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ABSTRACT

In speech and audio coding, frequency selectivity of the
basis functions is an important property of the codec. The
more precise the frequency selectivity, the less chance there
is for audible coding effects due to uncanceled aliasing. In
this work, we use Campbell’s coefficient rate and the spec-
tral entropy (SpEnt) of the source random process as a
guide to formulate adaptive nonuniform modulated lapped
biorthogonal transforms (NMLBT). The use of the NMLBT
allows for efficient implementation of a time-varying trans-
form which possesses both good frequency and time resolu-
tion at all instances, without the need for transitional filters.
By coupling the SpEnt methodology with modulated lapped
biorthogonal transforms (MLBT), we develop band combin-
ing strategies to produce an adaptive NMLBT. Due to the
nature of the SpEnt methodology, the new frequency selec-
tion process comprises a non-linear approximation method
to determine the best n basis functions to represent the
current speech frame. We implement a wideband speech
compression scheme based on this strategy and verify its
imprived performance in coding speech and audio signals
at 16 and 24 kbps.

1. INTRODUCTION

In speech and audio coding applications, transform do-
main signal processing represents a popular approach to
source compression. In particular, the most recent wide-
band speech compression standard, G.722.1 [1], is a trans-
form-based algorithm. In typical block-based transform
coding scenarios, a frame of speech samples is represented
as a linear combination of a particular fixed set of trans-
form basis functions, and the coefficients representing the
contribution of each basis function to the speech frame are
efficiently quantized and entropy coded in order to achieve
data compression.

An important property of transform codecs is the fre-
quency selectivity of the basis functions [2]. The more pre-
cise the frequency selectivity, the less chance there is for
audible coding effects due to uncanceled aliasing. Unfortu-
nately, as stated previously, typical block-based transform
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coding schemes often use a fixed set of basis functions and
thus the frequency selectivity is non-adaptive. By adapting
the transform basis functions, we can enhance the repro-
duced signal fidelity by tuning the frequency selectivity of
the transform.

At present, the most successful methods for lossy source
compression are sample-function adaptive codecs. Promi-
nent examples of such compression schemes are variable
rate speech and audio coders that allocate bits to para-
meters within a frame based upon the classification of the
frame [3, 4]. These techniques can be classified as non-
linear approximation methods. Building on these ideas and
related theories in computational harmonic analysis [5], we
use Campbell’s coefficient rate [6] and the spectral entropy
(SpEnt) [7, 8, 9] of the source random process, as a mecha-
nism to formulate adaptive nonuniform modulated lapped
biorthogonal transforms.

In previous related work, Coifman and Wickerhauser
[10] proposed the following best basis selection algorithm.
For transform coefficients xn, the theoretical dimension of
a signal is defined as d = exp

(
−∑

n
pn log pn

)
where pn =

|xn|2
‖x‖2 , and the exponent is the spectral entropy. They used

d as a measure of the number of coefficients to be coded in
a wavelet transform, and by minimizing d, the best wavelet
packet basis could be chosen as the best transform basis
since it produces the minimum number of coefficients. A
similar method was extended to other transformations for
speech processing in [11] using an adaptive windowing pro-
cedure. Such an algorithm causes increased overhead in
that it switches between multiple pre-determined window
sizes and thus adapts the transform’s frequency selectivity
by changing the blocksize over which it is calculated. In [2]
and [12], Malvar explores band combining strategies using
either quarter resolution or half resolution time domain ba-
sis functions within the NMLBT without reference to the
theoretical dimension of a signal, the minimum coefficient
rate, or the spectral entropy of the source random process.

In this paper, we couple the SpEnt methodology with
modulated lapped biorthogonal transforms, for the purpose
of developing an automated mechanism for determining fre-
quency band combinations to produce a frame adaptive
NMLBT. We use the SpEnt methodology as a means of
suggesting both the number and location of which bands to



combine. By adjusting the bandwidth of some of the orig-
inal basis functions, we generate a procedure by which the
frequency selectivity of the transform basis functions are
dictated by the SpEnt result. In this way, we use a frame
adaptive NMLBT to tune the frequency selectivity of the
transform by shortening the duration of basis functions lo-
cated at particular frequencies. Because of the nature of
the SpEnt methodology, the resulting frequency selection
process represents a non-linear approximation method for
the purpose of selecting the best n basis functions for the
current speech frame.

2. THE MLT, MLBT, AND NMLBT

Two types of artifacts are often observable in trans-
form coding of speech signals at low bitrates: blocking
(i.e. clicks) and ringing (i.e. reverberation and pre-echo).
Blocking artifacts are generated by signal discontinuities at
speech frame boundaries due to quantization effects. Ring-
ing artifacts are generated when quantization errors in the
transform coefficients cause reconstruction errors that last
the duration of a reconstructed speech frame. Because of its
inherent properties, the lapped transform (LT) can signifi-
cantly reduce blocking artifacts in reconstructed speech seg-
ments [2]. Modulated lapped transforms (MLT) can reduce
blocking effects even further [2]. In low bitrate speech and
audio coding, ringing artifacts often occur during sounds
which contain transient-like signals, such as plosive sounds
or transitional speech segments. It is in the encoding of
these signal types that most low bitrate transform codecs
suffer the most severe performance degradations.

In developing the NMLBT, Malvar relaxes the constraint
of identical analysis and synthesis windows. In [2], he sug-
gests that if one uses a symmetric synthesis window and
applies biorthogonality conditions, then a MLBT can be
generated by using an analysis window, ha(n), which satis-
fies the generalized Princen-Bradley conditions [2], i.e.

ha(n) =
hs(n)

h2
s(n) + h2

s(n+M)
, n = 0, 1, ..., M − 1,

and ha(n) = ha(2M − 1− n). (1)

By incorporating biorthogonality, Malvar suggests that the
MLBT can be used to improve the frequency selectivity
of the synthesis basis functions. In [2], as in this work, a
synthesis window, hs(n), is chosen such that

hs(n) =
1− cos[(n+1

M
)α π] + β

2 + β
, (2)

n = 0, 1, ..., M − 1,

where the parameter α controls the width of the window
and β controls the end points of the window.

Since the MLBT is essentially free of blocking artifacts,
we focus on the its use in reducing ringing artifacts in re-
constructed speech. It is hypothesized that by generating
shorter basis functions, we can increase the ability of a wide-
band speech compression algorithm to capture the transient
nature of certain speech segments. One approach is to gen-
erate shorter high frequency basis functions by merging fre-
quency subbands. In this way, we can equivalently create a

non-uniform filter bank (i.e. NMLBT) in which some fre-
quency subbands have larger bandwidths. It is suggested in
[13, 14] that only the high frequency subbands be merged.
In the following, we provide a motivation for combining ad-
jacent subbands (including by not limited to the high fre-
quency subbands). We show that by using the NMLBT as
a basis for our algorithm, we can achieve minimal ringing
artifacts in the reproduced speech frame.

3. CAMPBELL’S COEFFICIENT RATE

Our motivation for using spectral entropy as a basis
for transform coder design is the work of Campbell on the
coefficient rate of a random process [6]. The coefficient
rate of a random process was first derived and defined by
Campbell in 1960. Campbell considered the product of N
sample functions of a random process, and showed, using an
AEP1–like argument, that a Karhunen–Loeve expansion of
this product could be separated into two sets – one set with
average power very close to that of the product and the
other set having very low average power. Asymptotically
in the number of sample functions forming the product and
in the support interval of the process, he showed that the
average number of terms in the high power set approached
a quantity that he interpreted as a coefficient rate given by

Q = exp

[
−

∫ ∞

−∞
S(f)logS(f)df

]
, (3)

where we denote the quantity in the exponent as the spec-
tral entropy. The implications of coefficient rate and spec-
tral entropy for source compression were not explored by
Campbell and no coding theorems were presented.

At this point, it is important to point out the relation-
ship of coefficient rate and classical rate distortion theory
results. For continuous time, bandlimited sources, classical
rate distortion theory assumes Nyquist sampling and then
proceeds to specify the minimum number of bits/sample
(or bits/coefficient here) required to represent the source
with a desired fidelity. On the other hand, the coefficient
rate is not a source coding result at all. It is a statement
about the minimum number of coefficients/second required
to represent a random process in the sense of the number of
terms needed to approximate the energy in the product of
sample functions, as described earlier in this section. Inter-
estingly, coefficient rate as specified by Campbell gives us
an analytical indicator of the required minimum rate that
was previously unavailable.

Yang and Gibson have recently provided two alterna-
tive derivations of Campbell’s coefficient rate [7, 8]. One
derivation tightens the connection between coefficient rate
and the source bandwidth. This theorem is known as the
equivalent bandwidth explanation. In this theorem, Yang
and Gibson do not necessarily imply that the coefficient
rate is the number of samples one should use to represent
a random process. Instead, they propose that the sampling
rate may still be the Nyquist rate, but the importance of
the individual samples to the entirety of the source data
frame may be different.

1AEP: Asymptotic Equipartition Property [15].
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Fig. 1. Encoding Transform Coefficients. (a) Coefficients
of N Sample Functions, (b) Encoding Sample Function by
Sample Function, (c) Encoding Component by Component.

A second derivation by Yang and Gibson implies an
explicit technique for adaptively coding a source sequence.
In this derivation, known as the dominant terms expansion,
the relationship

ni =
λi

T
N, i = 1, 2, . . . , M. (4)

is derived. A graphical representation of this idea is illus-
trated in Fig. 1. In particular, this statement tells us that
if we perform an orthogonal decomposition of a series of
frames (i.e. 1 to N) of source data (Fig. 1a), and consider
the coefficients corresponding to the ith basis function in
the series of frames as a coefficient sequence (Fig. 1c), then
the number of coefficients, ni, to be coded in this sequence
(i.e. cx1 to cxN ) is proportional to the energy, λi, in the
ith component. The implied coder here “looks ahead” at N
coefficient samples and thus employes a delay of N frames.
Note that the SpEnt methodology is not a coding method,
but it is a procedure for selecting which coefficients in the
sequence need to be coded. Notice also that this is very dif-
ferent from the usual approach (Fig. 1b) of considering the
orthogonal decomposition on a single frame and allocating
bits to coefficients according to their relative energy in the
current frame.

In this work, we demonstrate that Campbell’s minimum
coefficient rate can be used to suggest the number of basis
functions as well as the bandwidth used to comprise these
basis functions. The selection of bandwidths for each ba-
sis function in the decomposition will dictate the selection
of the frequencies at which the best n basis functions are
located.

4. ADAPTIVE NMLBT VIA SpEnt

In [2], +1/− 1 butterflies are used in combination with
the MLBT in order to achieve a NMLBT with perfect re-
construction capabilities (Fig. 2). In [12], an automatic
switching mechanism based on frame energy levels and clas-
sification methods is used to turn on and off a subband com-
bination matrix. In either experiment, the idea is to com-
bine subbands in such a way that the reproduced speech or
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Fig. 2. NMLBT block diagram (Assuming R=2).

audio signal has reduced error spreading in frames which
contain segments of transient signals. In this section, we
will suggest another procedure for selecting how subbands
can be combined in order to achieve the same goal.

Assume that we take a similar approach to that in [2].
In this approach the firstX basis functions are not modified,
and each R-length set of the remaining M − X functions
are combined to generate a new set. At this time, let us de-
fine K as the sum of the number of unmodified basis func-
tions (X) plus the number of R-length basis function sets.
Assuming R = 2, if the original two basis functions were
centered at frequencies (f + 1/2)π/M and (f + 3/2)π/M ,
with bandwidths π/M , then when combined via +1/ − 1
butterflies, the result is two new basis functions that are
both centered at (f + 1)π/M with bandwidths 2π/M , but
have different time localization.

For the purpose of adaptive speech and audio coding, it
can be inferred from above that the value of K can change
on a frame-by-frame basis. During stationary frames, we
could make K = M which would turn the NMLBT into
a length-M MLBT (as suggested in [2]). During transient
sounds, we can chooseK among a number of possible values
for best reproduction of the block. The question becomes,
is there a theoretical value of K for which the best repro-
duction can be obtained. In the following discussion, we
suggest a possible way to obtain the best value of K based
on the minimum coefficient rate.

Using Campbell’s minimum coefficient rate result and
the theorem regarding the property of dominant terms, we
demonstrate that the SpEnt methodology can be used to
adaptively determine a theoretical value for K. This K
value will depend on the signal bandwidth as well as the
overall significance of each basis function to the represen-
tation of the source data frame. The basic approach to
the selection of K is implied by the spectral entropy result
illustrated in Fig. 1. In Fig. 1a, we show M MLBT coeffi-
cients or coefficients of the M basis functions for N frames
of source data, denoted cij , i = 1, ...., M, j = 1, ...N . The
coefficients in the first frame are ci1, i = 1, 2, ..., M , while
the coefficients for the second frame are ci2, i = 1, 2, ...., M ,
and so on. Therefore, the frame index is indicated by the
second subscript (j) and the coefficient index is indicated
by the first subscript (i). The spectral entropy result im-
plies that each transform coefficient should be considered as
a separate sequence, Cij , j = 1, ...., N , as shown in Fig. 1c,
and the significant values in that coefficient sequence can
be determined by comparing to a threshold derived from
the energy within that same confficient sequence.

After deriving the relevent number of coefficients for a



particular frame of speech, we now know the total number
of singular (i.e. uncombined) basis functions (X) plus the
number of basis function sets to be used in the reproduction
of the speech data frame (i.e. K = X + M−X

R
). Note

that in using this methodology, a basis function set can be
either a grouping of two (R=2) or four (R=4) combined
functions. Remember that in either case, the functions in
the set will differ only in time localization. Given a value of
K, and assuming bands are combined using pairs of basis
functions (i.e. R = 2), X is equal to 2K−M . Consequently,
given a value of K, and assuming that frequency bands
are combined using the combinational matrix in [12] (i.e.
R = 4), X must equal 4K−M

3
. These results imply that

there can be no less than M
4
basis functions and no more

than M basis functions used in representing a given speech
data frame. Given these rules, the process of updating K
can then be done on a frame-by-frame basis by dropping
the oldest frame from the N -frame block and adding a new
M -coefficient frame in its place. In this way, we have a
sliding window approach for determining the value of K for
each data frame.

Using this adaptive selection process, we are forced to
send 7–9 bits of side information per coded speech frame
to represent K. This is a relatively insignificant amount of
overhead per frame considering that we typically use 256–
512 bits/frame when coding at 16–24 kbits/second. By in-
cluding an additional single bit of overhead, we can select
between using half resolution (i.e. +1/ − 1 butterflies) or
quarter resolution (i.e. combinational matrix [12]) for band
combining in order to achieve the SpEnt-based value for K.

5. RESULTS

For our wideband speech coding trials, we developed
a codec similar to that in [9, 16] operating at 16 and 24
kbits/second which uses the NMLBT and its SpEnt-based
adaptation algorithm. As seen in Table I, for coded samples
of clean speech files using this wideband speech codec, we
achieved average segmental SNR values between 21–22 dB
for framesizes (M) of 320 samples. For the same samples
and codec configuration, we achieved peak segmental SNR
values between 28 and 38 dB. These results represented
approximately a 1 dB gain in the average segmental SNR
and roughly a 1.5–2.0 dB gain in the peak segmental SNR
values. Currently, this gain in average and peak segmental
SNR is coming at a cost of approximately 400 bps. Work is

Table 1. Wideband Speech Coding Results (Average Seg-
mental SNR [ASSNR], Peak Segmental SNR [PSSNR])

Sequence SpEnt SpEnt/NMLBT

(256 kbits/s) (16 kbits/s) (16 kbits/s)

ASSNR/PSSNR [dB] ASSNR/PSSNR [dB]

Male #1 21.234 / 35.834 21.787 / 37.666

Male #2 21.117 / 26.255 21.974 / 29.738

Male #3 21.473 / 32.826 22.160 / 34.122

Female #1 19.328 / 31.289 20.304 / 33.239

Female #2 20.570 / 26.709 21.865 / 28.011

Female #3 21.571 / 33.679 22.812 / 35.891

underway to develop seamless methods of transmitting K
so that no additional rate is used in achieving this better
quality.
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