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Abstract
This paper presents two fundamental enhancements in a

hybrid audio signal model consisting of sinusoidal, transient,

and noise (STN) components.  The first enhancement

involves a novel application of a perceptual metric for

optimal time segmentation for the analysis of transients.  In

particular, Moore and Glasberg’s model of partial loudness is

modified for use with general signals and then integrated into

a novel time segmentation scheme. The second and perhaps

more significant STN enhancement is concerned with a new

methodology for ranking and selection of the most

perceptually relevant sinusoids.

1. Introduction
Signal-adaptive modeling has recently been adopted in

sinusoidal modeling algorithms [1,2,3]. Existing work [3,4]

has addressed multi-resolution analysis. The enhancement to

the existing STN model proposed in this paper attempts to

eliminate computationally expensive and bit allocation

intensive filter banks from the STN model.  These hybrid

structures are replaced with combined use of sinusoidal

analysis and perceptually-controlled time segmentation

scheme that activates short analysis windows only during

transient events that are judged to be unmasked.

The paper essentially presents two new methods for

perceptual segmentation and selection of sinusoids in hybrid

(STN) sinusoidal modeling of audio. The first contribution of

this paper is that it adopts a perceptual metric for optimal

time segmentation for the analysis of transients. The second

and perhaps more significant STN contribution deals with a

new methodology for ranking and selection of the most

perceptually relevant sinusoids.  The idea behind the method,

known as Excitation Similarity Weighting (ESW), is to

maximize the matching between the auditory excitation

pattern associated with the original signal and the

corresponding auditory excitation pattern associated with the

modeled signal that is being represented by only a few

sinusoidal parameters.  The reconstruction quality provided

by ESW is compared against a quality benchmark associated

with the maximum signal-to-mask ratio (maximum SMR)

methodology. The ESW component selection methodology is

shown to outperform the maximum SMR selection strategy

in terms of both objective and subjective quality.

The paper is organized as follows.  First, a review of the

classical sinusoidal model is given in section 2.  Section 2.2

presents the STN extensions to the basic sinusoidal model

and verification results for the partial loudness adaptation

metric along with an enhanced partial loudness time

segmentation scheme for processing of transients.  Finally,

section 2.3 describes strategies for STN model pruning and

the ESW sinusoidal component selection methodology.

Sample results are given for application of the method to a

spectrally complex signal.

2. The Hybrid Adaptive Sinusoidal Model:  Sines +
Transients + Noise (STN)

The classical sinusoidal model comprises an analysis-

synthesis framework [5] that represents a signal, ( )ns , as the

sum of a collection of K  sinusoids (“partials”) with time-

varying frequencies, phases, and amplitudes, i.e.,
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where ( )nAk  represents the amplitude, ( )nkω  represents the

instantaneous frequency, and ( )nkφ  represents the

instantaneous phase of the 
thk  sinusoid. Estimation of

parameters is typically accomplished by peak picking the

short-time Fourier transform (STFT) [5]. In the synthesis

stage, the model parameters are subjected to spectral line

tracking and frame-to-frame amplitude and phase

interpolation.

Although the basic sinusoidal model achieves efficient

representation of harmonically structured signals, extensions

to the basic model have also been proposed for signals

containing non-tonal energy [6] The spectral modeling and

synthesis system (SMS) treats audio as the sum of K
sinusoids along with a stochastic component, ( )ne , i.e.,
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Although the sines + noise signal model gave improved

performance, the addition of transient comp onents giving rise

to a three-part model consisting of sines + transients + noise

(STN) [4,7] (Fig. 1) provides additional enhancements.  In

fact, the focus and the contribution of this paper is on
_________________________________________________
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optimization of the STN model for a scalable audio coding

application [8].
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Fig. 1. Sines+Transients+Noise Model (STN).

2.1 STN Adaptive Time/Frequency Analysis

Signal-adaptive modeling has recently been adopted in

sinusoidal analysis-synthesis algorithms [3,4]. The

enhancement to the existing STN model [4] proposed in this

paper is a perceptually controlled time segmentation scheme

that activates short analysis windows only during transient

events that are judged to be unmasked.  The transients are

detected via an energy threshold combined with a partial

loudness edge detection scheme that operates on the

sinusoidal modeling residual. Both masked and unmasked

transients can potentially trip the energy threshold detector,

but masked transients have a significantly lower impact on

residual noise loudness than unmasked transients.  The

advantage of the proposed system is that it avoids overly

conservative coding of masked transients.

2.2 STN Transient Processing and Partial Loudness
Metric Verification

The proposed transient detection scheme uses Moore

and Glasberg’s Partial Loudness (PL) model to measure the

partial loudness of the modeling residual in each frame.

Perceptually relevant (unmasked) transients are detected

when the partial loudness (in Sones) exceeds the mean

loudness of previous  frames by a factor of 2.0 to 2.7.

Because it is necessary to make modifications to the partial

loudness model for audio signals, a series of verification tests

were conducted and masking and loudness predictions were

compared against well-established psychophysical listening

tests. The modified model predictions were tested for noise-

masking-tone experiments in which a series of tones were

masked by a 90 Hz narrowband masker centered at 410 Hz,

with the masker presented at levels of 40, 60, and 80 dB SPL.

Model predictions were compared against the data reported

by Egan and Hake [9].  A noise loudness of  0.003 Sone was

assumed to correspond to the masked threshold for the probe

tones.  In all cases the model predictions were consistent with

the experimental data. A sample result appears in Fig. 2.  A

second set of experiments was conducted to measure equal

loudness contours and minimum audible field (MAF)

predictions.
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Fig. 2.  Masking predictions on noise masking
experiment for 60 dB SPL 90 Hz bandwidth noise masker
centered at 410 Hz.

The results compared favorably against ISO 389-7:1996(E).

The performance trends exhibited in these tests as well as in

informal listening tests with more complex auditory stimuli

instilled confidence in the metric to the extent that it was

judged to be a good predictor of partial loudness.  A

perceptually salient transient processing scheme was devised

with this PL metric as the core processing block.  Additional

simulations [8] demonstrated the complete processing chain

of the proposed transient detection and pre-echo

compensation scheme.  It was shown that the transient

processor is able to identify the most perceptually significant

transients, and that the scheme provides a natural scaling

mechanism for low rate applications.  Transients are ranked

in terms of partial loudness, and then bits are allocated to the

transient events in order of significance.  The results of

informal listening tests confirmed that the method provided a

valid perceptual ranking of transient salience.  After transient

processing, the sinusoidal+transient modeling residual is

captured using an FFT-based  Bark-band structure [4].

2.3 Compact Representation of STN Parameters

The second and most significant STN enhancement

proposed in this paper is concerned with the ranking and

selection of perceptually relevant sinusoids on a compact set.

We call this the Excitation Similarity Weighting (ESW)

ranking and selection procedure.   Whereas current coders

tend to choose maximum signal-to-mask ratio components

and therefore base the selection decision on the masked

threshold associated with the original signal, the ESW

methodology seeks to maximize the matching between the

excitation patterns evoked by the coded and original signals

on a short-time basis.  In this way, ESW does not seek to

satisfy noise threshold criteria.  In contrast to ESW, the

maximum SMR selection criterion does not guarantee

maximal matching between the modeled and the original

excitation patterns [8].  The idea behind the ESW technique



is to select sinusoids in such a way that each new sinusoid

added to a modeled representation is guaranteed to provide a

maximum incremental gain in matching between the auditory

excitation pattern associated with the original signal and the

corresponding auditory excitation pattern associated with the

modeled signal.  In order to accomplish this goal, an iterative

process is proposed in which each sinusoid extracted during

conventional analysis is assigned an excitation similarity

weight. During each iteration, the sinusoid having the largest

weight is added to the modeled representation.  New

sinusoids are accumulated until some constraint is exhausted,

e.g., a bit budget. The algorithm tends to converge as the

number of modeled sinusoids increases.  The ESW sinusoidal

component selection strategy (Fig. 3) works as follows.

First, a complete set of sinusoids is estimated using the

STFT.  Then, a reference excitation pattern is computed for

the original signal in a manner similar to the method outlined

in the description of PERCEVAL [10].  The pattern may

contain up to 2500 discrete excitation levels that correspond

to assumed discrete detectors along the basilar membrane.

An iterative ranking procedure is performed next.  The

objective on the k-th iteration is to extract from the candidate

set the most perceptually salient sinusoid, given the previous

k-1 selections.  The method assumes that maximum

perceptual salience is associated with the component able to

affect the greatest improvement in matching between the

excitation pattern associated with the original signal and the

excitation pattern that is associated with the modeled signal.

To select from among the candidates during the k-th

iteration, a complete set of candidate excitation patterns is

computed, one each for the patterns associated with the

modeled signal containing the first k-1 selected sinusoids, as

well as each of the candidates currently available.  The

candidate that minimizes the difference between the

reference and modeled excitation patterns is selected for the

k-th iteration.  The resulting sinusoidal parameters of the best

candidate are passed to the trajectory tracking and model

pruning components.  The core ESW calculation comprises

an average difference calculation that operates on the

reference and test excitation patterns.  In particular, the

average difference, k∆ , between the original (reference) and

the test patterns on the 
thk  iteration is given by
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where ( )iE  is the reference excitation pattern level (in dB),

( )iX k  is the level (in dB) any of the candidate test excitation

patterns on the 
thk  iteration, and D  is the number of

detectors.  Therefore, for each pattern, the improvement in

matching on the 
thk  iteration for each candidate pattern,

( )iX k , is given by
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Fig. 3.  The ESW scheme.

The ESW technique computes the matching improvement for

all candidate patterns during the 
thk  iteration and selects the

component that maximizes Eq. 4.  Once the best candidate

pattern, ( )iX k
*

, has been identified on the 
thk  iteration (in

the sense of maximizing Eq. (4), an excitation similarity

weight is assigned to the sinusoidal component that provided

the maximum incremental matching improvement.  The ESW

assigned to the 
thk  component is

kkkESW ∆−∆= −1         (5)

2.4 Comparison of ESW Versus Maximum SMR

For validation, the ESW component selection and

ranking scheme was compared against a reference maximum-

SMR selection scheme over a diverse collection of audio

program material. The ESW based output samples generated

from STN model parameters consistently outperformed the

SMR based audio samples in terms of both subjective

informal listening tests and objective evaluations using the

partial loudness model described earlier.  We give here

sample comparative results in graphical format for a selection

of rock music that was judged to be spectrally complex and

therefore challenging for a low rate coding application. The

pair of figures shown provides insight on how the ESW

methodology selects components in contrast to the maximum

SMR methodology. These comparative results (Fig. 4) show

a spectral view corresponding to 23 milliseconds of audio.

The vertical arrows in both figure panels correspond to the

complete set of sinusoids returned by classical sinusoidal

analysis.  The dashed line corresponds to a short-time

spectral estimate (magnitude FFT) mapped to SPL, and the

solid line corresponds to an estimate of the masked threshold

generated by the MPEG-1 psychoacoustic model 2.

Sinusoids labeled in panel (a) of the figure were selected on

the basis of maximum SMR.  Each of the selected sinusoids

is labeled with its rank, one through ten, and its SMR, in dB.

It is clear from the figure that the ranking is in terms of



descending SMR.  This ranking corresponds directly to the

currently popular method of sinusoid selection.  Panel (b) of

the figure shows the selection process for the ESW

methodology.  In this figure, each of the ten selected

sinusoids is labeled with its rank and ESW score (Eq. 5).  A

comparison of the figures reveals that the ESW method tends

to choose sinusoids across the spectrum, whereas the

maximum SMR method tends to choose sinusoids of higher

energy that are clustered at lower frequencies.  This trend

was manifested across time in the given example and also

across many musical selections.
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Fig. 4.  Comparison of sinusoidal component pruning
methodologies:  (a) Maximum SMR selection; (b)
Maximum ESW selection.

3.  Concluding Remarks
The enhancements in sinusoidal selection have been shown

to lead to several methods for achieving compact

representations of ESW-ranked sinusoidal components.

Perhaps the most intuitive is that of thresholding on the basis

of a minimum ESW.  All sinusoids below the minimum ESW

can be discarded.  Because ESW ranks components in order

of their impact on excitation pattern matching, the threshold

can be used as a rate or quality scaling factor.

Experimentation with trajectory ranking by individual

component as well as minimum, mean and maximum ESW

over time has also shown significant promise in informal

listening tests for pruning the set of trajectories that are

generated during STN analysis. Pruning mean ESW

components below a certain threshold has in some cases

reduced the number of trajectories by 15 to 20% without

audible impact.
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