VERY LARGE POPULATION TEXT-INDEPENDENT SPEAKER IDENTIFICATION
USING TRANSFORMATION ENHANCED MULTI-GRAINED MODELS

Upendra V. Chaudhari, Jifi Navratil, Ganesh N. Ramaswamy, and Séphane H. Maes

IBM T.J. Watson Research Center
Rt. 134, Yorktown Heights, NY 10598
Email: uvc@us.ibm.com

ABSTRACT

The paper presents results on speaker identification with a
population size of over 10000 speakers. Speaker modeling
is accomplished via our Transformation Enhanced Multi-
Grained Models. Pursuing two goals, the first is to study
the performance of a number of different systems within
the modeling framework of multi-grained models. The
second is to analyze performance as a function of popu-
lation size. We show that the most complex models within
the framework perform the best and demonstrate that, in
approximation, the identification error rate scales linearly
withthelog of the population size for the described system.
Further, we develop a candidate rejection technique based
on our analysis of the system performance which indicates
alow confidencein the identity chosen.

1. INTRODUCTION

Research in the field of Speaker Recognition covers a va-
riety of topics related to the basic premise, which is to
make a judgment on the identity of an individual who has
given a speech sample. Text-independent speaker recog-
nition places no restrictions on the content of the sample,
enabling a wide variety of on-line and adaptive applica-
tions[3].

Among the many factors that can influence identifica-
tion accuracy, the uniqueness of speakers and recording
environment (e.g. channel and microphone) are the most
significant: (1) The environment altering the spectral char-
acteristics of speech with its negative impact on the perfor-
mance, and (2) speaker uniqueness, whose extent islargely
unknown, determining overlap of speaker characteristics.
These factors can be seen as competing forces in that both
affect the speech signal in similar ways, which means that
in mismatched conditionsit is difficult to attribute an error
to one factor or the other.

To get a better understanding of the uniqueness factor,
we conducted experiments in matched conditions with in-
creasing population sizes, with our largest experiment in-
volving over 10000 speakers. The intent was to study the
effects of scale in the speaker identification problem. We

also developed an effective confidence measure based on
an analysis of the N-best list of results that can be formu-
lated to reject incorrect answers in approximately half of
the cases without significantly compromising the correct
recognition rate.

2. SPEAKER MODELS

Inthiswork, the transform enhanced, multi-grained speaker
modeling framework [1] is used. Multi-grained modeling
consists of the concurrent use of fine and coarse grained
models where the granularity of a model is characterized
by the specificity of phonetic content in its training data.
In identification, the nature of the testing data determines
which granularitieswill be used when computing the score
for a given multi-grained model. The transformation en-
hancement is due to the use of the MLLT [2] in carrying
out speaker dependent feature space optimizations on top
of theinitial feature set consisting of mean normalized 19
Mel-frequency cepstral coefficient (MFCC) vectors com-
puted using 24 filters, with delta parameters concatenated.
Thefeature space optimizationis carried out independently
for each constituent model of the multi-grained speaker
model.

For a speaker j, the multi-grained model is a collec-
tion of transformation enhanced Gaussian Mixture Model
(GMM) units on varying levels of granularity, which are
described below. The standard NV -component Gaussian Mix-
ture Model [5], denoted M/, is parameterized by
{m!, 34 p!}; 1 . ~n,whereone has respectively the ML
estimates of the mean vector and covariance matrix, along
with the mixture weight for each component ¢ induced by
clustering. For stability, the clustering is done using a
speaker independent initial seed. The amount of dataavail-
able to train a model unit often makes it necessary to use
diagona covariance models. However, this restriction to
the diagonal can be donein afeature space, viathe MLLT,
that minimizes the effect of the restriction. This effect can
be described as alossin likelihood [2]. A transformation
(MLLT) T/ can be chosen to minimizethisloss and is con-
structed, via a gradient descent, for each model unit of the



'BOX A !

) ! Basc

| : Modd Unit

1

ecch | Feature . !
ﬁ% Extraton H Clustering H GMM R

! |

: ! sistics
(D;radiert“ T / Tranformation
escen Enhanced

E%El;'gm" Model Uri

Fig. 1. Flow of model construction with transformation.

Global
Model

’,,/“’”x\"“""Phqne Mo‘dels”""”'

.--~Phone Class Models - __
[T T |

Transformation Enhanced
Multi-Grained Model Structure

Fig. 2. Transformation Enhanced Multi-Grained Model.

multi-grained speaker model.

Figure 1 shows the model construction procedure for a
single GMM unit with transformation. Note that the statis-
tics of the initial GMM are used along with the cluster
counts from the original datain deriving the MLLT trans-
formation[2].

Before constructing a multi-grained model, the train-
ing data must be labeled. In our case this is done with
an HMM-based phone labeler. The datais distributed into
bins corresponding to each phone. Model units (GMMs)
for these bins constitute the finest grained modeling in the
system. Next, we consider seven linguistic classes. vow-
els, nasals, voiced and unvoiced fricatives, plosives, lig-
uids, plus silence. Each phoneis assigned to one of these.
The bin for each phone classisfilled with the data from all
of the constituent phone bins. These class models make up
the middle-grain level. Finally, al of the datais collected
together in the root model bin. We call the GMM here the
global, or coarsest-grained, model (unit). We refer to each
bin, or node, simply by an index number running from 1
to the number of bins. A graphical descriptionisshownin
Figure 2. The use of the term node is appropriate given the
tree structure described.

For thetransform enhanced system, the constituent mod-

elsaregivenby M7 and T7. We use the notation M;' Ty
The subscript d indicatesthat al of the Gaussians aredi ag-

onal and the set {T}’ denotesthe fact that each constituent

model of the multi-grained model has its own transforma-
tion.

Corresponding to our transform enhanced multi-grained
model, we use a modified likelihood based discriminant
function. Given aset of vectorsX = {x} in R", the dis-
criminant function (PickMax) [4] for any individual target
model is

DX|M? )=
X7 1) = X max
XeX
[log p(chx|T{,m{17i,diag(TiEiJTi’t))} : )

where the index k& runs through the nodes and the index
i through the mixture components at the nodes. Speaker
identification is carried out by computing eguation ( 1) for
each speaker j, and letting the decision be given by

arg max; D(X|M;7{T}J. ).

3. DATA

Our experiments are based on an internal database consist-
ing of 10013 speakers with telephone-quality speech. As
for the acoustic channel properties, the datain the training
and the test are matched. For each speaker, approximately
30 seconds of speech is used for training and 3 to 5 sec-
onds utterances for test. The speech was recorded over
real telephone landlines and the different speakers were
talking about various topics. It has to be noted that the
database is somewhat segmented in terms of spontaneous
vs. read speech, which, however, plays rather a minor
role in text-independent speaker modeling, as opposed to
speech recognition tasks. We emphasize that the main goal
of the experimentswas to study identification performance
asafunction of the population size, and thus matched con-
dition tests are appropriate.

4. EXPERIMENTS

Theresultsare presented on three different systemsthat fall
within the framework of transformation enhanced multi-
grained modeling. First, we use ssmply the root node, i.e.
theglobal level, of the multi-grainedtree. Thiscorresponds
tomodeling al of the training datawith one transformation
enhanced GMM. In this casg, it contains 8 mixture compo-
nents. Next, we use the multi-grained models based on
data labeled by the HMM decoder. Note that each such
model unit has 8 components. Finally, we approximate the
advantages of the multi-grained approach, which isaform
of hierarchical clustering, inthe single GMM case by using
amethod called centroid inclusive clustering. We refer to
BOX Ain figure 1. Centroid inclusive clustering involves
a modification to BOX A whereby after the initial cluster-
ing, the centroid of the original datais added back asanew
cluster centroid. The data is then reclustered (Figure 3).
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Fig. 4. System comparisons with N-best scoring.

This is an approximation to the hierarchica model in the
sense that information near the total data centroid, which
would be present in the root node of an hierarchical model,
is added to the global level GMM. Multi-grained modeling
is not used for this experiment. The rest of the modeling
isidentical. The resulting model thus has 9 components as
opposed to 8 in the first experiment.

For each case we present results on 10013 speakersin
the form of an N-best list in Figure 4. The vertical axis
is the identification error percentage. The horizontal axis
indicates the size of the V-best list used in scoring. A tria
was considered correct if the true identity was in thelist.

From the results in Figure 4 we observe first that the
multi-grained model s have significantly better performance
than the global model alone, which we use as the base-
line. We point out that the multi-grain models do have
many more Gaussians than the global model. However,
this approach alows for the larger number of Gaussians
without partitioning the datainto too many sparse clusters.
The centroid-inclusive clustering, though not as good as
the multi-grained modeling, gave a big improvement over
the global model baseline as well. The significance of this
result is that it allows fast identification as compared to
the multi-grained approach which can take up to M times
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Fig. 5. Id error vs. population size (semilog).

longer, where M is the number of model units used. This
is an important advantage for large population identifica-
tion. Further, thereisabig gain in accuracy if we allow the
correct answer to be in the top 4 candidates in the NV-best
list. Thislead us to develop a scheme to accept or reject
identification results that is much simpler than the standard
technique of performing a verification on the top candidate
inthelist (see Section 5).

4.1. Scalingwith Population

For the best system, we charted the performance as afunc-
tion of the population size. The plot is shown in Figure 5.
Note that this is a semi-log plot with the horizontal axis
indicating the log of the population size. The plot shows
that the identification error rate is approximately a linear
function of the log of the population size.

A priori, it did not seem unreasonable to expect alinear
relationship between the popul ation size and the identifica-
tion error rate. If we estimate the performance as a linear
function using the first data point, we get the result shown
in Figure 6.

We give the plot to emphasize how much better the ac-
tual performanceis comparedto thelinear estimate. Clearly,
for any given model, adding more speakers to the enrolled
population does not necessarily add strong competitorsfor
theidentification task. However, overall each added speaker
does serve as competition for some subset of speakers. The
character of the curve gives an indication of the size of this
subset.

5. CANDIDATE REJECTION

Examining the results shown in Figure 4, we note that the
top 10 scoring models contain a significantly larger per-
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Fig. 6. Id error vs. population size (semilog).

centage of correct identities than the top scoring models.
Moreover, we noted that the differentials among the top 10
scores had a different character when the top answer was
correct as compared to when it was not. Based on this ev-
idence, we have developed a confidence measure which is
derived from the score differential statistics:

For agivenidentification test 7, let

be the top N scores in decreasing order. (Weuse N =
10.) Let
d, d, .. d¥-1

be the score differentials. i.e.

d{ = SZ — SZ'H.
Given a set of identification trials I, we divide them into
two groups. Those that have the correct model with the top
score, and those that do not. Respectively, these are the
accept, Ioccept, and reject, I,.qjece, Classes for the identi-
fication result. We create ssimple statistical models of the
corresponding differential sets

1 2 N—-1
{di, di, E) dz }iefaccept

and
1 2 N—-1
{di7 di: “eey dz }ielrejeci'

We compare the likelihood of the differential set of agiven
test trial with respect to thetwo models (with alog-likelihood
ratio test) and accept or reject the result based on a thresh-
old. Thus, the likelihood ratio serves as a confidence mea-
sure for the identification output of the system. This ap-
proach is similar to, but much simpler and faster than, that
of performing a verification on the top scoring model. Us-
ing this approach, we have achieved a false aarm rate of

2.5% with a miss rate of 44.7%, meaning that approxi-
mately 55.3% of the time we correctly reject afalse identi-
fication result with the consequence that 2.5% of the time
we reject a correct identification result. Ideally, the V-best
lists associated with the rejected trials may be re-scored
with perhapsamore powerful approach to achieve agreater
accuracy, which, naturally, has to be decided with respect
to the computation expense to be spent on this task.

6. CONCLUSION

We have presented a number of different results on very
large population speaker identification with size exceeding
10000 speakers. Comparisons among various systems re-
vealed that our most detailed multi-grained models gave
the best performance. We demonstrated performance ap-
proaching these models with our centroid inclusive
approach, which has the benefit of speed, a necessity for
large population identification. Further, we observed alog-
linear rel ationship between popul ation size and performance
for the best system. Finally, acandidaterejection technique
was presented with the potential to improve performance,
given are-scoring mechanism for the rejected trials.
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