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ABSTRACT

The performance of existing blind speech separation methods is
limited in a realistic reverberant environment, where a need for
long un-mixing filters is imperative. We first show how these
methods suffer while trying to balance the competing objectives of
frequency-domain permutation alignment and spectral resolution.
We then propose a multistage multiresolution algorithm, which
aligns the un-mixing filter permutations over the whole frequency
band without sacrificing spectral resolution. We perform exper-
iments in both real and simulated reverberant environments, and
obtain improved separation results that are comparable to the ideal
benchmark obtained by aligning the permutations using prior knowl-
edge of the mixing filters.

1. INTRODUCTION

In many applications such as hand-free telephony, teleconferenc-
ing, and speech recognition, one is interested in separating inde-
pendent speech signals using multiple microphones in a reverber-
ant environment [1]. This task is accomplished using blind source
separation (BSS), where the termblind refers to the fact that very
little is known about the source signals or the way they are mixed
together.

In this paper, we consider an acoustic scenario, where two mi-
crophones receive multiple filtered copies of two statistically in-
dependent speech signalssi(n), i = 1; 2. Mathematically, the
received signals can be expressed as a convolution, i.e.,

xj(n) =

2X
i=1

P�1X
p=0

hji(p)si(n� p); j = 1; 2 (1)

wherehji(p) models theP -point impulse response from sourcei
to microphonej. In a more compact matrix-vector notation, (1)
can be stated as

x(n) = H(n) � s(n); (2)

wherex(n) = [x1(n) x2(n)]
T is the received signal vector,H(n)

is the (2 � 2) mixing filter matrix,� is the convolution operator,
ands(n) = [s1(n) s2(n)]

T is the source signal vector. The aim
of the BSS method is to find a (2 � 2) un-mixing filterW(n) of
lengthQ that separates the two sources up to an arbitrary filter and
permutation [2], i.e.,

bs(n) =W(n) � x(n); (3)

where b(�) denotes an estimate.

In [3], we applied a frequency-domain method [4] that uses
non-stationary second-order statistics to investigate the BSS prob-
lem. Throughout this paper, we will refer to this general tech-
nique as the frequency-domain, second-order statistics (FDSOS)
method. Frequency-domain processing is motivated by the trans-
formation of a computationally complex convolutive BSS problem
in the time domain to multiple easier-to-solve instantaneous BSS
problems in the frequency domain. We showed that a fundamen-
tal problem arises in BSS when the un-mixing filter has many taps
and therefore high frequency resolution: the permutation of the re-
covered signals can flip back and forth across frequency. We refer
to this problem aspermutation inconsistency. The end result of
such an inconsistency is that the separated speech signal quality is
significantly degraded. This fundamental problem is aggravated as
the length of the mixing/un-mixing filters increases. Our previous
studies [3] revealed that if the un-mixing filter matrix permutations
are properly aligned at all frequency bins, the performance of the
source separation method is greatly improved. Several methods
have been proposed in the literature to solve this problem. Among
these, the simplest and yet the most effective is a length constraint
on the un-mixing filter, whereby a moderate improvement in sep-
aration performance is obtained by sacrificing spectral resolution,
resulting in a permutation-inconsistency/spectral-resolution trade-
off.

In this paper, we extend our study of the permutation incon-
sistency problem. We propose a multiresolution BSS approach,
which significantly reduces the permutation misalignment over the
whole frequency band while keeping the valuable spectral reso-
lution intact. In this method, separation is done in stages, where
short un-mixing filters are used to align the permutations in the ini-
tial stages. The filter length is then increased in the later stages to
provide the desired spectral resolution. We show that significant
performance gain is obtained using only two stages. We present
implementation details of the algorithm and evaluate the perfor-
mance of the proposed method in both real and simulated rever-
berant environments and under different microphone spacings.

2. BLIND SPEECH SEPARATION IN THE FREQUENCY
DOMAIN

The time-domain convolutive mixturex(n) in (2) can be trans-
formed to an instantaneous mixture in the frequency domain by



computing itsT -point short-time Fourier transform

x(!;m) = H(!)s(!;m); (4)

wherem is the block index and, ideally,T = 2P . For a given set
of received datax(n), n = 0; : : : ; N � 1, we obtain

x(!;m) =

T�1X
�=0

w(�)x(�Tm+ �)e�j2�!�=T ; (5)

for ! = 1; : : : ; T andm = 0; : : : ; N=(�T )� 1, wherew(�) is a
window function and� (0 < � � 1) is the data overlap factor. The
covariance matrixRx(!; k), assuming ergodicity of the received
data, can be estimated using

bRx(!; k) = 1

M

M�1X
m=0

x(!;Mk +m)x
H
(!;Mk +m); (6)

for k = 0; : : : ; K�1, where(�)H denotes conjugate transposition.
Note that in (6), the frequency-domain data is averaged overM =
N=(K�T ), possibly overlapping, consecutive blocks to obtain the
covariance matrix at super-block indexk. Under the assumption of
mutually independent source signals, we seek an un-mixing filter
matrixW(!) that decorrelates the estimated source signalsbs1(n)
andbs2(n), and thus diagonalizes their covariance matrix given by

�bs(!; k) =W(!)bRx(!; k)WH
(!): (7)

As shown in [4], this second-order decorrelation criterion alone
does not provide enough conditions to solve forW(!), unless
the number of outputs is twice the number of inputs (four out-
puts for the two-input case). However, for non-stationary signals,
we can write independent decorrelation equations (7) forK suf-
ficiently separated time intervals [2]. The un-mixing filterW(!)
for each frequency bin! (! = 1; : : : ; T ) that simultaneously sat-
isfies theK decorrelation equations can then be obtained using an
over-determined least-squares solution [4]

cW(!) = arg min
W(!)

KX
k=1

kV(!; k)k2; (8)

wherek � k2 is the squared Frobenius norm (sum of squares of all
elements) and the error

V(!; k) = W(!)bRx(!; k)WH
(!)

�diag

h
W(!)bRx(!; k)WH

(!)
i
; (9)

wherediag[�] is the diagonal matrix formed by extracting the diag-
onal elements of the matrix argument. The least-squares solution
to (8) can be obtained using the well-known steepest descent algo-
rithm

W
(l+1)

(!) = W
(l)
(!)� �(!)

�
@

@W(l)H(!)

(
KX
k=1

kV
(l)
(!; k)k2

)
(10)

for ! = 1; : : : ; T . Following [4], we use a step size of the form

�(!) =
�PK

k=1
kbRx(!; k)k2 ; (11)

where� is a normalized step size. At each iteration, we only up-
date the off-diagonal elements ofW(!), thus retaining diagonal
elements at their initial values.

The average input signal-to-interference ratio is defined as the
ratio of the total signal power obtained via direct channels to the
total signal power received via cross channels, i.e.,

SIRi =

PT

!=1

P2

i=1
jHii(!)j

2
jsi(!)j

2PT

!=1

P2

j=1;j 6=i

P2

i=1
jHji(!)j2jsi(!)j2

: (12)

ReplacingH(!) byW(!)H(!) similarly defines the average post-
processing, or output, signal-to-interference ratioSIRo. The ob-
jective of the BSS methods is to obtain a high SIR improvement
given by the ratioSIRo=SIRi.

3. PERMUTATION-INCONSISTENCY/SPECTRAL-
RESOLUTION TRADEOFF

It is well-known that a blind estimate ofW(!) at frequency! can
at best be obtained up to a scale and a permutation [5]. There-
fore, at each frequency!, the separated signals1(!) may havebs1(!) = 
s1(!) or bs1(!) = 
s2(!), where
 is an arbitrary
scaling factor, and the second possibility arises from a simple in-
terchange of the rows of the un-mixing filter matrixW(!). Con-
sequently, the recovered source signalbsi is not necessarily a con-
sistent estimate ofsi over all frequencies. In [4], this problem was
solved by constraining the length ofW(n) to Q < T , thereby
forcing the solution to be smooth or continuous in the frequency
domain.

Let us look at the effect of such a constraint on the perfor-
mance of the BSS method in a reverberant environment. We first
consider a case where the direct- and cross-channel impulse re-
sponses are measured in an actual reverberant room of dimen-
sions 16.6 ft by 11.2 ft by 8.0 ft high, which contains two omni-
directional microphones and two loudspeakers placed at locations
shown in Fig. 1. Signals1(n) is the speech from a female talker
and signals2(n) is the speech from a male talker. All the data
are recorded at 8-kHz sampling rate. For our experiments, we
use four different pairs of speech samples taken from a digital
speech database. The duration of impulse responses is 256 ms
(P = 2048 samples) and the two mixed signals are recorded
for 51.2 s (N = 409600 samples). In processing the data using
the FDSOS algorithm, we first compute the FFT as in (5) of size
T = 2048 using a Hamming window and with an overlap ofT=2
samples (� = 0:5). Based on our results in [3], we useM = 100
blocks to compute the covariance matrix in (6) andK = 4 super
blocks to compute the mean-squared error in (8). We choose a
normalized step size of� = 0:5, W(0) = I2 (the2 � 2 identity
matrix), and allow the algorithm to run for 100 iterations.

The average output SIR obtained using the actual room im-
pulse responses with un-mixing filters of lengthQ = T = 2048
and speech sample pair # 1 is only 1.04 dB (average input SIR=
1.37 dB). This poor performance is due to random permutations of
W(!) distributed overT frequency bins, which in turn corrupts
the separation performance. We use the length constraint (Q < T )
in an attempt to align the permutations ofW(!). Constraining the
length of the un-mixing filtersW(n) means insufficient spectral
resolution in the frequency domain. On the other hand, for values
ofQ � T , the length constraint is unable to provide sufficient con-
tinuity of the un-mixing filters in the frequency domain [3]. This
permutation-inconsistency/spectral-resolution tradeoff is pictured
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Fig. 1. Room geometry (coordinate units in ft).
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Fig. 2. Plot of the average output SIR (average input SIR
= 1.37 dB) versus the un-mixing filter lengthQ showing the
permutation-inconsistency/spectral-resolution tradeoff.

in Fig. 2, which shows the performance of the FDSOS method
for different values of un-mixing filter lengthQ. It shows that
Q = 500 provides the best compromise between the two compet-
ing objectives.

A natural question that now arises is whether we can do still
better than the length constraint in terms of enhancing the perfor-
mance of BSS via the FDSOS method. In [3], we established ideal
performance benchmark by aligning the permutations ofW(!)
based on a prior knowledge of the mixing filters. In practice, this
knowledge is not available, so this technique is really just a diag-
nostic tool used to determine the potential improvement that could
be achieved. For the above example, permutation alignment with
Q = 2048 increases theSIRo to 8.31 dB [3].

4. MULTIRESOLUTION BSS

To satisfy the desired albeit conflicting requirements of permuta-
tion alignment and spectral resolution, we propose a multireso-
lution frequency-domain (MRFD) algorithm. In this multistage
procedure, we use the FDSOS method with increasing values of
filter lengthQ at each stage of the algorithm. Different values
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Fig. 3. A pictorial representation of theS-stage multiresolution
algorithm to separate speech signalss1(n) ands2(n).

of Q imply varying the frequency-domain resolution ofW(!) at
each stage, hence the name “multiresolution.” The rationale be-
hind such an approach is to allow the permutations to align them-
selves using a smaller value ofQ � T in the early stages of the
algorithm. Once the permutations are aligned, they tend to retain
their order even if the value ofQ is increased. The increase in
the value ofQ, however, provides the desired spectral resolution,
which is lacking in the early stages.

A block diagram illustrating the blind separation of speech sig-
nals using the MRFD algorithm is shown in Fig. 3. The mixing
stage is followed byS un-mixing stages, each of which attempts
to further separate the sources using an un-mixing filter with in-
creased spectral resolution. Note that the separated output signals
from each un-mixing stage are fed as inputs to the next stage and
the final set of weights (after convergence) at each stage are car-
ried over as the initial weights for the following stage. To initiate
the separation procedure, we useW(0)

1 = I2 in the first stage.
Since the un-mixing of the speech signals is carried out byS dif-
ferent sets of weights, theSIRo for the MRFD algorithm can be
computed using the overall multichannel response

A(!) =WS(!)WS�1(!) � � �W1(!)H(!) (13)

in place ofH(!) in (12).

5. EXPERIMENTAL RESULTS

Even though the MRFD idea of Fig. 3 seems to be quite simple, its
implementation raises many questions. First, one should be inter-
ested in finding an optimum value of the number of stagesS that
achieves best separation. Second, an intelligent choice should be
made for the value ofQ in each stage. To answer these questions
and to probe the efficacy of the proposed algorithm, we carried out
some experimental studies.

Using speech sample pair # 1, we perform different experi-
ments using the MRFD algorithm by varying the number of stages
and values ofQ. The results are enumerated in Table 1, where it
is seen that the best performance is obtained for the two-stage case
with Q1 = 500 andQ2 = 2048. Note that the valueQ2 = 2048
is the maximum possible length of the un-mixing filters, which
gives the best spectral resolution. More interestingly, the value
Q1 = 500 coincides naturally with the finite-length constraint of
Q = 500, that resulted in maximum SIR improvement in the case
of the (single-stage) FDSOS method (see Fig. 2). We can, there-
fore, suggest that a judicious choice of the lengths of the un-mixing
filters for the two stages isQ1 = 500 andQ2 = 2048. Let us
use these values and apply the two-stage MRFD algorithm to the
four different pairs of the speech samples mixed using the actual



Stage 1 Stage 2 Stage 3 Stage 4
Q1 SIRo Q2 SIRo Q3 SIRo Q4 SIRo

(dB) (dB) (dB) (dB)

300 4.63 2048 6.91
500 4.72 2048 7.00
700 4.71 2048 7.00
500 4.72 1800 5.25 2048 5.80
500 4.72 800 5.63 1000 5.74 1500 5.54

Table 1. Experimental results evaluating the average output SIR of
the multistage MRFD algorithm for different values of filter length
Qs; actual room impulse responses, speech sample pair # 1.

room impulse responses. The results are given in the top section
of Table 2. The second column lists the distanced between micro-
phones, which is 14.5 ft in this case. A performance improvement
in going from one stage (FDSOS method) to two stages is clearly
evident. Moreover, theSIRo (7.00 dB) for speech sample pair # 1
is close to the ideal benchmark of 8.31 dB obtained using permu-
tation alignment [3].

To analyze the performance of the algorithm under varying re-
verberant conditions and microphone spacingsd , we artificially
generate the room impulse responseshji using the image method
of [6]. We use a room model of the same dimensions as the ac-
tual room with the two speech sources located at the same posi-
tions (see Fig.1). The microphone spacingd, however, can now
be varied. First, we use a reflection coefficient,� = 0:7, and
selectd = 2 and 10 ft to simulate the varying acoustic environ-
ment. Thus, we generate two different sets of impulse responses,
one for each value ofd. The average reverberation time of these
impulse responses is 271 ms, which is approximately the same as
that of the actual room. The two-stage (S = 2) MRFD algorithm
is applied to the simulated mixed speech signals in both cases with
Q1 = 500, Q2 = 2048. The results for the four pairs of speech
samples are shown in the middle section of Table 2. The results for
d = 10 ft are consistent with those for the actual room. Also, we
see that reducing the microphone spacing has no significant affect
on performance.

We point out here that the particular choice ofQ1 andQ2

made above holds well only for rooms having characteristics (e.g.,
reflection coefficient, size) similar to that of the actual room. As
we will show now, the choice varies with these parameters. Recall
that our objective in the MRFD algorithm is to impart high spectral
resolution to the un-mixing filters by choosing a large value ofQ
in the later stages. Note that in all the experiments conducted so
far in this section, the reverberation time of the impulse responses
is on the order of 270 ms, corresponding to 2160 samples at the
8-kHz sampling rate. This matches well withQ2 = 2048, which
we have used in our experiments. Similarly, as a rough guide, we
may propose to choose the value ofQ2 in direct accordance with
the length of the mixing filters determined by their reverberation
times. For example in the next set of experiments, we use a room
model with a reflection coefficient� = 0:3, which corresponds
to an average reverberation time of 90 ms. We, therefore, select
Q2 = 700. OnceQ2 is selected, the value ofQ1 is set to be equal
to a multiple ofQ2. We suggest using the multiple1=4 based on
the ratioQ1=Q2 = 500=2048 derived from our experiments using
the actual room impulse responses. The simulation results for both

Acoustic d SIRi Stage 1 Stage 2
Condition (ft) (dB) Q SIRo Q SIRo

(dB) (dB)

Actual 14.5 1:37 500 4:72 2048 7:00
Room 1:09 4:44 5:92

0:85 4:06 5:65
0:99 5:15 6:99

Image 2 0:19 500 4:18 2048 6:56
Model, �0:30 5:17 9:42
� = 0:7 �0:14 4:41 8:32

�0:02 5:02 9:74
10 1:37 500 5:40 2048 8:05

0:67 5:13 7:58
0:84 5:31 8:32
1:24 6:13 8:64

Image 2 0:57 150 12:67 700 13:50
Model, 0:23 16:07 18:36
� = 0:3 0:31 16:49 18:00

0:45 17:24 20:51
10 2:65 150 9:48 700 10:58

2:13 10:32 11:81
2:37 12:76 18:50
2:60 11:42 14:26

Table 2. Performance of the two-stage MRFD algorithm. The
result in each line corresponds to a different speech sample pair.

d = 2 and 10 ft are shown in the bottom section of Table 2. Note
that in this case most of the SIR gain is obtained at the end of
the first stage, although the second stage still further enhances the
performance somewhat.
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