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ABSTRACT where@ denotes an estimate.

In [3], we applied a frequency-domain method [4] that uses
non-stationary second-order statistics to investigate the BSS prob-
lem. Throughout this paper, we will refer to this general tech-
methods suffer while trying to balance the competing objectives of nique as the frequency-dqmaln, sec_ondjorder_statlstlcs (FDSOS)

method. Frequency-domain processing is motivated by the trans-

frequency-domain permutation alignment and spectral resolution.f . ¢ tationall | lutive BSS probl
We then propose a multistage multiresolution algorithm, which formation of a computationally complex convolutive probiem

aligns the un-mixing filter permutations over the whole frequency In t?)? tlme_ dtc;]mafln to multlzle ee@&e:/—&o-sglve |gst:1anttar}emés BSS
band without sacrificing spectral resolution. We perform exper- problems In the frequency domain. We showed that a fundamen-

iments in both real and simulated reverberant environments, andtal problem arises n BSS when the L_un-lelng filter ha_s many taps
obtain improved separation results that are comparable to the ideal'Jlnd theref_ore high frequency resolution: the permutation of the re-
benchmark obtained by aligning the permutations using prior knowlf:ove.rEd signals can flip ba(_:k a_nd fort_h across frequency. We refer
edge of the mixing filters. to this probleml apermutation inconsistencyThe end.result of o
such an inconsistency is that the separated speech signal quality is
significantly degraded. This fundamental problem is aggravated as
1. INTRODUCTION the length of the mixing/un-mixing filters increases. Our previous
studies [3] revealed that if the un-mixing filter matrix permutations
In many applications such as hand-free telephony, teleconferenc-are properly aligned at all frequency bins, the performance of the
ing, and speech recognition, one is interested in separating inde-source separation method is greatly improved. Several methods
pendent speech signals using multiple microphones in a reverberhave been proposed in the literature to solve this problem. Among
ant environment [1]. This task is accomplished using blind source these, the simplest and yet the most effective is a length constraint
separation (BSS), where the tebiind refers to the fact that very  on the un-mixing filter, whereby a moderate improvement in sep-
little is known about the source signals or the way they are mixed aration performance is obtained by sacrificing spectral resolution,
together. resulting in a permutation-inconsistency/spectral-resolution trade-
In this paper, we consider an acoustic scenario, where two mi- off.
crophones receive multiple filtered copies of two statistically in-
dependent speech signalgn), ¢ = 1,2. Mathematically, the
received signals can be expressed as a convolution, i.e.,

The performance of existing blind speech separation methods is
limited in a realistic reverberant environment, where a need for
long un-mixing filters is imperative. We first show how these

In this paper, we extend our study of the permutation incon-
sistency problem. We propose a multiresolution BSS approach,
which significantly reduces the permutation misalignment over the
whole frequency band while keeping the valuable spectral reso-

N - Pilh__ _ —19 1 lution intact. In this method, separation is done in stages, where
zj(n) = Z Z jip)sin—p), j=1, @ short un-mixing filters are used to align the permutations in the ini-
i=1 p=0 tial stages. The filter length is then increased in the later stages to

provide the desired spectral resolution. We show that significant
performance gain is obtained using only two stages. We present
implementation details of the algorithm and evaluate the perfor-
mance of the proposed method in both real and simulated rever-
berant environments and under different microphone spacings.

whereh;; (p) models theP-point impulse response from source
to microphonej. In a more compact matrix-vector notation, (1)
can be stated as

x(n) = H(n) * s(n), )

wherex(n) = [z1(n) z2(n)]7 isthe received signal vectdd (n)

is the @ x 2) mixing filter matrix, % is the convolution operator,
ands(n) = [s1(n) s2(n)]” is the source signal vector. The aim
of the BSS method is to find & (x 2) un-mixing filter W (n) of
length@ that separates the two sources up to an arbitrary filter and
permutation [2], i.e.,

2. BLIND SPEECH SEPARATION IN THE FREQUENCY
DOMAIN

The time-domain convolutive mixturg(n) in (2) can be trans-
s(n) = W(n) * x(n), 3) formed to an instantaneous mixture in the frequency domain by



computing itsT"-point short-time Fourier transform

x(w,m) = H(w)s(w,m), ()]

wherem is the block index and, ideall{f’ = 2P. For a given set
of received data(n),n = 0,..., N — 1, we obtain

T-1
x(w,m) = Z w(T)x(BTm + 7)e 32 /T (5)

7=0
forw=1,...,Tandm =0,...,N/(BT) — 1, wherew(r) isa

window function and (0 < 8 < 1) is the data overlap factor. The
covariance matriRx (w, k), assuming ergodicity of the received
data, can be estimated using

M—-1
f{x(w,k) = % x(w, Mk + m)x™ (w, Mk +m), (6)
m=0
fork =0,..., K—1,where(-)” denotes conjugate transposition.

Note that in (6), the frequency-domain data is averaged bi/et
N/(KBT), possibly overlapping, consecutive blocks to obtain the
covariance matrix at super-block indexUnder the assumption of

wherea is a normalized step size. At each iteration, we only up-
date the off-diagonal elements ¥ (w), thus retaining diagonal
elements at their initial values.

The average input signal-to-interference ratio is defined as the
ratio of the total signal power obtained via direct channels to the
total signal power received via cross channels, i.e.,

Ew 1Ez 1|H” | |si(w )|2 .
Zw:l Zj:l,j;éi Zi=1 |Hji(w)|?[s:i (w)]?

ReplacingH (w) by W (w)H(w) similarly defines the average post-
processing, or output, signal-to-interference r&i®,. The ob-
jective of the BSS methods is to obtain a high SIR improvement
given by the raticSIR, /SIR;.

SIR;: =

(12)

3. PERMUTATION-INCONSISTENCY/SPECTRAL-
RESOLUTION TRADEOFF

It is well-known that a blind estimate 8V (w) at frequencyw can
at best be obtained up to a scale and a permutation [5]. There-
fore, at each frequenay, the separated signal (w) may have
51(w) = 7s1(w) or 51(w) = 7s2(w), wherex is an arbitrary

mutually independent source signals, we seek an un-mixing filter scaling factor, and the second possibility arises from a simple in-

matrix W (w) that decorrelates the estimated source sigsidls)
ands»(n), and thus diagonalizes their covariance matrix given by
7

A, k) = W ()R (w, k)W (w).

As shown in [4], this second-order decorrelation criterion alone

does not provide enough conditions to solve ¥ (w), unless
the number of outputs is twice the number of inputs (four out-
puts for the two-input case). However, for non-stationary signals
we can write independent decorrelation equations (7)fosuf-
ficiently separated time intervals [2]. The un-mixing fildF (w)

for each frequency biw (w = 1, ..., T) that simultaneously sat-

isfies theK decorrelation equations can then be obtained using an

over-determined least-squares solution [4]

—~

K
Wi(w) =arg min 3 [[V(w, k)]l ®)
k=1

terchange of the rows of the un-mixing filter math¥ (w). Con-
sequently, the recovered source sigsiails not necessarily a con-
sistent estimate of; over all frequencies. In [4], this problem was
solved by constraining the length 8% (n) to @ < T, thereby
forcing the solution to be smooth or continuous in the frequency
domain.

Let us look at the effect of such a constraint on the perfor-
mance of the BSS method in a reverberant environment. We first

' consider a case where the direct- and cross-channel impulse re-

sponses are measured in an actual reverberant room of dimen-
sions 16.6 ft by 11.2 ft by 8.0 ft high, which contains two omni-
directional microphones and two loudspeakers placed at locations
shown in Fig. 1. Signas:(n) is the speech from a female talker
and signalsz(n) is the speech from a male talker. All the data
are recorded at 8-kHz sampling rate. For our experiments, we
use four different pairs of speech samples taken from a digital
speech database. The duration of impulse responses is 256 ms
(P = 2048 samples) and the two mixed signals are recorded

where|| - ||? is the squared Frobenius norm (sum of squares of all for 51.2 s (V. = 409600 samples). In processing the data using

elements) and the error

W (w) R (w, F) W (w)
W (w) R (w, k)W

V(w, k)
@] ©

wherediag]-] is the diagonal matrix formed by extracting the diag-

—diag

onal elements of the matrix argument. The least-squares solution

the FDSOS algorithm, we first compute the FFT as in (5) of size
T = 2048 using a Hamming window and with an overlap®f2
samples @ = 0.5). Based on our results in [3], we udé = 100
blocks to compute the covariance matrix in (6) add= 4 super
blocks to compute the mean-squared error in (8). We choose a
normalized step size af = 0.5, W(® = I, (the2 x 2 identity
matrix), and allow the algorithm to run for 100 iterations.

The average output SIR obtained using the actual room im-

to (8) can be obtained using the well-known steepest descent algo-pu|Se responses with un-mixing filters of length= 7' = 2048

rithm

WD () W“’( ) = plw)
(l)
me {Z VO @, k) }(10)
forw =1,...,T. Following [4], we use a step size of the form

«

K = P )
>kt IR (w, B2

plw) = (11)

and speech sample pair # 1 is only 1.04 dB (average inputSIR
1.37 dB). This poor performance is due to random permutations of
W (w) distributed ovefT’ frequency bins, which in turn corrupts
the separation performance. We use the length consti@irt ()

in an attempt to align the permutationsWf(w). Constraining the
length of the un-mixing filterd¥ (n) means insufficient spectral
resolution in the frequency domain. On the other hand, for values
of Q = T, the length constraint is unable to provide sufficient con-
tinuity of the un-mixing filters in the frequency domain [3]. This
permutation-inconsistency/spectral-resolution tradeoff is pictured
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Fig. 3. A pictorial representation of th&-stage multiresolution
algorithm to separate speech signalén) ands»(n).
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of @ imply varying the frequency-domain resolution ¥ (w) at

each stage, hence the name “multiresolution.” The rationale be-
hind such an approach is to allow the permutations to align them-
selves using a smaller value @f < T in the early stages of the
algorithm. Once the permutations are aligned, they tend to retain
their order even if the value af is increased. The increase in
the value of@, however, provides the desired spectral resolution,
which is lacking in the early stages.

Ablock diagram illustrating the blind separation of speech sig-
nals using the MRFD algorithm is shown in Fig. 3. The mixing
stage is followed by5 un-mixing stages, each of which attempts
to further separate the sources using an un-mixing filter with in-
creased spectral resolution. Note that the separated output signals
25! spectral misalignment from each un-mixing stage are fed as inputs to the next stage and
resolution | increases the final set of weights (after convergence) at each stage are car-
2r 1 ried over as the initial weights for the following stage. To initiate
the separation procedure, we Li@éim = I, in the first stage.

Since the un-mixing of the speech signals is carried ou$ taljf-
‘ ‘ ‘ ferent sets of weights, th®IR, for the MRFD algorithm can be
0 500 1000 1500 2000 2500 . .
Un-mixing filte size Q computed using the overall multichannel response

Fig. 1. Room geometry (coordinate units in ft).

insufficient | permutation
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T

Fig. 2. Plot of the average output SIR (average input SIR AWw) =Ws(W)Ws-1(w) - Wi(w)H(w) (13)
= 1.37 dB) versus the un-mixing filter lengi) showing the in place ofH(w) in (12)
permutation-inconsistency/spectral-resolution tradeoff. '

5. EXPERIMENTAL RESULTS

in Fig. 2, which shows the performance of the FDSOS method
for different values of un-mixing filter lengtl)). It shows that
@ = 500 provides the best compromise between the two compet-
ing objectives.

A natural question that now arises is whether we can do still
better than the length constraint in terms of enhancing the perfor-
mance of BSS via the FDSOS method. In [3], we established ideal

performance benchmark by aligning the permutation3Adfw) Using speech sample pair # 1, we perform different experi-

based on a prior knowledge of the mixing filters. In practice, this 4 - :
Kknow : ilabl hi hni : v i .~ ments using the MRFD algorithm by varying tr_\e number of stages
nowledge is not available, so this technique is really just a diag and values of). The results are enumerated in Table 1, where it

nostic tool used to determine the potential improvement that could . . -
be achieved. For the above example, permutation alignment with!S seen that the best performance is obtained for the two-stage case

_ ; with Q1 = 500 and@» = 2048. Note that the valu€), = 2048
(@ = 2048 increases thBIR, to 8.31 dB [3]. is the maximum possible length of the un-mixing filters, which

gives the best spectral resolution. More interestingly, the value
4. MULTIRESOLUTION BSS @1 = 500 coincides naturally with the finite-length constraint of

@ = 500, that resulted in maximum SIR improvement in the case
To satisfy the desired albeit conflicting requirements of permuta- of the (single-stage) FDSOS method (see Fig. 2). We can, there-
tion alignment and spectral resolution, we propose a multireso- fore, suggest that a judicious choice of the lengths of the un-mixing
lution frequency-domain (MRFD) algorithm. In this multistage filters for the two stages i®: = 500 and Q> = 2048. Let us
procedure, we use the FDSOS method with increasing values ofuse these values and apply the two-stage MRFD algorithm to the
filter length @ at each stage of the algorithm. Different values four different pairs of the speech samples mixed using the actual

Even though the MRFD idea of Fig. 3 seems to be quite simple, its
implementation raises many questions. First, one should be inter-
ested in finding an optimum value of the number of stagdbat
achieves best separation. Second, an intelligent choice should be
made for the value of) in each stage. To answer these questions
and to probe the efficacy of the proposed algorithm, we carried out
some experimental studies.



Stage 1 Stage 2 Stage 3 Stage 4 Acoustic d SIRi Stage 1 Stage 2

Q. [ SIR, | Q2 [ SIR, | @3 | SIR, | Q4 | SIR, Condition | (ft) (dB) Q | SIR, Q SIR,
(dB) (dB) (dB) (dB) (dB) (dB)

300 | 4.63 | 2048 6.91 Actual 14.5 1.37 [ 500 [ 4.72 | 2048 7.00
500 | 4.72 | 2048 | 7.00 Room 1.09 4.44 5.92
700 | 4.71 | 2048 7.00 0.85 4.06 5.65
500 | 4.72 | 1800 | 5.25 | 2048 | 5.80 0.99 5.15 6.99
500 | 4.72 | 800 | 5.63 | 1000 | 5.74 | 1500 | 5.54 Image 2 0.19 | 500 4.18 | 2048 | 6.56
Model, —0.30 5.17 9.42

p=07 —0.14 4.41 8.32

Table 1. Experimental results evaluating the average output SIR of

the multistage MRFD algorithm for different values of filter length —0.02 5.02 9.74

Qs; actual room impulse responses, speech sample pair # 1. 10 (1)2; 500 glllg 2048 ?gg

0.84 5.31 8.32

1.24 6.13 8.64

) o | Image 2 0.57 | 150 | 12.67 | 700 | 13.50

room impulse responses. The results are given in the top sectior} pjodel, 0.23 16.07 18.36

of Table 2. The second column lists the distaddm®tween micro- p=0.3 0.31 16.49 18.00

phones, which is 14.5 ftin this case. A performance improvement 0.45 17.24 20.51

in going from one stage (FDSOS method) to two stages is clearly 10 265 | 150 048 | 700 | 1058

evident. Moreover, th8IR,, (7.00 dB) for speech sample pair # 1 2.13 10.32 11.81

is close to the ideal benchmark of 8.31 dB obtained using permu- 237 12.76 18.50

tation alignment [3]. 2.60 11.42 14.26

To analyze the performance of the algorithm under varying re-

verberant conditions and microphone spacidgswe artificially Table 2. Performance of the two-stage MRFD algorithm. The

generate the room impulse responsgsusing the image method  (egyt in each line corresponds to a different speech sample pair.
of [6]. We use a room model of the same dimensions as the ac-

tual room with the two speech sources located at the same posi-

tions (see Fig.1). The microphone spacihighowever, can now

be varied. First, we use a reflection coefficiept= 0.7, and ¢ = 2 and 10 ft are shown in the bottom section of Table 2. Note
selectd = 2 and 10 ft to simulate the varying acoustic environ- that in this case most of the SIR gain is obtained at the end of

ment. Thus, we generate two different sets of impulse responsesthe first stage, although the second stage still further enhances the
one for each value of. The average reverberation time of these performance somewhat.

impulse responses is 271 ms, which is approximately the same as
that of the actual room. The two-stage £ 2) MRFD algorithm ACKNOWLEDGMENT
is applied to the simulated mixed speech signals in both cases with ) )
Q. = 500, Q> = 2048. The results for the four pairs of speech The _authorg would like to thank G. W. Elko for suggesting the
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