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ABSTRACT

Theproblemof placingknown symbolsoptimally for OFDM is
considered.Thechannelis assumedto bequasi-staticwith afinite
impulseresponse.Under the assumptionthat neitherthe trans-
mitterandreceiverknow thechannel,weoptimizethetrainingby
maximizinga lowerboundof themutualinformation.It is shown
thatthelowerboundis maximizedby placingtheknown symbols
periodically. Optimumenergy trade-off betweenthetrainingand
thedatais alsoobtainedandillustratedthroughsimulation.

1. INTRODUCTION

OrthogonalFrequency DivisionMultiplexing (OFDM)hasemerged
asanattractive modulationschemefor high dataratecommuni-
cationsystems.It is beingpresentlyusedin standardslike Digi-
tal VideoBroadcast(DVB) andDigital Audio Broadcast(DAB).
Proposalsfor fourth generationsystemsinclude thosethat use
OFDMasthemodulationscheme.All of thesestandardsmandate
that thedatastreamcontainknown symbols.Theseknown sym-
bolsservevariouspurposessuchastrainingof receivers,synchro-
nization. A significantfractionof theavailablebandwidthmight
beusedfor sendingtheseknown symbolsespeciallyin themobile
communicationsscenariowherethechannelchangesrapidly.

While the insertionof known symbolsleadsto a reduction
in maximumachievabledatarate,it is mandatoryto simplify the
taskof thereceiver. Thedemandfor higherbit ratemotivatesus
to investigateinto optimal designof training. This involves is-
sueslikeamountof training,choiceof training,andplacementof
training. Thefocusof this paperis designingoptimalplacement
schemesof training symbolsfor OFDM systems. Hassibiand
Hochwald [1] have consideredthe optimizationof training and
energy anddatatrade-off for multipleantennasystemsfor theflat
fadingscenario.In this casethe performanceis independenton
theplacementof known symbols.Theproblemof placementbe-
comesimportantfor thecaseof frequency selective fadingchan-
nels.

Wehavepreviouslyconsideredtheproblemof joint optimiza-
tion of symbolplacementandequalizerfor a symbolby symbol
decisionfeedbackreceiver [3]. The performancecriterion used
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was averageMSE. Optimal known symbol placementschemes
thatmaximizethei.i.d mutualinformationbetweentheinputand
the output were consideredin [4] for single carrier and multi-
carriertransmissionsystems.Sincethepurposewasto determine
theeffect of known symbolplacementon detection,thechannel
wasassumedto beknown. It wasshown thatin thesinglecarrier
case,mutual information is maximizedby breakingthe known
symbolsinto smallblocksandplacingthemperiodically. Optimal
known symbolplacementschemesfor singlecarriertransmission
casewhenthe framelengthgoesto infinity with the percentage
of known symbolsis fixedwasdealtwith in [5]. In thisscenario,
sincethenumberof known symbolsgoesto infinity, theassump-
tion thatthereceiver knows thechannelis reasonable.

Knownsymbolplacementschemesfor OFDMhavebeencon-
sideredin [2]. The metric usedfor optimizing the placementis
the meansquareerror of the channelestimate.However, chan-
nel estimationis just onefacetof theproblem.Theplacementof
known symbolsaffectsnotonly thechannelestimatebut alsothe
detection.In this paper, we take theholistic view andtry to opti-
mizetheplacementof known symbolsby maximizingthemutual
information. We assumethat the receiver andthe transmitterdo
notknow thechannel.It is difficult to obtainthemutualinforma-
tion expressionsfor this scenario.Hencewe obtaina tight lower
boundasin [1] that is analyticallytractable.Optimalplacement
of trainingfor singlecarriersystemsunderthesameframework
hasbeenconsideredin [6].

Undertheassumptionthatall thetrainingsymbolshaveequal
energy, we show that the mutualinformationis maximizedby a
simpleplacementscheme.Theknown symbolsareplacedperiod-
ically in theOFDMsymbol.Thatis,wepick equallyspacedtones
for training.This is theplacementschemethatwasalsoobtained
in [2]. It is quiteremarkablethatthisplacementnotonly givesthe
bestchannelestimatebut alsomaximizesthemutualinformation.
This is not truein generalasis evidentfrom our resultsfor single
carriersystems[4].

Thispaperis organizedasfollows. In Section2,weintroduce
the channelmodel and the transmissionsystem. In Section3,
we statethegeneralproblemof optimizingtrainingto maximize
the trainingbasedi.i.d capacityof the system.In Section4, we
introducea tight lower boundfor the i.i.d capacityof thesystem
andthenwestatetheoptimizationproblemin termsof this lower
bound. In Section5 we statethetheoremaboutoptimal training
placementandoptimalenergy trade-off. In Section6 weillustrate
theideasthroughsimulationsandfinally concludein Section7.



2. SYSTEM MODEL
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Fig. 1: SystemModel

In thissectionwegivethechannelmodelanddefinethetrans-
missionmodelfor OFDM. Thesystemmodelis shown in Fig 1.
Thechannel
���� �������	����������������� hasa finite impulseresponse
of length  "!$#�%'& .

Weassumethattapsof thechannel
 arei.i.d complex Gaus-
sianwith zeromeanandvarianceequalto

��)(*�
. The fadingco-

efficients remainconstantfor + symbol periodsand changeto
a new independentvalue. We assumethat the receiver andthe
transmitterdonotknow thefadingcoefficients.Thereceivedsig-
nal is corruptedby additive whitenoisethatis complex Gaussian
with zeromeanandvariance,.-/ . This modeldescribedabove is
an extensionof the quasi-staticflat fadingmodel to quasi-static
frequency selective fading. PSfragreplacements0
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Fig. 2: Transmittersideprocessing

Figure2 shows the processingperformedat the transmitter.
Thesymbolstreamis parsedinto blocksof length  1+324!5& by the
serial to parallel converters(S/P).We call theseblocksOFDM
blocks. This block is passedthrougha InverseDiscreteFourier
Transform(IDFT) matrix. The cyclic prefix (CP)of length ! is
appendedto this block to form a superblock. We thenperforma
parallelto serial(P/S)conversionof thesuperblocksandtransmit
them.Weassumethatthechannelstaysconstantovertheduration
of asuperblock. EachOFDM block is of length  "67#98:& where6 is numberof numberof unknown symbolsand 8 is thenumber
of known symbolsin the OFDM block. This implies that total "6;#<8:& tonesareusedfor transmission.Known symbolsare
introducedin frequency asis thenormfor mostOFDM standards.
Thevector 0 �=� > � � > - ��������� >@?BA (	CED � � is formedby collectingthe
symbolsin eachOFDM block.
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Fig. 3: ReceiverSideProcessing

Figure3 illustratestheprocessingperformedat thereceiver.

At thereceiver, theoutputthatis dueto symbolsfrom two differ-
entOFDM blocksis removed. Theremainingdatais parsedinto
blocksof length  1+G2H!5& by theserialto parallel(S/P)converters
andpassedthrougha DiscreteFourierTransform(DFT) matrix.
Thevector F is formedby collectingtheoutputdueto theblock0 .

Thechannelis completelyspecifiedby the relationbetween
theinput 0 andtheoutput F . Thechannellaw is givenbyIJJJK
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where
O �

is the Y th Fouriercoefficientof the  "6Z#[8:& pointDFT
of thechannel
 . Thatis,IJJJK
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where ] �
is the truncatedunit normDFT matrix of size  "6_#8:&a`b "!c#_%�& . The  "d ��e & th entry of this matrix is given by

�f A (	C4g�h)ikjml -on ? � j �^D ?qp j �^DA (EC . Intuitivelyspeaking,theOFDMtrans-
missionschemeconvertsfrequency selectivefadingin timeto flat
fadingon eachtone. The vector W is additive, white Gaussian
noiseof variance, -/ .

3. PROBLEM STATEMENT

In this sectionwe formulatethe problemof designingoptimal
training. Training symbolsare introducedin 0 to estimatethe
channel
 . We defineasset r , the indicesof the tonesusedfor
trainingandasset rts , theindicesof thetonesusedfor transmit-
ting data. The placementschemeis completelyspecifiedby the
set r . We denoteas 0 � �u v> � � ��������� > C � & � thevectorof symbols
usedfor training. We usethesubscript%�w to representthesmall-
estelementof theset r andsoon. Let 0�x be thevectorof data
symbolsnamely0�x �= v> � x ��������� > A x & � .

Thepowerconstrainton thesystemis formulatedas% "6u#98:&  E y{z 0�x|0'}x #7y{z 0 � 0'}� &~�b%@� (3)

We do not constrainthedataandtrainingpowersto besame.If��x � �A E y{z 0�x�0 }x and � � � �C y{z 0 � 0 }� , thentheabove equation
canbewrittenas 6 ��x #98 � �6Z#[8 �b%@� (4)

In mostOFDM systems,all thetrainingsymbolsareconstrained
to beof thesameenergy. Henceweassumethat � > � � � - � � � � Y��% ��������� 8 .

Werestrictourselvesto receiversof thestructuregivenin Fig-
ure4. We assumethat thereceiver formstheMMSE estimateof
the channelusingonly training. The receiver thenusesF x and
the MMSE estimate �� to performthedecoding.Suchreceivers
are computationallysimple, analytically tractableand are used
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in practicalsystems.The i.i.d capacityof thesystem[7] is then
equalto �  �r � ��x � � � � 0 � &��� ��� h�o��� �"� � ?q� � D��  FEx � ��3� 0�x & (5)

wherethe probability distribution � �"� ��� x  0�x & and the training 0 �
aresuchthattheinputpowerconstraintis satisfied.

Ourobjectivethenis to obtainoptimalplacementschemer�� ,
optimalenergy trade-off  � �x � � �� & andoptimaltrainingsymbols0 ��
as  �r � � � �x � � �� � 0 �� &�� arg ��� h�5� � � � ����� � � �  �r � ��x � � � � 0 � &T� (6)

4. LOWER BOUND ON TRAINING-BASED CAPACITY

In thissectionweobtaina tight lowerboundfor

�  �r � ��x � � � � 0 � &
andoptimizetrainingwith respectto thisbound.Wehave�  �r � 0 � � � x � � � &�� ��� h� �"� ��� � ?q� � D��  F x � 0 x �'�� &E# �  ���$� 0 x &Q RTS U� �� ��� h� �"� ��� � ?q� � D��  F	x � 0�x �'�� & � (7)

becausethe MMSE estimate �� is independentof 0 x . The rela-
tionshipbetweenF	x and 0�x is givenbyF x � IJK O
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ThiscanberewrittenasF	x �£�� x'0�x #¥¤� x�0�x #9W xQ RTS U¦ � (9)

where �� x is the estimateof
� x and ¤� x is the error in the es-

timate. It is difficult to evaluatethe i.i.d capacitybecausethe
distributionof ¦ x is difficult to characterize.Thereforeweobtain
a lower boundon the i.i.d channelcapacitythenreformulatethe
problemof optimizationin termsof this lower bound.We obtain
the lower boundby letting the probability distribution of ¦ x be
that of the worst possiblenoise[1] amongthe classof the dis-
tributionsthat have the samefirst andsecondorderstatisticsas¦ x .

It is easyto seethat ¦ x is zeromean.Theauto-correlationof¦ x is givenby§ ¦ � E ¤� x�0�x�0'}x ¤� }x # E W x W }x (10)� � x §©¨ #9, -/.ª (11)

(12)

Thematrix

§©¨
is diagonalsincethesymbols> �Tx and > p x areinde-

pendentfor dG«� e . Wealsonotethatthenoise ¦ x is uncorrelated
to thesignal �� x�0�x . This is becausetheerror ¤¬ x is uncorrelated
with �¬ x (propertyof theMMSE estimate).

It canbeshown, asin [1], thattheworstcasenoisethenhasa
Gaussianprobabilitydistributionthatis independentof thesignal.
Thereforewehave�  �r � ��x � � � � 0 � &®­ � pq¯  �r � ��x � � � � 0 � & (13)� pq¯  �r � ��x � � � � 0 � & �� E °B±|² det ³ ª # ��x § j �¦ �� x �� }xµ´
wheretheexpectationis with respectto therandomvariable �� x .
At low SNR,theprobabilitydistributionof ¦.x is in factGaussian.
This expectsusto believe thattheboundis tight at low SNR.We
conjecturethatusingthesameargumentsasin [1] we canshow
thattheboundis tight at highSNR.

5. OPTIMAL TRAINING

In this sectionwe optimize the placementby maximizing the
lower boundon capacity. We find that

� pq¯  �r � ��x � � � � 0 � & is in-
dependentof 0 � aslongasweuseequalenergy trainingschemes.
We can thereforeexclude 0 � asan argumentof

� pq¯ andobtain
optimaltraining  �r�� � � �x � � �� & as �r � � � �x � � �� &�� arg ��� h��� � � � � � � pq¯  �r � ��x � � � & (14)

We thenhave thefollowing theorem.

Theorem 1 Under the assumption that 6��·¶k8 , and 8¸­ "!$#�%'& , all the following placements are optimalr � �<¹'Y � YT#º¶X#»% � Y�#½¼� �¶X#»%�& ��������� YT#4 "842½%�&� �¶X#»%'&�¾ (15)

where Y can take values from 1 to  �¶¥#Z%'& . For any of these
placements the lower bound is given by� pq¯  �r � � ��x � � � &~�¿6 E °À±@²©Á�%t# ��x, -/ 8 � � OmO �8 � � #Â "!H#c%'&� ��x #9, -/ &@Ã

(16)
where

O
is a complex Gaussian random variable with zero mean

and unit variance. The optimal energy distribution is given by� �x �  ^Ä Å�2 \ Å�2[%�& Ä ÅÆ� �� �  ^Ä Å�2 \ Å�2[%�& %Ä � d � (17)

(18)

where

� � C?BA (EC	D , Æ � A?BA (	CED , d»� C ?BA j � j �^D? �)(*�^D ?1?BA (ECED1( A~Ç�ÈÉ D andÅ4�ËÊ� #c% .
Proof : Referto [6].

It wasshown in [2] thatthesamesetof placementsminimizes
the meansquareerror in the estimateof 
 . It shouldbe noted
that this doesnot imply that theseplacementsshouldminimize
� pq¯  �r � � x � � � & . Indeedthereexist placementssuchthatsomedata
toneshavea lowerMSEthanthatwith r � .



6. SIMULATION

Figure5 showsthevariationof

� pq¯ with thepercentageof known
symbolsat SNR=20dB.Figure 6 show the sameat an SNR of
0dB. In eithercasewe plot thecurvesfor both ��x � � � �7% and
also ��x � � � optimizedcase. We assumethat the optimal known
symbol placementschemeis usedwhen 8 is a multiple of 6 .
It shouldbe notedfor somevaluesof 8 , it might not be possi-
ble to placetheknown symbolsperiodically. We find thatwhen
we optimize ��x , � � thelower boundis maximizedby makingthe
numberof known symbolsassmallaspossiblewhich in thiscase
is equalto  "!3#¿%'& . For theequaltraininganddataenergy case,
thelowerboundfirst risesfast, reachesamaximumandthenfalls
at a slower rate.We find that ,asexpected,theoptimumpercent-
ageof known symbolsdecreaseswith increasingSNR.At high
SNR,thegainin optimizing ��x � � � is minimal.

Figure7 shows thevariationof thelowerboundasthecoher-
enceinterval of the channelincreasesfor both ��x � � � optimized
and � x � � � �¥% cases.We find that as + increasesthe lower
boundconvergesto thevalueof theknown channelcapacity. This
impliesthatat large + , capacitycanbeachievedby training.

7. CONCLUSIONS

Undertheassumptionthatthereceiver formstraining-onlybased
MMSE estimateof thechannel,we obtainedtheoptimalknown
symbolplacementschemesthatmaximizea tight lowerboundon
mutualinformationfor OFDM systems.We find that themutual
information is maximizedby selectingequally spacedsymbols
astraining. It is surprisingthatsucha simpleplacementhasthe
optimalityproperty. Wealsoobtainoptimumenergy trade-off be-
tweendataandtraining. We find from simulationsthatwhenwe
optimizedataandtrainingenergy ��x , � � thelowerboundis max-
imized by making 8 assmall aspossible. Whenwe constrain
ourselvesto equaltraininganddataenergy case,thelowerbound
reachesmaximumat a particularpercentageof known symbols.
Thisoptimumpercentagedecreaseswith SNR.Fromsimulations,
wefind thatasthecoherenceinterval of thechannelgoesto infin-
ity trainingis optimal.Thatis we canachieve thecapacityof the
channelwith training.
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Fig. 5: Variationof lowerboundwith percentage
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