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ABSTRACT

Quadratic distributions such as time-frequency distributions
and ambiguity functions have many useful applications. In
some cases it is desirable to have a quadratic distribution
of more than two variables. Using the technique of apply-
ing operatorsto variables, general quadratic distributions of
more than two variables can be devel oped. We use thistech-
niqueto develop afour-parameter quadratic distribution that
includes variables of time, frequency, lag, and doppler. A
generd distribution isfirst devel oped and some of the math-
ematical properties are discussed. The distribution is then
applied to the improvement of an adaptive time-frequency
distribution. An example signal is shown to evaluate the
performance of the technique.

1. FOUR PARAMETER DISTRIBUTION

Quadratic distributionshave avariety of applicationstofields
such as time-frequency analysis, RADAR, and analysis of
biological signals. Most two-variable quadratic distribu-
tions involve the variables of time and frequency, or asin
the case of the ambiguity function, lag and doppler. In
some cases it would be useful to have a joint distribution
of al four of these variables. O’ Neil and Williams[1] have
developed a quartic version of a time, frequency, lag, and
doppler distribution. In order to circumvent the problem of
excessive cross-terms inherent to a quartic distribution, we
develop here a quadratic version of such a distribution.

In order to develop the four-parameter distribution, we
will first show how the ambiguity function (AF) and the
Wigner distribution (WD) [2] can be cast into a genera
guadratic form using operator notation. The concept of ap-
plying operators to the signal is central to development of
the four-parameter distribution. We utilize two operatorsin
this devel opment, the time-shift operator and the frequency-
shift operator. The time-shift operator when applied to a
signal in the time domain is defined as

(Tro8)(u) = s(u = to) @

The frequency-shift operator is defined as
(F o) (u) = /2700 s(u) )

Now examinethe AF.

(AFs)(r,0) = /s(t)s*(t — 1)e 20t qt (3)
The AF takes asignal and cross-correlatesit with atime
and frequency shifted version of the signal. The general

quadratic integral representation easily accommodates such
a cross-correl ation interpretation.

//K(UhU2)5(U1)5*(U2)du1du2 4)

Looking at a quadratic distribution as a cross-correl ation of -
ten adds valuable insight.

The AF can be cast into the form of (4). We can start

with the conceptual cross-correlation, which is the signal

correlated with a time and frequency shifted version of it-
self.

(AFs)(7,0) = (s, FyT3s) (5)
= /s(t)s*(t — 1)e 20t qt (6)

From (6), we can easily get to theform of (4) asfollows.

(AFs)(r,0) = /s(t)s*(t — 1)e 20t qt (7

= /eijz’re(“ﬁﬂs(ug + 7)s* (uz)dus (8)
= //e*j%e(“”ﬂé(m — 7 —u1)s(u1)s* (ue)duidus

Where the kernel K = e~ 72m0(w247) 5(yy — 7 — uy).
The Wigner distribution will also be an important aspect of



the four-parameter distribution and we would like to also
define it in terms of the time and frequency shift operators.
The subtle difference with the WD is the inversion of the
variable of integration.

D(ta f) = /S(t -+ %)S*(t — g)ejQﬂ'deT (9)

The WD is across-correlation of the signal with atime-
reversed, time-shifted, and frequency-modulated version of
itself. To see this more clearly, let’s make a change of vari-
ables 5 = u —t.

D(t, f) = /s(t+ %)s*(t - g)eﬂﬂfw (10)

= ej47rft/8(u)s*(_u+ Qt)e—j47rfudu (11)
WD(E, f) = &> / s(u)s* (—u + e 4y

We cross-correlate the signal with a version that is re-
versed in time, shifted in time by an amount ¢, and mod-
ulated by the complex sinusoid e =747 /*, This makes intu-
itive sense if we think about the WD. By shifting the signal
in time and reversing it, we are folding a section of the fu-
ture back onto the past, which tells us how localized in time
asignal is. Modulating by the sinusoid gives usinformation
about the frequency content at that time. The WD can aso
be represented in the form of (4) ;

(WDs)(r,0) ://K(ul,uQ)s(ul)s*(ug)duldug
(12)

= //eﬂ”f(t_Qul)&(uQ +ug —t)s(ug)s™ (uz)durdusg

:/ejQﬂ—fte_j‘lﬂ'ful (uy)s*(— u1+t)du1
=WD(, f)

Notice the form of the kernel that we used to get to the
WD. It was a ¢ function that essentially forced an integra-
tion along alinein the two dimensional u.1; — u- plane. Co-
hen’s class of time-frequency distributionsis a concise way
of describing many time-frequency distributionsin terms of
convolving a kernel with the WD. We can obtain Cohen’s
class from the general quadratic integral form with a little
bit of work as shown [3].

(Ps)(t, f) = (KpF_yT_;s,F_;T_;s) (13)

— / / Kplug,un)s(us +8)s"(us +1)  (14)

e I2mf(ur—u2) g, g

://H(u,T)s(t—i-u—l-%)s*(t—i-u—%)

eI IT qudr
= //@(u—t,v — (W s)(u,v)dudv

Where W s represents the Wigner distributions of the signal
s. The motivation for the four-parameter distribution is to
combine the operator form of the AF (5) with the operator
form of Cohen's class of time-frequency distributions (13).
We will retain the generality of the quadratic integral form
by including ayet unspecified kernel in the description. The
end goal is to develop atime-frequency distribution that has
variables of time, frequency, time lag, and frequency lag.
We start by simply combining the forms of (5) and (13);

(Ps)(t, f,7.0) =
<KpF;9F—_TF—_tF—_fS,FQFIF—_tF—_fS>
2 2 2 2 2 2 2 2

//K U1, U2)$S u1+t+2) (uz—i—t—g)

e Im0(wntuz) o —2m f(ur—u2t7) gy gy (15)

We now have a very general description of at, f, 7,6
representation. We need to impose some further structure
on the form of the kernel in order to gain some insight from
such ageneral description. If we think of the signal in two-
dimensiona time-frequency space, we are trying to obtain
the AF of a specific region that is bandlimited in both time
and frequency. We could vary the kernel with time and fre-
quency to excise aparticular t — f region. A better alterna-
tiveis to make the kernel independent of ¢, f by making it a
have |ow-pass propertiesin time and frequency and shifting
thedesired t — f portion of the signal under the kernel using
operators. Since (15) implements the desired ¢t — f shift,
we follow the latter approach. We next discuss a few basic
properties of the distribution.

2. PROPERTIES

Reduction to AF Looking at the distribution for only non-
zero lag variables,

//Kp(ul,uQ)s(ul + %)s*(uz - g)e*jﬂe(“ﬁ“?)duldl@
(16)



If we select the kernel to be adeltafunction §(uq — us),
we obtain the AF

//5 uy — UQ u1 + 2) (U;Q — 5) _jﬂe(u1+u2)dU1dUQ
(17)

= /s(u1 + %)s*(ul — %)e‘j%‘g“ldul

= AF(6,7)

Reduction to WD There is an similar relationship for
the case where we place zeros in the lag variables.

P(t£,0,0) = [ [ Kyfun,uz)stus + 05 (a4 )
e 72wt ) o duy  (18)

If wenow select thekernel to bethedeltafunction é (w1 +
us), we get the following result.

// (ur + u2)s(ug +t)s™ (uz +t)

7]27rf Uy — u2+‘r)du1du2
= / S(t 4 uy)s™ (t —uy)e 922 dyy

= /s(t + %)s*(t - %)e*j%f”dv
=WD(t f)

T — F Shift Property If thesignal isshifted intime and
frequency, there is a corresponding shift in the distribution.
If we take the signal s(¢) and shift it in time and frequency
0 that we have s(t) — s(t — t)e/?™/ot, we get the follow-
ing.

T T
://Kp(ul,U,Q)S(ul—Ft—to—ﬁ-5)8*(11,2+t—lf0—5)

e_jwe(u1+u2)e—j2ﬂf(“1—“2+f“)du1dm

:P(t_t()af_f()a’rae)

3. APPLICATION TO ADAPTIVE TFD

Time-frequency distributions that utilize data-adaptive ker-
nels have proven to be useful on a wide variety of signals
where minimal information about the signal is known a pri-
ori. Jones and Baraniuk [4] have developed an approach
that adaptively develops a kernel as the solution to an opti-
mization problem. It starts by restricting possible kernelsto
be of the form

02 + 12
202(1)

Where the function o (1)) controls the spread of the Gaus-
sian shaped kernel. The problem is more easily solved by a
changeto polar coordinates, which can be accomplished by
the change of variables 2 = 62 + 72. This gives the polar
form of the kernel

®(0,7) = exp(— ) (19)

®(r,v) = exp(—5—5-) (20)
Given the form for the kernel, the problem is to select
the kernel that is the solution to the following constrained

optimization problem.

2
maxre / /

Subject to the following constraint

27
47r2 /

The godl is to find a kernel that encompasses as much of
the signals AF plane energy as possible while satisfying the
constraint that it have the form of (20) and its volume be
limited to (22). Oncethis problemissolved, the TFD iseas-
ily computed by as the two-dimensional fourier transform.

(r, )| 2drdy (21)

1 2
(r, )| *rdrdy = R/o o2 (Y)dip <
(22)

(Ps)(t, f) = / / (0, 7)AF((0,7)e 2P0 =327 f 41
(23)

Baraniuk and Jones have also proposed a modification

to this procedure for signals with a high degree of nonsta-
tionarity [5]. If the AF in the above procedure is replaced

by the short-time AF (STAF), we obtain an optimal kernel
for each time point

F(t;0,1) =
// u—— (u— t—Es(u—f—Q) (u—t—i—%)ej‘g“du
(24)

The agorithm, dubbed adaptive optimal kernel (AOK)
then uses each computed kernel to obtain a dlice of the de-
sired TFD.



Pook(t, f) = //A(t; 0,7)Pop(t; 0, T)e_j%et_ﬂ”deOdT

(25

The four-parameter distribution can be combined with
the optimal- kernel procedure to obtain an algorithm that is
sensitive to changes of the signal in time (like AOK) but
also to changesin frequency.

The four-parameter distribution replaces the AF in the
optimal -kernel procedure and an optimal kernel is com-
puted. Thiskernel isthen used to obtainasingle (¢, f) point
of the TFD. The following test signal was used to illustrate
the potential benefits of such a procedure.

(t) = ho(t)e 2™ + hy(t)e? ™ + hy (1) ™ (26)

where ho(t) = e%5 and () = e

The next two figures show The TFD of the signal using
the AOK procedure compared to the TFD using the four-
parameter optimal-kernel procedure. The AOK procedure
has problems with such a multicomponent signal because
all of the components overlap in time. The four-parameter
version of AOK is ableto exploit the frequency separability
of the components to produce a representation with good
auto-term resolution yet with few interfering cross-terms.
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Fig. 1. AOK Representation of Test Signal
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Fig. 2. Four-Parameter/AOK of Test Signal
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