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ABSTRACT

The imaging of buried land mines continues to present
significant signal-processing challenges in the development
of inverse methods for the detection of plastic mines buried
in soil. To address this difficult problem, recent
mathematical advances in the development of the Elliptic
Systems Method are used to generate images of the buried
land mines. The proposed approach adapts earlier methods,
successfully applied in laser tomography of breast tumors
using the diffusion equation, to the present problem of land
mine imaging using the Helmholtz equation. The images
generated by the new method represent electromagnetic
properties of underground regions, providing effective
differentiation of plastic land mines from surrounding soil.
Experimental results are presented to demonstrate the new
method.

1 INTRODUCTION

The imaging of buried land mines presents significant
challenges in the development of effective signal-
processing methods for solving the inverse problem posed
by measured ground-penetrating radar returns from plastic
mines. A successful practical solution of this difficult
problem requires a significant technological advance, rather
than margina improvements. To this end, a novel signal-
processing approach is proposed where the ground-
penetrating radar system is designed to take advantage of
the latest mathematical advancesin inverse problems, rather
than working around limitations of current radar
technology[1-3]. These novel mathematical advances
enable direct characterization of the electromagnetic
properties of the soil (relative dielectric constant and
conductivity) from the radar signals.

In our previous publications, we developed a new approach
for the solution of the integro-differential formulation of the
inverse problem for the diffusion equation by using a
Galerkin-like method. This novel inverse method has been
used to solve similar chalenging problems in laser
tomography [4,5]. More recently, the authors have been

investigating adaptation of these earlier successes to
imaging underground land mines, which are characterized
by a Helmholtz equation [3].

Usually the solution of a linearized inverse problem for the
Helmholtz equation is based on the Born or Ryutov
approximation asin [7,8]. Other methods which avoid the
Born or Ryutov approximation can be divided into two
classes: iterative algorithms based on the integral
formulation of inverse problem, or optimization approaches
[see 9,10,11,12,13]. Both of these types of methods are
time consuming because of the huge conditional number of
resulting system, even for a very small number of grid
points. Thus, the convergence of these methods becomes
too slow, except when one assumes a very ssmple form for
the target (i.e., a cylindrical target in [6]) and can construct
an analytic approximation formula for the solution of the
scattering problem. In these smple cases, the number of
independent parameters in optimization procedure is very
small, but such algorithms can not accurately handle targets
of complex geometry.

In this paper we present a novel approach for the solution of
the scattering problem. In this approach, we use an integro-
differential form rather than the conventional integral form
of the resulting system requiring solution of the
overdetermined discretized system at each frequency. The
normal equation approach for the solution of such a system
leads to the solution of a large, sparse, positive-definite,
Hermitian matrix system, rather than the conventional full
and ill-conditioned matrix system. This allows us to use an
efficient preconditioned technique for the solution of this
system.

This new method provides fast and accurate solution of the
inverse problem. Both the location and electromagnetic
characteristics of targets of interest are accurately
determined. An important feature of these methods, for
practical purposes, is their rapid convergence for both the
forward and inverse problems. In the following, the
forward method is first described, followed by discussion of
new integro-differential approach for the solution of the
inverse problem. Experimental results demonstrating the
efficacy of the new method are given.



2 FORWARD METHOD

The development of new methods for solving inverse
problems frequently requires the rapid solution of the
forward problem for the Hlemholtz equation to generate test
data for evaluating the inverse methods. In earlier work,
Gryazin et al. [2] presented a novel forward method that
provides fast and accurate solution of the forward problem
for land mine detection. In this new method, the GMRES
(Generaized Minimum Residual) approach is improved by
using a carefully chosen preconditioner. This new method
overcomes computational difficulties that arise due to the
large number of grid points necessary in solving the
Helmholtz equations for the land mine problem at high
frequencies. A brief summary of the method is given
below, and further details are found in [2].

The boundary value problem is governed by the Helmholtz
equation with Sommerfeld-like boundary conditions

NZE +902(X’ Y)E =-f (X, Y, Eo)
E - jE =0
Where g(x,y) is the propagation constant as a function of

(x,y) coordinates and E is the scattered electric field. The
source is presumed to lie well inside the spatial region W
where the solution is computed. The boundary conditions
allow reducing the reflection of waves back into the region
W. The problem is then discretized using second order finite
difference equations to compute the solution on a regular
mesh of points in W. The resulting matrix describing the
system of equations has a block tridiagonal structure but is
neither positive definite nor Hermitian. Thus, most iterative
methods of solution diverge or converge too slowly for the
large number of mesh points required at high frequencies.

We address these computational difficulties using the
GMRES method with a preconditioner using Somerfield
boundary conditions at the upper and lower y-axis
boundaries and Neuman boundary conditions at the left and
right x-axis boundaries, as well as homogenious
background. This results in a fast and accurate algorithm
for computing the solution of the Helmholtz equation using
fast transform algorithms for the inversion of the
preconditioner. The effect of using Sommerfeld-like
boundary conditions rather than radiation boundary
conditions at infinity is minimized by increasing the size of
Wuntil the solution well within Wis independent of the size
of W. This approach works particularly well when the
attenuation characteristics of the soil are high, leading to
low values of the electric field at the boundaries.

This system is then solved using GMRES and the
aforementioned preconditioner and boundary conditions.
Further details of this new method can be found in Gryazin
et al. [2]. The result is the perturbation in the electric field

E caused by the presence of atarget.

3 INVERSE METHOD

To solve the inverse problem, a second-generation version
of the Elliptic Systems Method (ESM) has been devel oped.
The ESM was initially proposed for inverse problems for
time-dependent diffusion PDEs (partial differential
equations), with applications to, among others, optical
medical imaging [6]. More recently, a second-generation
version of the ESM has been devel oped, where the resulting
integro-differential PDE is solved directly, rather than using
a Galerkin-like approach, as was the case in the first version
of ESM. Thus, we approximate the solution of this PDE in
its original form, rather than through its first few power
moments. The main idea behind this algorithm is to use an
integro-differential  form rather than the conventiona
integral form of the resulting equation, which expresses
inverse problem. This integro-differential form leads to the
solution of a large, sparse, positive-definite, Hermitian
matrix system, rather than the conventiona full and ill-
conditioned matrix system. This alows us to use an
efficient preconditioning technique for the solution of this
system.

The first step of this imaging algorithm is to derive and
reformulate a linearized inverse problem as a boundary
value problem for a Volterratype integro-differential
equation of the second order. The integration in this
equation is carried out with respect to frequency. The
highest value of the frequency in the available frequency
band is a quite natural regularization parameter. Therefore,
the regularization in this case represents a natural procedure
of cutting off high frequencies, which are not available
from measurements. Moreover, Volterratype integral
equations are essentially "initia value' problems and we
can use efficient "marching” numerical procedures for the
solution of such an equation. A difficulty here is that, we
don't know the initial distribution of the function at the
highest frequency. So to guarantee the uniqueness of such a
problem, we need to add a second boundary condition at
least over part of the boundary. This leads to an
overdetermined boundary-value problem for a Volterra
type integro-differential equation of the second order. The
overdetermination is due to the presence of both Dirichlet
and Neumann boundary conditions, rather than only one on
the surface part of the boundary.

We then approximate this equation by using a second order
central finite-difference scheme for the differential part of
the operator and a ssimple trapezoidal rule for the integral
part of this equation. The resulting discretized system is
overdetermined. To solve it a each step of the marching
algorithm (viz. at each frequency), we use the normal
equations method. Because of the large computational
costs and memory requirements for the direct solution of
such prablems, iterative methods are preferred. Unlike a
discretization of the original second order problem, the
normal equation approach produces a positive definite
Hermitian system; we use the preconditioned conjugate
gradient method for the solution of this system.



However, a central issue in these approaches is the selection
of a preconditioner. In [14], Manteuffel et a. show that, to
be effective, the preconditioner for conjugate gradient
method should use the same boundary conditions as the
original operator. We have chosen to use as a
preconditioner the exact factorization of the original matrix
using the method of nested dissection, but for only a small
number of the frequencies. We have found that this
selection works well for nearby frequencies where it is an
excellent approximate inverse. In this approach we have
developed an automatic algorithm for the near optimal
choice of frequency ranges, over which we use the same
preconditioner. The number of iterations of the conjugate
gradient method is usualy less than 5 or 6 for al
frequencies from the considered interval (from .5GHz to
3GHz). Because the factorized matrix does not depend on
the solution of inverse problem, factorization could be
effectively parallelized, but this expansion of the presented
algorithm is outside the scope of this paper.

In our numerical experiments we take wet soil with 5%
moisture as a background medium. We introduce
multiplicative 10% Gaussian noise in the data a the
surface. The mathematical expectation of this noise is zero.
Figure 1 displays the original, noisy and smooth data at the
surface just above the target, as a function of frequency.
The solid, represents the "exact” value of this function
obtained through the solution of the forward problem. Stars
represent noisy data. Circles show result of the above
smoothing procedure through splines. Figures 3 and 4 show
results for the scenario illustrated in Fig. 2. The image of
Fig. 3 shows the physical model of a plastic land mine
buried in soil. The image in Fig. 4 shows the recovered
image using the presented algorithm on a forward data set
generated using preconditioned GMRES. In the figure,
varying shades of gray in the reconstructed image represent
different material characteristics (conductivity and
dielectric constant).

Numerical experiments for TNT-filled mine-like targets,
given in Fig. 4, show that locations, sizes, and real parts of
f(x,y,Eo) within targets are imaged with good accuracy.
Somewhat lower quality images of Im[f(x,y,Eo)] in recent
experiments may be improved by introduction of Newton-
like updates in order to take into account a non-linear

dependence of the function E from the perturbation term
f(x,y,Eo).
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Figure 1. The original, noisy, and smoothed data at the
surface just above the target, as afunction of frequency.
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Figure 2. Illustration of scenario under consideration with
plastic land mine target buried in the soil and incident
ground-penetrating radar signal.
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Figure 3. Mode of two plastic land mines buried in soil.
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Figure 4. Recovered image using the proposed inverse
method.



