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ABSTRACT

A system for selecting a single best view image chip
from an IR video sequence and compression of the chip
for transmission is presented. Moving object detec-
tion was done using the algorithm described in [1].
Eigenspace classification has been implemented for best
view selection. Fast algorithms for image chip com-
pression have been developed in the wavelet domain by
combining a non-iterative zerotree coding method with
2D-DPCM for both low and high frequency subbands
and compared against existing schemes.

1. INTRODUCTION

Remote surveillance of battlefields is an important com-
ponent of Future Combat Systems (FCS). Typically,
multiple infra-red(TR) sensors are placed in the field
for image acquisition from different orientations. The
moving target is detected in each frame from each sen-
sor but since the channel bandwidth available for trans-
mission is very low (300bps), all the frames cannot be
transmitted. So we develop algorithms for selecting
and compressing a single best view image of the tar-
get. The bestview selection and compression have to
be performed in real-time and on low power computing
hardware and hence have to be computationally very
simple .

The problem of moving target detection is formulated
as one of segmenting an image function using a measure
of its local singularity as proposed by Shekarforoush
in [1]. Eigenspace classification has successfully been
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used for pose detection [3] and face recognition ap-
plications [2]. We formulate the best view selection
problem as a pose matching problem in eigenspace. A
wavelet zerotree coding scheme for compression is pre-
sented in [4] but since it uses VQ, it cannot be used for
our application. [5] presents an embedded predictive
wavelet image coder(EPWIC). But again it uses arith-
metic coding which is not suitable for hardware imple-
mentation. So we have developed algorithms using the
Haar wavelet transform followed by non-iterative ze-
rotree coding[4] and 2D-DPCM for all subbands. The
computational complexity of these algorithms is only
marginally higher than simple scalar quantization (SQ)
of the entire image. The performance of the algorithms
has been analysed in terms of the bpp, PSNR and the
theoretically achievable entropy rate if we were to do
entropy coding.

2. EIGENSPACE CLASSIFICATION

An eigenspace is constructed offline using different views
(back, side and front) of the object in our case army
tanks. We work on the assumption that the side view is
the ‘best view’ since it has most of the identifying fea-
tures (See figure 1(a)). Each image chip which is above
a certain size threshold is classified in eigenspace and
the one that is closest to the side view is chosen as the
best view.

Distance Metric: The distance metric can either be
the simple Euclidean distance(ED) or the Mahalanobis
distance (MD). The latter gives better results since it
gives more weight to those directions where the noise
variance is lower.

We have developed a modified Mahalonobis distance
metric , the class normalized distance(CND). In this
case the distance (along an eigenspace direction) from
a particular class is normalized by the variance of the



training set members of that class only rather than the
global variance (eigenvalue) in that direction. This ef-
fectively suppresses intra-class variance.

3. WAVELET IMAGE COMPRESSION

The Haar wavelet has been used because of its simplic-
ity in hardware implementation. Also it is suitable for
small sized images as in our application. Four differ-
ent schemes for encoding the wavelet coefficients were
implemented and their results compared. In all cases
the LL subband was encoded using the 2D Predictive
DPCM scheme discussed below.

3.1. 2D Predictive DPCM for LL Subband En-
coding

The LL subband contains the maximum information
and thus more bits are allocated for its encoding. But
it is also the most highly correlated subband and this
fact needs to be exploited to maximize compression.
A 2D-DPCM scheme is used for encoding the LL sub-
band. The current pixel is predicted based on a linear
combination of the causal nearest neighbors. The pre-
dicted value of the pixel, Xn,n 1s obtained as

Xn,n = I(Q) = ﬁ).@ = Zkak (1)

The predictor coefficients w are calculated to minimize
the mean squared prediction error over the set of linear
estimators (LMSE) as follows[5]

w = E[X;.-QIE[QQT]™! (2)

where X, , is the pixel to be predicted, @; are the
quantities based on which the pixel would be predicted(in
this case the nearest neighbors, X,_;1, and X, n_1),
and w are the predictor coefficients. Instead of quantiz-
ing the pixel value, the error between the actual and the
predicted value (X, , — )A(nyn) is quantized, which re-
quires lesser bits since the error would be much smaller
than the original pixel value if the prediction is good.
Calculation of LMSE predictor coefficients can be done

offline using a set of similar images.

3.2. Scalar Quantization

Simple scalar quantization(SQ) of the wavelet coeffi-
cients and 2D-DPCM encoding of the LL coefficient is
done. Variable bits are allocated to the subbands based
on their variances [4].

3.3. Zerotree Coding

A modification of the zerotree coding(ZT) scheme de-
scribed in [4] is used. For computational simplicity,
the VQ is replaced by a uniform scalar quantizer with
variable bits allocated to different subbands. When a
coefficient is decided as insignificant, all its descendants
are also assumed to be insignificant. Thus only the es-
cape codes [4] for the zerotree root can be transmitted
instead of transmitting the entire zerotree. In our im-
plementation we do a run length coding of the zerotree
root map before transmission.

3.4. 2D Predictive DPCM on Wavelet Subbands

The residual correlation in the wavelet coefficients can
be exploited to design a 2D-DPCM scheme for the LH
and HL bands. The prediction for the current pixel
is obtained based on its horizontal (for LH) and ver-
tical (for HL) neighbors and the parent coefficient at
the same location. But the prediction coefficient for
the parent subband was small indicating the low cor-
relation between the subbands and hence in the final
version, we used only adjacent pixels for prediction.
The performance of this scheme is the worst because
a lot of coefficients below the zeroing threshold are ac-
tually ‘noise’ and cannot be predicted by the previous
pixel.

3.5. Combined Zerotree and DPCM coding

We propose to combine zerotree coding and the DPCM
encoding (ZT/DPCM) of wavelet coefficients to achieve
maximal compression. First a simple zerotree coding
is applied to the subbands. This is followed by DPCM
coding of the ‘non-zeroed’ coefficients. The value of a
‘zeroed’ neighbor is predicted as follows. If we predict
Cr y based on C;_q 4, which is ‘zeroed’” and the zeroing
threshold is T', we estimate C;_; , as follows

S = C:v—2,y + C:c—l,y—l

i 0 ifS=0
Coo1y=+4 —T ifS<0
+7 ifS>0

This is based on the assumption that since the next
coefficient is non-zero, the previous one would be close
to the threshold.

DPCM combined with zerotree coding works much bet-
ter because the noisy coefficients have been set to ‘zero’
and we do not try to predict their value.

3.6. Magnitude Prediction & Zerotree Coding

As discussed in [5], the correlation between the parent
and child coefficients is not too high but the variance of



the child coefficient is strongly dependent on the magni-
tude of its parent and neighboring coefficients. Hence,
the magnitude of the child coefficient(Cy ;) is predicted
based on the parent coefficient(P; , ) and nearest neigh-
bors again using DPCM on the magnitudes i.e.

|Ca | = w1 Poy| + w2] Comi | + w3l C | (3)

where the predictors w; are obtained using equation 2.

In [5], a computationally intensive algorithm based
on this magnitude prediction is used which is not suit-
able for our application. We propose a very simple
scheme in which the child coefficient is scaled by its

magnitude prediction and the scaled coefficient(Cy, , /|Ctr |)

is uniformly quantized. This i1s equivalent to adaptive
non-uniform quantization of the high frequency sub-
bands with a very low computational overhead. Since
zerotree coding has been done, it prevents blowing up
of values due to almost zero predicted magnitude.

3.7. Analysis

The aim of any compression scheme is to minimize the
mean squared error ( or maximize the PSNR) and the
entropy per pixel (entropy rate, ER). In SQ, we code
each pixel independently and hence are not exploiting
the correlation in the image and so the entropy rate is
higher.

Randomness and hence entropy rate of a pixel will
be minimized if it is coded based on all past pixels on
which it depends, i.e. (for a 1D signal)

hMXp) > h(Xn|Xn-1) > h(Xn|Xn-1,...,1)  (4)
If we assume a one step Markov model,
hMXn|Xn-1-.1) = h(Xp| Xn-1) (5)

For 2D data (assuming a Markov Random Field model),
this translates to X,, , depending only on X,,_; , and
Xn,n—1. Now the quantization MSE will be minimized
for a given bit rate if the mean square value of the
quantity to be quantized is minimum. Hence instead
of quantizing X, », in 2D Predictive DPCM, we pre-
dict a value (X,;yn) based on past values and quantize
(Xnn —X,;yn) . X,;yn is calculated as discussed in equa-
tion (1) to minimize E[X, , — X;Lyn]2 and hence the
quantization MSE over all linear estimators. Also for a
given quantization step size (fixed MSE), reduced data
variance means reduced entropy.

In zerotree coding, the PSNR is higher than simple
SQ because the zeroing error is lower than the quan-
tization error for high frequency subbands which are
coarsely quantized. Zeroing also reduces entropy since
the number of symbols to be compressed is reduced.

Class CND | ED | MD

tank2 4 10 24
tank6 15 20 35
tank9 15 19 28

btank12 30 44 56
sftank5 17 21 31

Table 1. Eigenspace Classification Results

The 2D MRF model with second order dependen-
cies (correlations) is very good for the LL subband but
is not so exact for the wavelet subbands and the predic-
tion fails completely for very small values (only noise).
This is the reason why DPCM on wavelet subbands
gives the worst PSNR values. Combined zerotree and
DPCM (ZT/DPCM) gives best results both for PSNR
and entropy rate. The noisy coefficients are zeroed
and hence not predicted and thus quantization error
remains low. Because of LMSE prediction, the entropy
is minimum and zerotree coding further reduces the
entropy rate by reducing the number of symbols to be

coded.

4. RESULTS

An eigenspace of Front, Side and Back views of var-
ious tanks is constructed and the class means for each
class are precalculated. In table 1, results for distances
from the perfect side view (‘tank2’) class are shown.
Distance of a query tank2(side view) image(figure 1(a))
is minimum while the distance of tank12(back view)
(figurel(c)) is much higher. The distances of tank6
and tank9 which are fronto-side views are somewhere
in between these two values. Hence tank2 is the ‘best
view’ in this case. As can be seen from the distance
values, there 1s maximum inter-class variation in the
CND and hence 1t is the best distance metric for our
application.

The results of compression using the four schemes
are shown in table 2. The compressed images are shown
in figure 1. Since the original images have been ob-
tained using low quality IR sensors, they are a little
blurred and hence the compressed images are also very
blurred.

In the table we have compared the total bpp, PSNR,
bpp for RLC coding and entropy rate for 3 different
images (two from IR tank data and one a visual Lena
image) with a total of 0.5bpp being allocated to vari-
ous subbands proportional to their subband variance.
Since for this low value of bpp, the highest frequency
subbands get negative bits allocated to them(which are
set to zero), the actual bpp obtained is higher than 0.5.



Image Coder Total | PSNR | Entropy Rate | RLC
(b=0.5) bpp (Non-zero) bpp
lena ZT/DPCM | 0.5066 29.40 0.0851 0.2286
A 0.5066 29.30 0.1542 0.2286
SQ 0.7947 13.07 0.3156
DPCM 0.7947 25.34 0.1508
tank2 ZT/DPCM | 0.5628 31.73 0.0920 0.2757
A 0.5628 31.61 0.2112 0.2757
tank12 | ZT/DPCM | 0.5232 31.75 0.0880 0.2649
A 0.5232 31.65 0.2045 0.2649

Table 2.

The bpp, PSNR[10log;,255?/M SE] and entropy rate for 3 sample images using Zerotree cod-

ing(ZT),Zerotree & DPCM (ZT/DPCM), Scalar Quantization(SQ) & only DPCM (DPCM) coding

T
W
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Fig. 1. (a) Tank2(Side view) Image (b) Tank2 compressed by ZT/DPCM (c) Tank12(Back view) (d) Tank12

compressed by ZT/DPCM

As can be seen from the table, the PSNR for ZT
coding is higher and the entropy rate (ER) lower than
that of simple SQ. DPCM on wavelet coefficients gives
the worst PSNR while ZT/DPCM is best both in terms
of PSNR and ER. The PSNR value for ZT/DPCM is
only marginally higher than the rest because DPCM
coding is done only for subbands with more than 2
bpp allocated and at low bit rates this happens only
for a few subbands. Also, as can be seen from the
value of RLC bpp, almost half the bits are used up
in encoding the zerotree information. More efficient
binary encoding schemes can be employed to reduce
this value and this could considerably improve the bpp.
The magnitude prediction scheme has been tested on
individual subbands and a significant reduction in MSE
has been observed but results for the entire image have
not been obtained as yet.

5. CONCLUSIONS

A best view of a detected target chip in an IR se-
quence is selected for transmission using classification
in eigenspace. A new scheme combining non-iterative
zerotree coding with 2D-DPCM for LL and also for high
frequency subbands has been developed which gives
better results than simple scalar quantization both in
terms of bpp and PSNR at a marginally increased com-
putational cost. Our compression algorithms are ex-
tremely fast and the results can be further improved by

using some form of entropy coding (since the entropy
rate of our scheme is significantly lower) and replac-
ing run length coding with more efficient binary coding
techniques. Also the zeroing thresholds can be calcu-
lated for required PSNR values Although the schemes
discussed above have been applied to IR sequences,
they are equally valid for visual images as well as can
be seen from the results on the Lena image.
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