
PIPELINED ARCHITECTURES FOR THE TD-LMS ADAPTIVE FILTER

George-Othon Glentis

Technological Education Institute of Krete, Branch at Chania, Department of Electronics,

3, Romanou Str, Chalepa, 73133 Chania, Krete, Greece.

e-mail: gglentis@chania.teiher.gr

ABSTRACT

In this paper, e�cient pipelined architectures for

the implementation of the Transform Domain LMS al-

gorithm, are presented. Pipelining of the TD-LMS al-

gorithm is achieved by introducing an amount of time

delay into the original adaptive scheme. The adapta-

tion delay introduced to the TD-LMS algorithm allows

for the development of pipelined architectures. By re-

timing the delays existing in the error feedback loop,

two e�cient pipelined implementations of the delayed

TD-LMS algorithm are developed.

1. INTRODUCTION

The design of adaptive �lters and system identi�ca-

tion algorithms with optimum learning, in the sense

of minimizing the accumulated squared error between

the output signal and a desired response, has been the

subject of major research for a long time, [1].

The introduction of the Delayed LMS algorithm

gave rise to the development of high throughput pipelin-

eable and/or parallel schemes that have been proposed

for the implementation of the LMS algorithm on A-

SIC VLSI systolic or wavefront array processors, [4]. A

major drawback of the D-LMS algorithm is the degra-

dation that appears on the convergence performance,

due to the adaptation delay imposed by the algorith-

m. The remedy to this drawback is the introduction of

correction terms that compensate for the adaptation

delay and give results identical to the original LMS al-

gorithm, subject to a certain amount of output delay,

[5].

In an attempt to improve the performance of the

LMS algorithm, unitary transformations on the input

data vector, have been used, [6]. The resulting algo-

rithms may have increased convergence rate for some

classes on input signals, yet the computational com-

plexity remains similar to that of the original LMS

This work was supported by the Greek Secretary of Research

and Technology, PENED-99E�83, 'ISODIA' project

scheme. The algorithmic family established and the

variations followed are known as the Transform Do-

main Adaptive Filtering algorithms, [2],[3],[6].

2. THE DELAYED TD-LMS

Given an input signal x(n) and a desired response sig-

nal y(n), the Delayed Transform Domain LMS (D-TD-

LMS) is described by the set of equations

fM(n) = SMxM(n) (1)

e(n) = y(n) � CH
M
(n � 1)fM(n) (2)

pM (n) = �pM (n) + (1� �)diag(f21 (n) . . . f
2
M
(n)) (3)

FM(n) = �p�1
M
(n)fM(n) (4)

CM(n) = CM(n � 1) + FM(n �D)e�(n �D) (5)

CM = [C1 C2 . . .CM ]
T is the vector that carries the

transformed �lter coe�cients. xM(n) = [x(n) x(n �

1) . . .x(n�M +1)]T is the regressor vector. SM is a u-

nitary transform (within a constant scalar) of order M ,

i.e., SMS
H
M
= �IM . H stands for the Hermitian opera-

tor (conjugate and transpose). D is a proper amount

of adaptation delay.

When the DFT is used as the unitary transforma-

tion, fM(n) is the sliding window Fourier transform of

the input data xM(n), and each element of CM(n) is

associated with a speci�c frequency band. The sliding

window DFT algorithm can be e�ciently implemented

either using a sliding FFT algorithm, or a frequency-

sampling �lter structure. In both cases, the compu-

tational complexity is M complex multiplications per

iteration period. However, the later case is more suit-

able for the VLSI implementation, since it has a regular

structure. It is implemented using a set of �rst order

recursive equations of the form

fm+1(n) = �e�j
2�m

M fm+1(n� 1)+

x(n)� �
M
x(n�M ); m = 0; 1; . . .M � 1

(6)



0 5 10 15

x 10
4

−10

−5

0

5

10

15

20

25

 samples

 M
SE

 

LMS

D−LMS

TD−LMS

D−TD−LMS

0 0.5 1 1.5 2 2.5

x 10
4

−10

−5

0

5

10

15

20

25

 samples

 M
SE

 

LMS

D−LMS

TD−LMS

D−TD−LMS

Figure 1: Simulation results

� 2 (0; 1) is a stabilization factor that is used to com-

pensate for the marginal stability of the original real-

ization, [2].

A transform domain delayed LMS algorithm and ar-

chitecture has been proposed in [7]. That method uses

block processing operations (such as FFT/IFFT's) and

concepts of multirate �ltering to reduce complexity and

increase the throughput rate, at the expense of perfor-

mance degradation. Our method is based on the sam-

ple by sample transform domain LMS adaptive �lter,

thus fast convergence rate and tracking characteristics

are retained. The pipelined architectures that are de-

veloped in Section 3, allow the maximum throughput

rate, given a library of computational hardware ele-

ments. They have regular and modular structure, with

local interconnections, being suitable for implementa-

tion of a massively parallel computer or on special pur-

pose VLSI array processors.

The performance of the D-TD-LMS is illustrated by

a typical system identi�cation experiment. Consider an

FIR �lter of order M = 128. The impulse response was

a typical impulse response of the acoustic echo path of

a car enclosure. A stationary AR process of order 2,

driven by a white noise signal, was used as an input to

the FIR �lter. At the output of the FIR system white

gaussian noise was added, resulting to an SNR equal

to about 30dB. The eigenvalue spread of the sampled

autocorrelation matrix of the input signal which is con-

trolled by the parameters of the AR process, was in our

case O(103). Four algorithms have been tested, name-

Figure 2: Data-
ow graph of the D-TD-LMS algorithm

ly, the LMS, the D-LMS with a delay D=M-1, the TD-

LMS and the D-TD-LMS with a delay D=M-1. The

�ltering error power for each case was computed by av-

eraging the squared instantaneous �ltering errors over

an exponentially decaying window with e�ective mem-

ory equal to 128 time instances. The simulation results

are shown in Figure 1. Clearly, the convergence rate of

the D-LMS algorithm is very slow. On the other hand,

the D-TD-LMS algorithm converges at an acceptable

rate, faster than the LMS algorithm.

3. PIPELINED DELAYED TD-LMS

ARCITECTURES

The data-
ow graph of the D-TD-LMS algorithm is

depicted in Figure 2. It is composed by a set of identi-

cal Processing Elements (PE), denoted by P-1 to P-6.

The operations performed by each PE is summarized

in Table 1. PE's P-1 to P-4 involve feedforward in-

terconnections. Thus, pipelining of these PE's can be

achieved by placing delay latches in between. On the

other hand, P-5 and P-6 are connected via a long feed-

back loop, and as a result, some extra e�ort is required

for the pipelining of these elements.

A pipelined architecture can readily be derived by

replacing the serial inner product estimation of the er-



P.E. Operation

P-1 u(n) = x(n)� �
M
x(n�M )

P-2 f(n) = �e
�j 2�

M
m
f(n � 1) + u(n)

P-3 p(n) = �p(n� 1) + (1 � �)jf(n)j2

P-4 F (n) = �f(n)=p(n)

P-5 C(n) = C(n� 1) + F (n)e�(n)

P-6 ei(n) = ei�1(n)� C
�(n � 1)f(n)

Table 1: Computational tasks of the Processing Ele-

ments

ror signal by a binary tree adder scheme. The presence

of the adaptation delay in the error feedback loop of

the original data-
ow graph (Figure 2), can be used for

the e�cient pipelining of the binary tree adder that es-

timates the error signal, [8]. Obviously, the amount of

adaptation delay that is required for full pipelining of

the D-TD-LMS algorithm is D = [log2(M )] + 1. The

data-
ow graph of the pipelined D-TD-LMS algorithm

is shown in Figure 3. Pipeline latches introduced be-

tween the stages of the binary tree adder are depicted

by small black rectangular boxes. Further improve-

ment can be achieved by pipelining PE's P1 to P3, by

introducing pipelining latches in between, and by de-

laying the input sequence y(n) by the same amount of

time. These latches are depicted by small gray rect-

angular elements. Notice that, PE's P5 and P6 can

work on parallel. Thus, the critical path is now deter-

mined to be TC = maxfTD; TM + TAg where, TD is

the time required for the division, and TM , TA is the

time required for the multiplication and the addition

operation, respectively.

In the sequel, an alternative pipelined architecture

for the D-TD-LMS algorithm will be presented, that

avoids the use of a binary tree adder, allowing, thus, for

a systolic implementation. The data-
ow graph that is

depicted in Figure 2 consists of M identical columns of

PE's. Consider the last (i.e. the M-th) column of PE's.

The delay element that appears at the output of P-6

can be transferred to all three inputs of P-6. The delay

element associated to the error input signal is divided

to two parts, a unit delay (denoted by a solid black box

in Figure 4), and an element that consists of D-1 delays

units. The delay elements associated with the other

two inputs of P-6, are moved upwards to the top of

the data-
ow graph, passing through P-5 to P-1. This

movement causes the appearance of a delay element at

the input of P-5, which is decomposed accordingly to

a unit delay and a part that consists of the rest. The

block of D-1 delays that appears in the input of P-5 and

P-5 of the M-th column of PE's serve as output delays

of the corresponding PE's of the (M-1)-th column of

Figure 3: A pipelined architecture for the D-TD-LMS

using a binary tree adder

PE's. Thus delay elements are transferred in a similar

way to the output of the �rst column of PE's. Each

column of PE's is fed with a delayed input signal. In

our example, the last column is fed by the signal x(n�

D). Thus, to allow for a full pipelining, D = M �

1 adaptation delays should be introduced to eq. (5).

The resulting architecture is shown in Figure (6). The

critical path in this case is easily shown to be equal to

the former architecture, i.e., TC = maxfTD; TM +TAg.

Both pipelined architectures are very attractive for

the implementation of the D-TD-LMS algorithm on

massively parallel general purpose computers or on spe-

cial purpose hardware. They both have a regular struc-

ture with local interconnections. The overall perfor-

mance of the D-TD-LMS algorithm,measured by mean-

s of computational complexity, tracking performance

and degree of pipelining, is compared competitively to

other algorithms that have be proposed for high speed

adaptive �ltering applications. A comparison among d-

i�erent pipelined adaptive algorithms is given in Table

2, for the case of real and complex data. The complex-

ity is measured by means of real multiplications and

divisions. Notice, that when real data are processed,

the D-TD-LMS algorithm can be implemented using

a half-length signal-
ow graph, i.e. (M/2) columns of



Figure 4: Transfer and decomposition of the output

delay elements

Figure 5: A fully pipelined architecture for the D-TD-

LMS algorithm

Method Real Complex D Latency

D-LMS 2M 8M M M, 0

D-LMS [5] 5M 20M 0 M

D-TL-MS 5.5M 16M M M

SGL 9M 28M 0 M

LSL 14M 37M 0 M

Table 2: Comparison among competitive pipelined

adaptive algorithms

PE's are required in this case, [6].

4. CONCLUSION

In this paper, e�cient architectures for the pipelined

implementation of the Transform Domain LMS algo-

rithm have been considered. The pipelined operation of

the algorithm have been achieved introducing a proper

amount of adaptation delay to the original algorithm,

resulting to a Delayed TD-LMS scheme. Two pipelined

architectures have been proposed that allows for full

pipelining of the algorithm, resulting to an adaptation

delay of [log2(M )] + 4 and M + 2, for the �rst and

the second method, respectively. The critical path has

been reduced to Tc = maxfTD ; TM + TAg.

5. REFERENCES

[1] S. Haykin, Adaptive Filter Theory. Third Edition,
Prentice Hall, 1996

[2] J. Shynk, 'Frequency-domain and multirate adaptive
�ltering,' IEEE Signal Processing Magazine, pp. 14-
39, Jan. 1992.

[3] G. Glentis, K. Berberidis, and S. Theodoridis, 'Ef-
�cient least squares adaptive algorithms for FIR
transversal �ltering: a uni�ed view,' IEEE Signal Pro-
cessing Magazine, pp. 13-42, July 1999.

[4] H. Herzberg, R. Haimi-Cohen, and Y. Beery, 'A sys-
tolic array realization of an LMS adaptive �lter and
the e�ects of delayed adaptation,' IEEE Trans. Signal
Processing, pp. 2799-2803, Nov. 1992.

[5] S. Douglas, Q. Zhu, and K. Smith, 'A pipelined LM-
S adaptive FIR �lter architecture without adaptation
delay,' IEEE Trans. Signal Processing, pp. 775-779,
March 1998.

[6] S. Narayan, A.M. Peterson, and M.J. Narasimba,
'Transform domain LMS algorithm,' IEEE Trans. A-
coust. Speech, Signal Proc., vol. ASSP-31, pp. 609-615,
June 1983.

[7] A. Wu and C. Wu, 'Transform-Domain Delayed LMS
algorithm and architecture,' ICCAS-98, pp.V.194-197,
1998

[8] P. Pirsch, Architectures for digital Signal Processing,
Wiley 1996


