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ABSTRACT

We describe a novel technique of SPLICE for high-
performance robust speech recognition. It is an efficient noise
reduction and channel distortion compensation technique that
makes effective use of stereo training data. In this paper, we
present a new version of SPLICE using the minimum-mean-
square-error decision, and describe an extension by training
clusters of HMMs with SPLICE processing. Comprehensive
results using a Wall Street Journal large vocabulary
recognition task and with a wide range of noise types
demonstrate superior performance of the SPLICE technique
over that under noisy matched conditions (19% word error rate
reduction). The new technique is also shown to consistently
outperform the spectral-subtraction noise reduction technique,
and is currently being integrated into the Microsoft MiPad, a
new generation PDA prototype.

1. INTRODUCTION

Noise robustness is critical to virtualy all types of speech
recognition applications. There are two major classes of
approaches to noise robustness: the feature-domain approaches
(e.g., [1]) and model-domain ones (e.g.,[1]). Since the model-
domain approaches aim at transforming the HMM parameters so
as to match the noisy-speech dstatistics, their performance is
typically limited by that achieved under a matched noisy
condition. In our recent work [3], we showed that such a limit
can be beaten by a novel feature-domain approach where noise
reduction is performed on both training and test data and noise
adaptive training is used to cover a wide range of anticipated
noisy environments.

In [3], we described a novel noise-reduction algorithm named
SPLICE (Stereo-based Piecewise Llinear Compensation for
Environments) for the first time. SPLICE was shown to be
consistently superior to spectral subtraction, especialy for
nonstationary noises. In this paper, we will present an
improvement of SPLICE from the previous approximate-MAP
decision rule to the current minimum mean sgquare error
(MMSE) rule. We then describe an extension of SPLICE by
training clusters of HMMs using the SPLICE-processed training
data. Comprehensive results from large vocabulary speech
recognition on the WSJ task with a wide range of noise types
will be presented in this paper to demonstrate high performance
of the above newly developed techniques. In particular, we will
show highly reliable results of using vector quantization (VQ)
distortion as a metric to automatically detect the noise type and

level for test utterances. This provides a key to solving practica
problems associated with using the SPLICE agorithms in the
deployment of robust speech recognizers.

2. ASSUMPTIONS, LEARNING, AND
MMSE RULE IN SPLICE

SPLICE assumes that the noisy speech cepstral vector, vy, is
distributed according to a mixture of Gaussians. That is, it
partitions the acoustic space in terms of the noisy speech, in
contrast to some earlier algorithms (such as FCDCN [1]) that
partitioned the acoustic space in terms of the clean speech
cepstral vector X. One main advantage of this new partitioning is
that it obtains a more uniform and desirable division of the
cepstral space directly for the observable data y. In addition, the
cepstral enhancement algorithm becomes dlightly more efficient
in computation. In the current implementation, the parameters of
the mixture of Gaussians for y are determined by performing
VQ followed by training each of the means and variances in the
mixture using the training vectors classified into the
corresponding VQ codewords.

SPLICE further assumes that a clean speech cepstral vector x
and its corresponding noisy speech counterpart y are piecewise
linearly related according to

X=y+r(y) =Y+ )

wherei(y) is an index, to the correction vector r, of the mixture
component that y belongs to.

Given these assumptions, the cepstral enhancement agorithm
using the MM SE rule gives:
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The posterior probability above is computed from Bayes rule
using the trained parameters in the mixture of Gaussians for y.
This MMSE rule generalizes the previous approximate-MAP
rule in [3] by providing soft weights based on codeword
(Gaussian component in the mixture) posterior probabilities
rather than the 0-1 hard decision. (We found so far that the two
decision rules perform similarly in speech recognition
experiments.)



All the correction vectors, r, ), in Eqn. (2) are learned from

stereo recordings for both the clean and noisy speech data
Minimizing the weighted square error of

E=3 p( |y,) (X% =3 pli [y, ) (y+1;)-%) ®)
by setting a_E = o Weobtain the estimate:
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where the summation is over al frames of the stereo training
data.

3. CLUSTERING HMMsWITH SPLICE
PROCESSING

To handle different types of noise, Noise Adaptive Training
(NAT) was proposed in [3]. Like multi-style training, NAT
pools al noise data together after applying noise reduction
algorithms such as SPLICE, and trains a set of models that are
robust across a wide range of noise types and levels. NAT has
been found to work well in many cases [3]. However, when the
characteristics of noise are very different, the performance of
NAT often degrades. Therefore, we propose to use clustering
techniques to increase the resolution of models.

In [5], subword-dependent speaker clustering was used to model
spesker variation explicitly. It is different from traditional
spesker clustering as the clustering on each subword or
subphonetic unit could be different. This technique has been
applied to improve the NAT model resolution in the current
work. Since we know that the impact of noise and noise
reduction on different phonetic units will be different, subword-
dependent clustering will be able to model noise-reduced speech
more efficiently.

The procedure for training subword-dependent NAT clustered
modelsis asfollows:

1. Train a set of initial single Gaussian context-dependent
model for each noise condition (type and level).

2. For models under al noise conditions, use a bottom-up
clustering technique to merge a pair of Gaussians (in the
same senone) with a minimum likelihood loss over al the
training data; repeat until a desired number of instances of
senones is achieved.

3. Output the clustering information to a mapping table. The
table contains the information of: &) how many instances
each senone will be allocated and b) for each instance,
which noise-conditioned data will contribute to it.

4. Based on the clustering mapping table, context-dependent
Gaussian mixture models are trained.

The likelihood loss computation in the clustering step is carried
out as follows. Assume we have two Gaussians

G1=N(p,,X,) with EM counts ¢,and G2 = N(u,,Z,) with
EM counts C,, modeling the same set of data. When we merge

these two Gaussians, the new Gaussian has the following EM
count, mean, and variance:

C=C +G ©)
u = Clu'l :;CZN'Z (6)
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Thelikelihood loss over the data due to merging Gland G2is:
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(8)

For decoding with the subword-dependent clustered models, all
instances of the subword unit is treated as parallel states in the
topology. For example, with senone-dependent clustered models
in our experiments here, al instances of the same senone are
scored and the maximum likelihood is used as the score for that
senone. Experimental results using this clustering technique will
be presented in Section 4.4.

4. ROBUST SPEECH RECOGNITION
EXPERIMENTS

A series of large vocabulary speech recognition experiments are
carried out to evauate the various improved and extended
SPLICE methods discussed above. The baseline system uses a
version of the Microsoft continuous-density HMMs (Whisper)
[1][3]. The system uses 6000 tied HMM states and 20
Gaussians per state. All experiments use two-mean cepstrum
normalization. The recognition task is 5000-word vocabulary,
continuous speech recognition in the Wall Street Journal (WSJ)
database. A fixed, bigram language model is used. The training
set consists of 16,000 female sentences, and the test set of 167
female sentences. The noise added to the clean WSJ training
and test speech data is collected from a number of live locations
and sources, including restaurants, airport, lobby, noisy offices,
cafeteria conversations (babbles), coughing, keyboard typing,
water running, plane engine, plane cabinet, telephone dialing,
etc. The baseline error rate under the clean acoustic environment
i54.87%.

4.1 Automatic detection of noisetype and level

In contrast to the FCDCN method [1] where the acoustic-space
partitioning is performed for clean speech (x) via VQ, the
current SPLICE method does the partitioning for noisy speech
(y). This requires that multiple codebooks or multiple Gaussian
mixture models be trained for noisy speech corrupted by
separate types and levels of noise. If the noise type and level
can be reliably detected from the noisy data alone, then a most
appropriate VQ codebook (or a mixture model) can be used for
carrying out the SPLICE processing. This concept is similar to
that of MFCDCN described in [6].

The simplest technique for the noise detection is to use the VQ
distortion measure to score the noisy speech with unknown



noise type and level against a set of pre-trained codebooks and
to choose the noise type and level based on the minimum VQ
distortion. Such distortion values, with means and standard
deviations (in parentheses) computed over 167 test sentences,
are shown in Table 1. They encompass three types of noise
(babble, office, and white noise) with two to three different SNR
levels, and are randomly extracted from a much larger set of
similar results we have obtained. It is observed that the
minimum VQ distortion (bold figures) is very reliable for
discriminating different noise types. Within a noise type,
discrimination of noise levels is aso reasonably good. This
method of using the VQ distortion metric for automatic noise
type and level detection is much more efficient than other
methods using a multiple-state HMM for the noise statistics [7].

Note that for SPLICE-SPLICE, many sets of HMMs (one set for
each noise condition) are needed, and for NAT-SPLICE only
one set is needed.

For comparison purposes, we ao list in Table 2 the WERs for
the mismatched (column 2) and noisy matched (column 3)
conditions. While the performance obtained with SPLICE
processing only on the test data is short of that under the noisy
matched condition, the use of the HMMSs trained with SPLICE-
processed data (SPLICE-SPLICE) significantly outperforms the
latter. (In only one out of the 14 cases SPLICE-SPLICE is
slightly worse.) Table 2 also shows that the use of NAT for the
SPLICE-processed data across al 14 noise types gives very
smal performance degradation compared with the
corresponding SPLICE-SPLICE performance. This suggests
that as long as a sufficiently rich set of noisy speech data are

Code |babblebabbleOffice [Office]White [White [white|] ~ used for SPLICE processing and NAT training, the recognizer
00k|10 dB |20 dB |-10 dB| 0 dB |10 dB |15 dB |20 dB remains robust for an unknown noise and channel distortion
Test data environment.
Babble 019 | 0.29 | 1.21 | 1.11 | 142 | 1.21 | 1.11
SNR 10 dB | (0.02) | (0.03) | (0.06) | (0.06) | (0.08) | (0.11) |(0.12) Exps| Mis | Noisy | sPLICE |SPLICE. | NAT
Babble | 0.56 | 0.25 | 1.39 | 0.99 | 1.60 | 1.36 | 1.07 Noise match | match | test-only | SPLICE | SPLICE
20d8  |(0.12)](0.02)| (0.09) | (0.08)] (0.13) | (0.08) |(0.08) PhoneDial 6.99 | 6.46 6.68 6.17 6.13
Office 1.13 | 1.16 | 0.15 | 0.21 | 1.94 | 1.85 | 1.83
-10dB | (0.05) | (0.04) | (0.02) | (0.03) | (0.11) | (0.11) |(0.11) K eyboard 16.80 | 10.41 | 11.37 | 7.50 7.94
Office 111 |1 096 | 039 | 0.21 | 1.90 | 1.74 | 1.56 Coughing 2271 | 2031 | 21.34 | 12.63 | 12.78
0dB (0.05) | (0.04) | (0.04) | (0.02) | (0.14) | (0.10) |(0.09) _
White | 1.40 | 1.23 | 407 | 3.78 | 0.09 | 0.10 | 0.14 | [Fn9ine 30.17| 934 | 19.05 | 923 | 10.34
10dB |(0.26)|(0.09) | (0.19)|(0.18)| (0.07) | (0.07)|(0.07) Cafeteria 12.44 | 6.79 9.60 6.87 7.83
White 128 | 1.16 | 3.63 | 3.39 | 0.16 | 0.11 | 0.13
15dB | (0.28)|(0.09) | (0.22) | 0.21) | (0.06) | (0.07) | (0.07) L oudRoom 3106 | 964 | 1558 | 8.83 9.60
White | 1.13 | 1.06 | 3.20 | 2.97 | 042 | 0.20 | 0.14 IAirport 3131 | 1056 | 1865 | 10.01 | 11.19
20d8  |(029)](010)](0.27) | (0-20)] 0.07) | 008) [006)] o yoivant | 1222 | 7.75 | 964 | 7.16 | 7.46
Table 1. VQ distortion (including standard deviation in QuietRoom | 14.81 | 7.02 | 10.97 | 6.87 | 8.27
parentheses) for each noisy test set against a range of
VQ codebooks trained on a data set corrupted by three L obby 3250 | 10.75 | 1651 | 9.79 | 10.52
types of noise. \Water 33.79 | 10.08 | 13.70 | 8.46 9.25
42 Resultsfor in-task SPLICE . Talk 36.15 | 12.08 | 23.79 | 11.23 | 11.89
. esultstor In- rocessin
_ Processing = = o eniaiz | 650 | 643 | 6.46 | 558 | 6.24
In-task SPLICE processing refers to the scenario where it is
assumed that the noise type corrupting the test data has also  [Engine2 28.77 | 971 | 21.16 | 964 | 11.34
been contained in the training set, both subject to the same |\ eraGE
SPLICE processing. Cross-task SPLICE processing does not 2259 | 1057 | 1461 | 857 9.34

reguire such an assumption. Given the highly reliable noise type
and level detection using the VQ distortion metric already
shown, the above “in-task” assumption should not cause serious
difficultiesin practical applications of SPLICE.

In Table 2 we list word error rates (percent accuracy WER) for
14 types of natural noise (column 1) with fixed SNR of 10 dB
using three types of in-task SPLICE processing (columns 4-6):

a) SPLICE test-only --- clean speech models are used to
score SPLICE-processed test data;

b) SPLICE-SPLICE --- both training and test data are
subject to the same SPLICE processing; and

c¢) NAT-SPLICE --- multi-style training is used to train one
single set of HMMs using all in-task, SPLICE-processed
training data.

Table 2. Table 2: WERs (%) for 14 types of natural
noise (SNR= 10 dB) using various types of SPLICE
processing.

For these 14 types of noise, we aso evaluated a spectral
subtraction (SS) technique, with its implementation described in
[3], in place of SPLICE in an otherwise identica manner. For
both the SS-test-only and SS-SS scenarios, the SS are shown to
produce significantly more errors than its SPLICE counterpart.

4.3 Resultsfor cross-task SPLICE processing

Despite the practical value of the SPLICE technique provided
by the success of in-task NAT and by high accuracy of noise
type detection, a most rigorous test of the SPLICE strength is to
perform cross-task experiments where the noise types in the
training set are digoint from those used to corrupt the test set.
We designed such experiments where the first eight types of



noise in Table 2 plus five additiona types (synthetic white
noise, office computer noise, babble sound, and roller coaster
noise, which were described in [3]) were used to corrupt the
training data. The remaining six types of noise in Table 2 were
used to corrupt the test data. The WERSs in the cross-task NAT-
SPLICE experiments are listed in column 3 of Table 3, in
comparison with the corresponding in-task WERs in column 2.
Rather small performance degradation is observed going from
in-task testing to cross-task testing. This demonstrates a highly
desirable property of the SPLICE technique.

EXpS In-task Cross-task Cross-task
_ NAT- NAT- Cluster-
Noise SPLICE SPLICE SPLICE
Type

QuietRoom 8.27 8.60 9.05
L obby 10.52 11.30 10.34
Water 9.25 9.27 9.05
Talk 11.89 14.00 12.56
PhoneDial2 6.24 5.98 6.35
Engine2 11.34 12.22 10.93
AVE. 9.59 10.23 9.71

Table 3. WER comparisons for (A) in-task and cross-
task (columns 2 & 3) noise adaptive training using
SPLICE processing; and (B) one-cluster versus two-
cluster HMMs (columns 3 & 4) both with the same
SPLICE processing.

4.4 Reaults for clustered HMMs with SPLICE
processing

The experimental results for the clustering technique described
in Section 3 are shown in the last column of Table 3. The
number of clusters in the experiment is two. An average of 5%
error rate reduction is achieved going from one cluster (NAT,
column 2) to two clusters. The cross-task clustered models
provide a performance close to the in-task non-clustered
counterpart. The price paid for the 5% performance
improvement is twice of the memory storage for the HMMs and
somewhat higher cost in decoding.

5. DISCUSSION AND CONCLUSION

This paper describes our continuing work on noise robust
speech recognition for the purpose of deploying the recognizers
in realistic acoustic environments. The results reported in this
paper have demonstrated that our new feature-domain
processing technique of SPLICE has beaten the performance
limit set by the conventional wisdom --- that is, “the best option
when dealing with noisy speech would be to retrain the system
S0 as to create the matched noisy condition”. Our SPLICE
experiments have produced an average of 19% lower WER than
this “limit”. In addition to the performance gain, our SPLICE
technique is shown to be “practical” (via the use of the
automatic noise type detection and of NAT). In contrast, the

matched noisy condition retraining is unattainable in practice
because the noise properties are typically unknown in advance.

As mentioned, one key issue for practica deployment of
SPLICE is the choice of an appropriate VQ codebook for the
SPLICE processing. The results shown in Section 4.1 for
automatic noise type detection resolved this issue. While these
results were obtained at the sentence level, an on-line version
[4] showed similarly good results. Further, while all the results
reported in this paper were obtained from the noisy speech data
created by adding (natural) noise into the clean speech waves,
use of live recorded noisy speech using our MiPad device have
aso produced similarly good results (for detailed experiments
and results, seeaso [4]).

The SPLICE technique presented in this paper is expected to
revive a class of stereo-based techniques [2] for robust speech
recognition, which have been put into dormancy for many years.
Two critical innovations responsible for this are the ideas of
modeling residual noise from noise reduction and of noise
adaptive training, both of which were presented in [3] recently.

While analyzing why the SPLICE technique has been able to
consistently produce superior performance over that under the
matched noisy condition, we observed that the MFCC
distributions in the HMMs trained using the SPL1CE-processed
data are often significantly more separated across confusable
phone classes than distributions trained with (matched) noisy
data. This suggests that by explicitly forcing phonetic
discrimination in training the HMMs jointly with training the
SPLICE parameters, we can further enhance the phonetic
discriminative power of our robust recognizer and hence its
performance under adverse acoustic environments.
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