queu-
ing delays for packets i and i + 1, respectively. The high
correlation in delays is expected under heavy traffic, since
if ni is high, it is very likely that ni+1 is also high. But,
even if ni is low, ni+1 can still be high. However, delay jit-
ter statistics may not have strong correlation with delay loss
[1]. Thus, we use a separate random dropper to emulate the
packet loss effect of a certain percentage.

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500
phase plot 2

v(i) (ms)

v(
i+

1)
(m

s)

Fig. 3. Illustration of delay correlation of consecutive pack-
ets under heavy traffic.

3. TIME-SCALE MODIFICATION WITH
MODIFIED SOLA

Let x(n) be the original waveform and y(n) the time-scale
modified waveform with conventional SOLA (Synchronized
OverLap-and-Add). Given a fixed-interval overlap frame
size of N , the analysis segment of size Sa (Sa < N) and
the synthesis segment of size Ss (Ss < N) are determined
according to the time-scale modification factor � = Ss=Sa.
However, when applying SOLA to packetized speech, we
may need SOLA to work on a packet-by-packet basis in
some extreme cases. The packet-level SOLA leads to a de-
generated version of SOLA with Sa = 0 and also results
in more abrupt variation in time-scale modification. As a
result, the stretching factor should be more conservatively
selected (e.g. 50 � 150%) so that it does not deteriorate au-
dio quality too much. If the playout length of each packet is
N (i.e., l(O)

i
), the time-scale modification task is performed

as shown in Fig. 4.

δ0

2Kmax

N

N

2Kmax

0 δ

time-compressed
segment:

(a) Time expansion (b) Time contraction

Fig. 4. Time-scale modification with packet-based SOLA.

In SOLA, a local similarity search process is required,
and normalized cross-correlation is often calculated to de-
termine the similarity. In this work, a computationally effi-
cient measure, called the short-time average magnitude dif-
ference (SAMD), is used for local similarity search. It is
observed that SAMD just introduces a slightly higher mean
average error (MAE) than the normalized cross-correlation.

4. ADAPTIVE PLAYOUT WITH TIME-SCALE
MODIFICATION

To perform adaptive playout control, we employ a sliding-
window approach for delay estimation of a packet under the
dynamically changing network situation. This estimated de-
lay is then utilized for the playout time calculation of packet
p̂i+1. Basically, we borrow the estimation method given in
Algorithm 4 in [1] or Algorithm 2 given in [2], which is
referred to as the reference algorithm here. There are how-
ever several notation changes. For example, by considering
the involved receiver processing time Dcalc compared to the
PCM audio playback case of [1], pi in [1] actually corre-
sponds to qi in our case. Also, since the reference algorithm
concerns only the varying part of the network delay, n i and
di there correspond to vi and bi in our case, respectively.
Thus, the notations d̂i and v̂i in [1] correspond to b̂i and cvbi
here.

ia

iq

it

i

Receiver time record

Talk spurt

lastq

lastt

Delay spike

Fig. 5. Illustration of a delay spike occurring in the middle
of a talk-spurt.

The reference algorithm estimates the end-to-end delay

differently in cases of normal delay jitter (called the ‘nor-
mal’ mode) and delay spike (called the ‘spike’ mode). The
goal is to detect a delay spike as soon as possible when it
happens and traces the spike slope as shown in Fig. 5. For
each received packet, we calculate b̂i and cvbi [1] and specify
qi on the first packet of each talk-spurt, where

qi = ti + b̂i + 4cvbi: (1)

Then, for all packets within a talk-spurt, the scheduling time
follows the original inter-packet time-spacing at the trans-
mitter

qj = qi + tj � ti: (2)

Methods to determine b̂i and cvbi in the ‘normal’ mode and
the ‘spike’ mode are different. In our test, the spike detec-
tion threshold is set to 2 � j dvbi�1j+ 200.

Since the reference algorithm only uses the first packet
within a talk-spurt to adapt to the delay, it is not effective
if a delay spike happens in the middle of a talk spurt. In
contrast, by using time-scale modification, we can adapt to
the delay spike as soon as it happens. Fig. 5 illustrates the
scenario. In the reference algorithm, all packets within one
talk spurt has a constant qi� ti value that is equal to qlast�
tlast. Those packets that have ai > qi will be dropped at the
receiver. With our algorithm, the scheduling time q i will
be delayed to catch up the spike. The playout length of
spike packets are squeezed after the delay spike. That is,
after we calculate qi based on the reference algorithm, q i is
adjusted if we find that ai is higher than qi. In the ‘normal’
mode, only if ai is within the threshold range of qi, qi will be
updated. The content-based stretching bound is enforced for
this threshold. Within the ‘spike’ mode, we record q last �

tlast, where packet ’last’ is the adaptation starting point as
shown in Fig. 5. We will continuously delay the scheduling
time qi (and thus the playback time pi of packet i) until qi is
high enough to catch a spike (ai < qi). Then, we decrease
qi. If qi� ti is less than qlast� tlast, we stop decreasing qi.

The procedure to determine qi and �̂i is summarized as
follows.

1. For each packet received, we have a i = ti+Dprop+

vi and calculate b̂i and bvbi according to the reference
algorithm given in [1].

2. Calculate qi for the first packet and all other packets
of each talk-spurt as shown in Eqs. (1) and (2).

3. Update qi as explained in the previous paragraph. In
this case, it is assumed that the sender-generated con-
tent category, class(i), is transmitted to the receiver
in-band (i.e. within each packet).

4. Calculate the playout length
^

l
(P)
i

= l
(O)
i

+Æ̂i = qi+1�

qi and the target stretching factor �̂i =
^

l
(P)
i

=l
(O)
i

.

5. At scheduling time qi, if ai > qi, packet i will be
dropped. Proceed to packet i+1 and restart the algo-
rithm with i = i+ 1.

6. Based on the final playout length l
(P)
i�1, update the

playout time by pi = pi�1+ l
(P)
i�1. (In fact, the sched-

uled playout time pi = qi + Dcalc for packet i may
also be used.)

7. Decode and perform time-scale modification based
on �̂i, and l(P)

i
will be used for packet i+ 1.

8. Proceed to packet i+ 1 with the same algorithm.

5. EXPERIMENTAL RESULTS

We conducted tests on speech sequences obtained by a sam-
pling rate of 8kHz and 16 bits/sample precision. The inter-
packetization interval was 20ms (corresponding to 160 sam-
ples). Thus, l(O)

i
= 20ms. We evaluated the simulated

network delay according to the description in Section 2 for
light as well as heavy Internet traffics. We tested a speech
segment consisting of 2000 packets in total, which corre-
sponded to 40 seconds of speech. Since we could control the
delay modeling parameters to generate the delay jitter statis-
tics of our interest, the number of 2000 packets is enough
to demonstrate the result. The delay correlation plot under
heavy traffic is shown in Fig. 3. A content classification
routine has been conducted on this speech sequence accord-
ing to the description in Section 2. Thus, for packets that
are categorized as silence, they will not be transmitted. For
all other packets, we process them one by one by using the
algorithm described in Section 4.

The performance of the reference algorithm was evalu-
ated first. Then, we implement the proposed algorithm by
incorporating time-scale modification. The receiver drop-
loss percentage was simulated by varying the maximum re-
ceiver buffer size expressed in terms of time duration. The
performance comparison of the two algorithms is shown in
Fig. 6. Since playout scheduling is prediction-based, there
is still some drop-loss even when the receiver buffer is large
enough to prevent any buffer overflow. The proposed algo-
rithm results in 1:5 � 8% improvement over the reference
algorithm depending on the maximum buffer size. The av-
erage buffering delay is also compared based on maximum
buffer size. The proposed algorithm introduces around 1ms
longer delay. However, by keeping the local search region
smaller and by using the SAMD function, the latency in-
crease could be kept negligibly small. Fig. 6(a) and (b) show
the average delay and the drop loss rate for light and heavy
traffic cases, respectively.

The resulting audio quality exhibits better intelligibility
of the received voice sequence. Time-domain stretching in-
troduce audio artifacts that is within an acceptable range of

0 5 10 15 20 25
80

90

100

110

120

130

140

150

160

drop loss percentage (%)

av
er

ag
e

de
la

y
(m

s)

our algorithm
reference test

(a) Light traffic.

0 5 10 15 20 25 30 35 40
80

100

120

140

160

180

200

220

240

260

drop loss percentage (%)

av
er

ag
e

de
la

y
(m

s)

our algorithm
reference test

(b) Heavy traffic.

Fig. 6. Comparison of adaptive playout algorithms.

quality. By using classification and content-adaptive stretch-
ing, we successfully preserve the pitch and the continuity of
the original speech.

6. REFERENCES

[1] R. Ramjee, J. Kurose, D. Towsley and H. Schulzrinne, “Adaptive
playout mechanisms for packetized audio applications in wide-area
networks”, in Proc. IEEE INFOCOM, 1994.

[2] S. B. Moon, J. Kurose, and D. Towsley, “Packet audio playout de-
lay adjustment: performance bounds and algorithms”, ACM/Springer
Multimedia Systems, vol. 5, no. 1, pp. 17-28, Jan. 1998.

[3] J.-C. Bolot, “Characterizing end-to-end packet delay and loss in the
Internet”, Journal of High-Speed Networks, pp. 305-323, Dec. 1993.

[4] J.-C. Bolot and A. Vega-Carcia, “The case for FEC-based error con-
trol for packet audio in the Internet”, ACM Multimedia Systems,
1993.

[5] S. Lee, H. D. Kim, and H. S. Kim, “Variable time-scale modification
of speech using transient information”, in Proc. IEEE ICASSP, pp.
1319-22, 1997.

[6] A. Stenger, K. B. Younes, R. Reng, and B. Girod, “A new error con-
cealment technique for audio transmission with packet loss”, in Proc.
EUSIPCO, 1996.

