OPTIMAL EMBEDDING OF KNOWN SYMBOLSFOR OFDM

Srihari Adireddy and Lang Tong

Schoolof ElectricalEngineering
CornellUniversity
Ithaca,NY 14853

{srihari,ltong @ee.cornell.edu

ABSTRACT

The problemof placingknovn symbolsoptimally for OFDM is

consideredThechannels assumedo bequasi-statiavith afinite

impulseresponse.Underthe assumptiorthat neitherthe trans-
mitterandreceverknow the channelwe optimizethetrainingby

maximizingalower boundof themutualinformation.It is shavn

thatthelower boundis maximizedby placingtheknovn symbols
periodically Optimumenenpy trade-of betweerthetrainingand
thedatais alsoobtainedandillustratedthroughsimulation.

1. INTRODUCTION

OrthogonaFrequenyg Division Multiplexing (OFDM) hasemeged
asan attractve modulationschemefor high datarate communi-
cationsystemslt is beingpresentlyusedin standarddike Digi-
tal VideoBroadcas{DVB) andDigital Audio Broadcas{DAB).
Proposaldor fourth generationsystemsinclude thosethat use
OFDM asthemodulationschemeAll of thesestandardsnandate
thatthe datastreamcontainknown symbols. Theseknown sym-
bolssene variouspurposesuchastrainingof recevers,synchro-
nization. A significantfractionof the available bandwidthmight
beusedfor sendingheseknowvn symbolsespeciallyin themobile
communicationscenariovherethe channekchangesapidly.

While the insertionof known symbolsleadsto a reduction
in maximumachievabledatarate,it is mandatoryto simplify the
taskof therecever. The demandor higherbit ratemotivatesus
to investigateinto optimal designof training. This involvesis-
suedike amountof training,choiceof training,andplacemenbf
training. Thefocusof this paperis designingoptimal placement
schemef training symbolsfor OFDM systems. Hassibiand
Hochwald [1] have consideredhe optimizationof training and
enepgy anddatatrade-of for multiple antennaystemsor theflat
fadingscenario.In this casethe performances independenbn
the placemenbf knowvn symbols.The problemof placemenbe-
comesmportantfor the caseof frequeny selectve fadingchan-
nels.

We have previously consideredheproblemof joint optimiza-
tion of symbolplacementindequalizerfor a symbolby symbol
decisionfeedbackrecever [3]. The performancecriterion used
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was averageMSE. Optimal known symbol placementschemes
thatmaximizethei.i.d mutualinformationbetweertheinputand
the outputwere consideredn [4] for single carrier and multi-
carriertransmissiorsystemsSincethe purposevasto determine
the effect of knowvn symbolplacemenbn detectionthe channel
wasassumedo beknown. It wasshavn thatin the singlecarrier
case,mutual informationis maximizedby breakingthe knovn
symbolsinto smallblocksandplacingthemperiodically Optimal
known symbolplacemenschemesor singlecarriertransmission
casewhenthe framelengthgoesto infinity with the percentage
of knawn symbolsis fixedwasdealtwith in [5]. In this scenario,
sincethe numberof knowvn symbolsgoesto infinity, theassump-
tion thattherecever knows the channels reasonable.

Known symbolplacemenscheme$or OFDM have beencon-
sideredin [2]. The metric usedfor optimizing the placemenis
the meansquareerror of the channelestimate. However, chan-
nel estimationis just onefacetof the problem. The placemenbf
known symbolsaffectsnot only the channelestimatebut alsothe
detection.In this paper we take the holistic view andtry to opti-
mizetheplacemenbf known symbolsby maximizingthemutual
information. We assumehatthe recever andthe transmitterdo
notknow thechannellt is difficult to obtainthe mutualinforma-
tion expressiondor this scenario.Hencewe obtainatight lower
boundasin [1] thatis analyticallytractable.Optimal placement
of trainingfor singlecarriersystemainderthe sameframework
hasbeenconsideredn [6].

Undertheassumptiorthatall thetrainingsymbolshave equal
enepgy, we shav thatthe mutualinformationis maximizedby a
simpleplacemenschemeTheknown symbolsareplacedperiod-
ically in theOFDM symbol. Thatis, we pick equallyspacedones
for training. This is the placemenschemedhatwasalsoobtained
in [2]. It is quiteremarkablehatthis placemennotonly givesthe
bestchannekstimatebut alsomaximizeghe mutualinformation.
Thisis nottruein generahsis evidentfrom our resultsfor single
carriersystemg4].

This papetis organizedasfollows. In Section2, weintroduce
the channelmodel and the transmissionsystem. In Section3,
we statethe generalproblemof optimizingtrainingto maximize
the training based.i.d capacityof the system.In Section4, we
introducea tight lower boundfor thei.i.d capacityof the system
andthenwe statethe optimizationproblemin termsof this lower
bound. In Section5 we statethe theoremaboutoptimaltraining
placementindoptimalenegy trade-of. In Section6 weillustrate
theideasthroughsimulationsandfinally concludein Section?.



2. SYSTEM MODEL
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Fig. 1: SystemModel

In thissectionwe give thechannemodelanddefinethetrans-
missionmodelfor OFDM. The systemmodelis shawvn in Fig 1.
Thechannelh = [ho, h1,- - - hz]" hasa finite impulseresponse
of length(L + 1).

We assumeéhattapsof thechanneh arei.i.d complex Gaus-
sianwith zeromeanandvarianceequalto ﬁ Thefadingco-
efficients remainconstantfor 7' symbol periodsand changeto
a new independentalue. We assumehat the recever andthe
transmitterdo notknow thefadingcoeficients. Therecevedsig-
nalis corruptedby additive white noisethatis complex Gaussian
with zeromeanandvariances?,. This modeldescribedabove is
an extensionof the quasi-statidlat fadingmodelto quasi-static
frequenyg selectve fading.
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Fig. 2: Transmittersideprocessing

Figure 2 shaws the processingperformedat the transmitter
Thesymbolstreamis parsednto blocksof length(T' — L) by the
serialto parallel corverters(S/P). We call theseblocks OFDM
blocks. This block is passedhrougha InverseDiscreteFourier
Transform(IDFT) matrix. The cyclic prefix (CP) of length L is
appendedo this block to form a superblock. We thenperforma
parallelto serial(P/S)conversionof the supetblocksandtransmit
them.We assumehatthechannektaysconstanbvertheduration
of asuperblock. EachOFDM blockis of length(N + P) where
N is numberof numbemf unknavn symbolsandP is thenumber
of knawn symbolsin the OFDM block. This implies that total
(N + P) tonesare usedfor transmission.Known symbolsare
introducedn frequeng asis thenormfor mostOFDM standards.
Thevectors = [s1, sz, -, S(v+p)]" is formedby collectingthe
symbolsin eachOFDM block.
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Fig. 3: Recever SideProcessing

Figure3 illustratesthe processingerformedat the recever.

At therecever, theoutputthatis dueto symbolsfrom two differ-
entOFDM blocksis removed. Theremainingdatais parsednto
blocksof length(T" — L) by theserialto parallel(S/P)corverters
andpassedhrougha DiscreteFourier Transform(DFT) matrix.
Thevectory is formedby collectingthe outputdueto the block
S.

The channelis completelyspecifiedby the relationbetween
theinputs andthe outputy. Thechannelaw is givenby

Y1 d 0 .- 0 S1
Y2 0 do 0 S2
. = . +w
YN+P 0 dnyp SN4+P
D
1)
th

whered; isthei"" Fouriercoeficientof the (IV + P) pointDFT
of thechanneh. Thatis,

d1
d2
= (N + P)W;h )
dn+p

whereW , is thetruncatedunit norm DFT matrix of size (N +
P) x (L +1). The (k,l)th entry of this matrix is given by
NP OXP —i2n(=DE=D) ntuitively speakingthe OFDM trans-
missionschemeorvertsfrequeng selectve fadingin timeto flat
fadingon eachtone. The vectorw is additive, white Gaussian
noiseof variances?.

3. PROBLEM STATEMENT

In this sectionwe formulatethe problemof designingoptimal
training. Training symbolsare introducedin s to estimatethe
channelh. We defineassetP, theindicesof the tonesusedfor
trainingandassetP,., theindicesof thetonesusedfor transmit-
ting data. The placemenschemds completelyspecifiedby the
setP. We denoteass; = (s1t,---,sps)’ thevectorof symbols
usedfor training. We usethe subscriptlt¢ to representhe small-
estelementof the setP andsoon. Lets; be the vectorof data

symbolsnamelys; = (s1a,- -+, 5na)’.
The power constrainion the systemis formulatedas
1 H H
—(E trsgsy + trsgs; ) = 1. 3
(N + P)( dSd tS¢t ) ( )

We do not constrainthe dataandtraining powersto be same.If
pa = +E trsqgsy andp, = 5 trss{’, thentheabove equation

canbewrittenas
Npaq + Pp;

N+P
In mostOFDM systemsall the training symbolsareconstrained
to beof thesameenegy. Hencewe assumehat|s;:|* = p;, 4 =
1,.--,P.

Werestrictourselesto receversof thestructuregivenin Fig-
ure4. We assumehatthe recever formsthe MMSE estimateof
the channelusingonly training. The recever thenusesy, and
the MMSE estimateD to performthe decoding. Suchrecevers
are computationallysimple, analytically tractableand are used

=1 (4)
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Fig. 4: Recever Structure

in practicalsystems.Thei.i.d capacityof the system[7] is then
equalto

max I(yq, ]5; Sd) 5)

fii.d(sa

C(Papdaptvst) é

wherethe probability distribution f; ;. 4(sq¢) andthe training s;
aresuchthattheinput powver constraints satisfied.

Ourobjectivethenis to obtainoptimalplacemenschemeP™,
optimalenegy trade-of (p, p; ) andoptimaltrainingsymbolss;
as

(lp*vprivpzst) = ag max C(P,pd,Pt,st)- (6)

P,pd,pt St

4. LOWER BOUND ON TRAINING-BASED CAPACITY

In this sectionwe obtaina tight lower boundfor C(P, pq, pt, st)
andoptimizetrainingwith respecto thisbound.We have

C(P,st,paspt) = max I(yd;sd|15)+I(]5;sd)
fii.a(sa) N——
=0
= max I(yg; sd|]5), )
fii.a(sa)

becausehe MMSE estimateD is independendf s;. Therela-
tionshipbetweeny; ands, is givenby

dig S14 w1
Vo= S I R )

dnd SNd WNd

D, w4

This canberewritten as

ya = Dasq + Dasg + wy 9
————

V,

Wheref)d is the estimateof D, and Dy is the errorin the es-
timate. It is difficult to evaluatethe i.i.d capacitybecausehe
distribution of v is difficult to characterizeThereforewe obtain
alower boundon thei.i.d channelkcapacitythenreformulatethe
problemof optimizationin termsof this lower bound.We obtain
the lower boundby letting the probability distribution of »4 be
that of the worst possiblenoise[1] amongthe classof the dis-
tributionsthat have the samefirst and secondorder statisticsas
Vy.

It is easyto seethaty 4 is zeromean.Theauto-correlatiorof
v4 is givenby

Ry = E ﬁdsdsgf)f +E def (10)
paR. + 051 (11)
(12)

ThematrixR. is diagonakincethesymbolssyy ands; 4 areinde-
pendenfor k£ # . We alsonotethatthenoiser, is uncorrelated
to the signalﬁdsd. This is becausehe errord, is uncorrelated
with dg (propertyof the MMSE estimate).

It canbeshawn, asin [1], thattheworstcasenoisethenhasa
Gaussiamprobabilitydistributionthatis independenof thesignal.
Thereforewe have

Cw(P, pa, pt,st) (13)

C(Papdaptast) 2
A 1A ~
2 E logdet (1 + paRy DDE )

Clb(Pa Pdy Pty St)

wherethe expectationis with respecto therandomvariableD,.
At low SNR,theprobabilitydistributionof v 4 is in factGaussian.
This expectsusto believe thatthe boundis tight atlow SNR.We
conjecturethatusingthe sameamgumentsasin [1] we canshav
thattheboundis tight at high SNR.

5. OPTIMAL TRAINING

In this sectionwe optimize the placementby maximizing the
lower boundon capacity We find that Cy,(P, pa, pt, s¢) iS in-
dependentf s; aslong aswe useequalenegy trainingschemes.
We canthereforeexclude s; asan agumentof Cj, andobtain
optimaltraining (P*, p3, p; ) as

(P": pa, pi) = ag_max Ci(P, pa, pe) (14)
sPd Pt

We thenhave thefollowing theorem.

Theorem 1 Under the assumption that N = mP, and P >
(L + 1), all the following placements are optimal

P = {i,i+m+1,i+2(m+1), -+, i+(P—-1)(m+1)} (15)

where 4 can take values from 1 to (m + 1). For any of these
placements the lower bound is given by

* Pd Pptdd* )
Cis(P*, pa, pt) = NE log (1 + P2
WP, pa; pr) "g( * 52 Bp ¥ (T + D(pa ¥ 03)
(16)

where d is a complex Gaussian random variable with zero mean
and unit variance. The optimal energy distribution is given by

; (ﬁ—\/v—l)?

pa =
1
- Ao —. 17
(18)
_ _ _ P(N—L-1)
where h = i py . 9 = wry k= mrv e ey ad
v = % +1.

Proof : Referto [6].

It wasshavn in [2] thatthesamesetof placementsninimizes
the meansquareerror in the estimateof h. It shouldbe noted
that this doesnot imply that theseplacementshould minimize
Ci(P, pa, pt). Indeedthereexist placementsuchthatsomedata
toneshave alower MSE thanthatwith P*.



6. SIMULATION

Figure5 shavs thevariationof Cj;, with the percentagef knowvn
symbolsat SNR=20dB.Figure 6 shav the sameat an SNR of
0dB. In eithercasewe plot the curvesfor bothpg = p; = 1 and
alsopg, p: optimizedcase. We assumehat the optimal known
symbol placementschemeis usedwhen P is a multiple of V.
It shouldbe notedfor somevaluesof P, it might not be possi-
ble to placethe known symbolsperiodically We find thatwhen
we optimizepq, p: thelower boundis maximizedby makingthe
numberof knovn symbolsassmallaspossiblewhichin this case
is equalto (L + 1). For theequaltraininganddataenegy case,
thelowerboundfirst risesfast, reachesmaximumandthenfalls
ataslower rate. We find that ,asexpected the optimumpercent-
ageof known symbolsdecreasewvith increasingSNR. At high
SNR,thegainin optimizing pg, p: is minimal.

Figure7 shavs thevariationof thelower boundasthecoher
enceintenal of the channelincreasegor both p4, p: optimized
andpgs = p; = 1 cases.We find thatasT increaseshe lower
boundconvemesto thevalueof theknown channekapacity This
impliesthatatlargeT’, capacitycanbeachiezedby training.

7. CONCLUSIONS

Undertheassumptiorthattherecever formstraining-onlybased
MMSE estimateof the channelwe obtainedthe optimal known

symbolplacemenschemeshatmaximizeatight lowerboundon

mutualinformationfor OFDM systems We find thatthe mutual
informationis maximizedby selectingequally spacedsymbols
astraining. It is surprisingthat sucha simpleplacemenhasthe
optimality property We alsoobtainoptimumenegy trade-of be-
tweendataandtraining. We find from simulationsthatwhenwe

optimizedataandtrainingenegy pq, p: thelower boundis max-
imized by making P as small as possible. Whenwe constrain
oursehesto equaltraininganddataenepgy casethelower bound
reachesnaximumat a particularpercentag®f knovn symbols.
Thisoptimumpercentagdecreasewith SNR.Fromsimulations,
wefind thatasthecoherencéntenal of thechanneoesto infin-

ity trainingis optimal. Thatis we canachie/e the capacityof the

channebith training.
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Fig. 5: Variationof lower boundwith percentage
of known symbolsat SNR=0dB, T = 155
andL = 3.
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Fig. 6: Variationof lower boundwith percentage
of known symbolsat SNR= 20dB,
T =155andL = 3.

Variation of Lower Bound with Coherence Time, SNR=20dB,L=3

Fig. 7: Variationof lower boundwith coherence
interval at SNR= 20dBandL = 3



