PIPELINED ARCHITECTURES FOR THE TD-LMS ADAPTIVE FILTER

George-Othon Glentis

Technological Education Institute of Krete, Branch at Chania, Department of Electronics,
3, Romanou Str, Chalepa, 73133 Chania, Krete, Greece.

e-mail:

ABSTRACT

In this paper, efficient pipelined architectures for
the implementation of the Transform Domain LMS al-
gorithm, are presented. Pipelining of the TD-LMS al-
gorithm is achieved by introducing an amount of time
delay into the original adaptive scheme. The adapta-
tion delay introduced to the TD-LMS algorithm allows
for the development of pipelined architectures. By re-
timing the delays existing in the error feedback loop,
two efficient pipelined implementations of the delayed
TD-LMS algorithm are developed.

1. INTRODUCTION

The design of adaptive filters and system identifica-
tion algorithms with optimum learning, in the sense
of minimizing the accumulated squared error between
the output signal and a desired response, has been the
subject of major research for a long time, [1].

The introduction of the Delayed LMS algorithm
gave rise to the development of high throughput pipelin-
eable and/or parallel schemes that have been proposed
for the implementation of the LMS algorithm on A-
SIC VLSI systolic or wavefront array processors, [4]. A
major drawback of the D-LMS algorithm is the degra-
dation that appears on the convergence performance,
due to the adaptation delay imposed by the algorith-
m. The remedy to this drawback is the introduction of
correction terms that compensate for the adaptation
delay and give results identical to the original LMS al-
gorithm, subject to a certain amount of output delay,
[5].

In an attempt to improve the performance of the
LMS algorithm, unitary transformations on the input
data vector, have been used, [6]. The resulting algo-
rithms may have increased convergence rate for some
classes on input signals, yet the computational com-
plexity remains similar to that of the original LMS

This work was supported by the Greek Secretary of Research
and Technology, PENED-99EAR&3, 'ISODIA’ project

gglentis@chania.teiher.gr

scheme. The algorithmic family established and the
variations followed are known as the Transform Do-
main Adaptive Filtering algorithms, [2],[3],[6].

2. THE DELAYED TD-LMS

Given an input signal #(n) and a desired response sig-
nal y(n), the Delayed Transform Domain LMS (D-TD-
LMS) is described by the set of equations

i (n) = Sar%as(n) (1)

e(n) = y(n) — Cg(n = Dfyu(n) 2

(
Par(n) = Apar(n) + (1 = Ndiag(fi(n) ... fi(n)) (3
Fou(n) = 1p5 (n)fur () (4
Cu(n)=Cyn—1)+Fy(n—D)e"(n—D) (5

C, = [C1 Cy ...Cy]" is the vector that carries the
transformed filter coefficients. x,,(n) = [z(n) z(n —
1) ...z(n—M+1)]" is the regressor vector. S,, is a u-
nitary transform (within a constant scalar) of order M,
i.e., $,,8 = gI,,. H stands for the Hermitian opera-
tor (conjugate and transpose). D is a proper amount
of adaptation delay.

When the DFT is used as the unitary transforma-
tion, f,,(n) is the sliding window Fourier transform of
the input data x,,(n), and each element of C,(n) is
associated with a specific frequency band. The sliding
window DFT algorithm can be efficiently implemented
either using a sliding FFT algorithm, or a frequency-
sampling filter structure. In both cases, the compu-
tational complexity is M complex multiplications per
iteration period. However, the later case is more suit-
able for the VLSI implementation, since it has a regular
structure. It is implemented using a set of first order
recursive equations of the form

)
)
)
)

F fgr(n — 1)+
6
m=01,...M —1 (6)

frmt1(n) = pe~
z(n) — pMr(n — M),

samples «10%

() o5 1 15 E) 2.5

Figure 1: Simulation results

p € (0,1) is a stabilization factor that is nsed to com-
pensate for the marginal stability of the original real-
ization, [2].

A transform domain delayed LMS algorithm and ar-
chitecture has been proposed in [7]. That method uses
block processing operations (such as FFT/IFFT’s) and
concepts of multirate filtering to reduce complexity and
increase the throughput rate, at the expense of perfor-
mance degradation. Our method is based on the sam-
ple by sample transform domain LMS adaptive filter,
thus fast convergence rate and tracking characteristics
are retained. The pipelined architectures that are de-
veloped in Section 3, allow the maximum throughput
rate, given a library of computational hardware ele-
ments. They have regular and modular structure, with
local interconnections, being suitable for implementa-
tion of a massively parallel computer or on special pur-
pose VLSI array processors.

The performance of the D-TD-LMS is illustrated by
a typical system identification experiment. Consider an
FIR filter of order M = 128. The impulse response was
a typical impulse response of the acoustic echo path of
a car enclosure. A stationary AR process of order 2,
driven by a white noise signal, was used as an input to
the FIR filter. At the output of the FIR system white
gaussian noise was added, resulting to an SNR equal
to about 30dB. The eigenvalue spread of the sampled
autocorrelation matrix of the input signal which is con-
trolled by the parameters of the AR process, was in our
case 0(10%). Four algorithms have been tested, name-

u(n) u(n) u(n) u(n)
[p2] [p2] [r2] [p2]
f(n) f (n) f.(n) f.(n)

p.(N) p,(n) p.(n) P, (n)

| | |
P5 | P5 | P5 |
C(n) C.(n) c(n) C (n)
Hre | e | Hrs | e |
v(n) e (n) e (n) e (n) e (n) e (n)
]

Figure 2: Data-flow graph of the D-TD-LMS algorithm

ly, the LMS, the D-LMS with a delay D=M-1, the TD-
LMS and the D-TD-LMS with a delay D=M-1. The
filtering error power for each case was computed by av-
eraging the squared instantaneous filtering errors over
an exponentially decaying window with effective mem-
ory equal to 128 time instances. The simulation results
are shown in Figure 1. Clearly, the convergence rate of
the D-LMS algorithm is very slow. On the other hand,
the D-TD-LMS algorithm converges at an acceptable
rate, faster than the LMS algorithm.

3. PIPELINED DELAYED TD-LMS
ARCITECTURES

The data-flow graph of the D-TD-LMS algorithm is
depicted in Figure 2. It is composed by a set of identi-
cal Processing Elements (PE), denoted by P-1 to P-6.
The operations performed by each PE is summarized
in Table 1. PE’s P-1 to P-4 involve feedforward in-
terconnections. Thus, pipelining of these PE’s can be
achieved by placing delay latches in between. On the
other hand, P-5 and P-6 are connected via a long feed-
back loop, and as a result, some extra effort is required
for the pipelining of these elements.

A pipelined architecture can readily be derived by
replacing the serial inner product estimation of the er-

P.E. Operation
P () = () e)
P2 || f(n) = pe? ¥ fn— 1) + u(

pe) + u(n)
P-3 || p(n) = 1()(1)+ 1= M[f(n)]?

P-4) = pf(n)/p(n)
P-5 (n) C(n—1)+ F(n)e*(n)
B6 || ean) = i) — C°(n — D)

Table 1: Computational tasks of the Processing Ele-
ments

ror signal by a binary tree adder scheme. The presence
of the adaptation delay in the error feedback loop of
the original data-flow graph (Figure 2), can be used for
the efficient pipelining of the binary tree adder that es-
timates the error signal, [8]. Obviously, the amount of
adaptation delay that is required for full pipelining of
the D-TD-LMS algorithm is D = [loga(M)] + 1. The
data-flow graph of the pipelined D-TD-LMS algorithm
is shown in Figure 3. Pipeline latches introduced be-
tween the stages of the binary tree adder are depicted
by small black rectangular boxes. Further improve-
ment can be achieved by pipelining PE’s P1 to P3, by
introducing pipelining latches in between, and by de-
laying the input sequence y(n) by the same amount of
time. These latches are depicted by small gray rect-
angular elements. Notice that, PE’s P5 and P6 can
work on parallel. Thus, the critical path is now deter-
mined to be Te = maz{Tp,Tar + Ta} where, Tp is
the time required for the division, and Tjps, T4 is the
time required for the multiplication and the addition
operation, respectively.

In the sequel, an alternative pipelined architecture
for the D-TD-LMS algorithm will be presented, that
avoids the use of a binary tree adder, allowing, thus, for
a systolic implementation. The data-flow graph that is
depicted in Figure 2 consists of M identical columns of
PE’s. Consider the last (i.e. the M-th) column of PE’s.
The delay element that appears at the output of P-6
can be transferred to all three inputs of P-6. The delay
element associated to the error input signal is divided
to two parts, a unit delay (denoted by a solid black box
in Figure 4), and an element that consists of D-1 delays
units. The delay elements associated with the other
two inputs of P-6, are moved upwards to the top of
the data-flow graph, passing through P-5 to P-1. This
movement causes the appearance of a delay element at
the input of P-5, which is decomposed accordingly to
a unit delay and a part that consists of the rest. The
block of D-1 delays that appears in the input of P-5 and
P-5 of the M-th column of PE’s serve as output delays
of the corresponding PE’s of the (M-1)-th column of

u(n) u(n) u(n) u(n)

Figure 3: A pipelined architecture for the D-TD-LMS
using a binary tree adder

PE’s. Thus delay elements are transferred in a similar
way to the output of the first column of PE’s. Each
column of PE’s is fed with a delayed input signal. In
our example, the last column is fed by the signal z(n —
D). Thus, to allow for a full pipelining, D = M —
1 adaptation delays should be introduced to eq. (5).
The resulting architecture is shown in Figure (6). The
critical path in this case is easily shown to be equal to
the former architecture, i.e., To = max{Tp, Tas +Ta }.

Both pipelined architectures are very attractive for
the implementation of the D-TD-LMS algorithm on
massively parallel general purpose computers or on spe-
cial purpose hardware. They both have a regular struc-
ture with local interconnections. The overall perfor-
mance of the D-TD-LMS algorithm, measured by mean-
s of computational complexity, tracking performance
and degree of pipelining, is compared competitively to
other algorithms that have be proposed for high speed
adaptive filtering applications. A comparison among d-
ifferent pipelined adaptive algorithms is given in Table
2, for the case of real and complex data. The complex-
ity is measured by means of real multiplications and
divisions. Notice, that when real data are processed,
the D-TD-LMS algorithm can be implemented using
a half-length signal-flow graph, i.e. (M/2) columns of

Xx(n)
=
u(n) (n)
[e
f (n) f (n)

n) Z

e, (N e (

e (n) e, (n)

Figure 4: Transfer and decomposition of the output
delay elements

X(n)
ﬁ

ik | | I
| | 1 I
(2] [2] [ea]
f(n) f(n) %jf W
I}
e | B9 | B

%:Ip) %:ID, (n) P, (n)
 — Ef | —
] |l e

F () F () F.(n)
|
1

| 1
LT L1
P-5 | Ps5 | P-5 |
Cn C.n cn
P-6 Ll:q‘ P6 H:q‘ P6 | I
v(n) en e n) e e (n e.n

Figure 5: A fully pipelined architecture for the D-TD-
LMS algorithm

Method Real | Complex | D | Latency
D-LMS 2M 8M M| M 0
D-LMS [5] | 5M 20M 0 M
D-TL-MS | 5.5M 16M M M
SGL IM 28M 0 M
LSL 14M 37TM 0 M
Table 2: Comparison among competitive pipelined

adaptive algorithms

PE’s are required in this case, [6].

4. CONCLUSION

In this paper, efficient architectures for the pipelined
implementation of the Transform Domain LMS algo-
rithm have been considered. The pipelined operation of
the algorithm have been achieved introducing a proper
amount of adaptation delay to the original algorithm,
resulting to a Delayed TD-LMS scheme. Two pipelined
architectures have been proposed that allows for full
pipelining of the algorithm, resulting to an adaptation
delay of [log2(M)] + 4 and M + 2, for the first and
the second method, respectively. The critical path has
been reduced to T, = max{Tp,Ta +Ta}.

5. REFERENCES

[1] S. Haykin, Adaptive Filter Theory. Third Edition,
Prentice Hall, 1996

[2] J. Shynk, ’Frequency-domain and multirate adaptive
filtering,” IEEE Signal Processing Magazine, pp. 14-
39, Jan. 1992.

[3] G. Glentis, K. Berberidis, and S. Theodoridis, ’Ef-
ficient least squares adaptive algorithms for FIR
transversal filtering: a unified view,” IEEE Signal Pro-
cessing Magazine, pp. 13-42, July 1999.

[4] H. Herzberg, R. Haimi-Cohen, and Y. Beery, ’A sys-
tolic array realization of an LMS adaptive filter and
the effects of delayed adaptation,” IEEE Trans. Signal
Processing, pp. 2799-2803, Nov. 1992.

[5] S. Douglas, Q. Zhu, and K. Smith, A pipelined LM-
S adaptive FIR filter architecture without adaptation
delay,” IEEE Trans. Signal Processing, pp. 775-779,
Mazrch 1998.

[6] S. Narayan, A.M. Peterson, and M.J. Narasimba,
"Transform domain LMS algorithm,’ IEEE Trans. A-
coust. Speech, Signal Proc., vol. ASSP-31, pp. 609-615,
June 1983.

[7] A. Wu and C. Wu, "Transform-Domain Delayed LMS
algorithm and architecture,” ICCAS-98, pp.V.194-197,
1998

[8] P. Pirsch, Architectures for digital Signal Processing,
Wiley 1996

