Perceptual Segmentation and Component Selection in Compact
Sinusoidal Representations of Audio”

Ted Painter
Intel Corporation HD2-230
Handheld Computing Division
77 Reed Road Hudson, MA 01749

Abstract

This paper presents two fundamental enhancements in a
hybrid audio signal model consisting of sinusoidal, transient,
and noise (STN) components. The first enhancement
involves a novel application of a perceptual metric for
optimal time segmentation for the analysis of transients. In
particular, Moore and Glasberg’s model of partial loudness is
modified for use with general signals and then integrated into
a novel time segmentation scheme. The second and perhaps
more significant STN enhancement is concerned with a new
methodology for ranking and selection of the most
perceptually relevant sinusoids.

1. Introduction

Signal-adaptive modeling has recently been adopted in
sinusoidal modeling algorithms [1,2,3]. Existing work [3,4]
has addressed multi-resolution analysis. The enhancement to
the existing STN model proposed in this paper atempts to
eliminate computationally expensive and bit allocation
intensive filter banks from the STN model. These hybrid
structures are replaced with combined use of sinusoidal
analysis and perceptually-controlled time segmentation
scheme that activates short analysis windows only during
transient events that are judged to be unmasked.

The paper essentially presents two new methods for
perceptual segmentation and selection of sinusoids in hybrid
(STN) sinusoidal modeling of audio. The first contribution of
this paper is that it adopts a perceptual metric for optimal
time segmentation for the analysis of transients. The second
and perhaps more significant STN contribution deals with a
new methodology for ranking and election of the most
perceptually relevant sinusoids. The idea behind the method,
known as Excitation Similarity Weighting (ESW), is to
maximize the matching between the auditory excitation
pattern associated with the original signal and the
corresponding auditory excitation pattern associated with the
modeled signal that is being represented by only a few
sinusoidal parameters. The reconstruction quality provided
by ESW is compared against a quality benchmark associated
with the maximum signal-to-mask ratio (maximum SMR)
methodology. The ESW component selection methodology is
shown to outperform the maximum SMR selection strategy
in terms of both objective and subjective quality.
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The paper is organized as follows. First, a review of the
classical sinusoidal model is given in section 2. Section 2.2
presents the STN extensions to the basic sinusoidal model
and verification results for the partial loudness adaptation
metric along with an enhanced partial loudness time
segmentation scheme for processing of transients. Finally,
section 2.3 describes strategies for STN model pruning and
the ESW sinusoidal component selection methodology.
Sample results are given for application of the method to a
spectrally complex signal.

2. The Hybrid Adaptive Sinusoidal Model: Sines +
Transients + Noise (STN)

The classical sinusoidal model comprises an analysis-
synthesis framework [5] that represents a signal, s(n) , as the

sum of a collection of K sinusoids (“partials”) with time-
varying frequencies, phases, and amplitudes, i.e.,
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where A4; (n) represents the amplitude, ¢y, (n) represents the

instantaneous frequency, and %(n) represents  the

kth sinusoid. Estimation of

instantaneous phase of the
parameters is typically accomplished by peak picking the
short-time Fourier transform (STFT) [5]. In the synthesis
stage, the model parameters are subjected to spectral line
tracking and frame-to-frame amplitude and phase
interpolation.

Although the basic sinusoidal model achieves efficient
representation of harmonically structured signals, extensions
to the basic model have also been proposed for signals
containing non-tonal energy [6] The spectral modeling and
synthesis system (SMS) treats audio as the sum of K
sinusoids along with a stochastic component, e(n), ie.,
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Although the sines + noise signal model gave improved
performance, the addition of transient comp onents giving rise
to a three-part model consisting of sines + transients + noise
(STN) [4,7] (Fig. 1) provides additional enhancements. In
fact, the focus and the contribution of this paper is on



optimization of the STN model for a scalable audio coding
Sinusoidal

application [8].
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Fig. 1. Sines+Transients+Noise Model (STN).
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2.1 STN Adaptive Time/Frequency Analysis

Signal-adaptive modeling has recently been adopted in
sinusoidal  analysis-synthesis  algorithms [3,4]. The
enhancement to the existing STN model [4] proposed in this
paper is a perceptually controlled time segmentation scheme
that activates short analysis windows only during transient
events that are judged to be unmasked. The transients are
detected via an energy threshold combined with a partial
loudness edge detection scheme that operates on the
sinusoidal modeling residual. Both masked and unmasked
transients can potentially trip the energy threshold detector,
but masked transients have a significantly lower impact on
residual noise loudness than unmasked transients. The
advantage of the proposed system is that it avoids overly
conservative coding of masked transients.

2.2 STN Transient Processing and Partial Loudness
Metric Verification

The proposed transient detection scheme uses Moore
and Glasberg’s Partial Loudness (PL) model to measure the
partial loudness of the modeling esidual in each frame.
Perceptually relevant (unmasked) transients are detected
when the partial loudness (in Sones) exceeds the mean
loudness of previous frames by a factor of 2.0 to 2.7.
Because it is necessary to make modifications to the partial
loudness model for audio signals, a series of verification tests
were conducted and masking and loudness predictions were
compared against well-established psychophysical listening
tests. The modified model predictions were tested for noise-
masking-tone experiments in which a series of tones were
masked by a 90 Hz narrowband masker centered at 410 Hz,
with the masker presented at levels of 40, 60, and 80 dB SPL.
Model predictions were compared against the data reported
by Egan and Hake [9]. A noise loudness of 0.003 Sone was
assumed to correspond to the masked threshold for the probe
tones. In all cases the model predictions were consistent with
the experimental data. A sample result appears in Fig. 2. A
second set of experiments was conducted to measure equal
loudness contours and minimum audible field (MAF)
predictions.
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Fig. 2. Masking predictions on noise masking

experiment for 60 dB SPL 90 Hz bandwidth noise masker

centered at 410 Hz.

The results compared favorably against ISO 389-7:1996(E).
The performance trends exhibited in these tests as well as in
informal listening tests with more complex auditory stimuli
instilled confidence in the metric to the extent that it was
judged to be a good predictor of partial loudness. A
perceptually salient transient processing scheme was devised
with this PL metric as the core processing block. Additional
simulations [8] demonstrated the complete processing chain
of the proposed transient detection and pre-echo
compensation scheme. It was shown that the transient
processor is able to identify the most perceptually significant
transients, and that the scheme provides a natural scaling
mechanism for low rate applications. Transients are ranked
in terms of partial loudness, and then bits are allocated to the
transient events in order of significance. The results of
informal listening tests confirmed that the method provided a
valid perceptual ranking of transient salience. After transient
processing, the sinusoidal+transient modeling residual is
captured using an FFT-based Bark-band structure [4].

2.3 Compact Representation of STN Parameters

The second and most significant STN enhancement
proposed in this paper is concerned with the ranking and
selection of perceptually relevant sinusoids on a compact set.
We call this the Excitation Similarity Weighting (ESW)
ranking and selection procedure. Whereas current coders
tend to choose maximum signal-to-mask ratio components
and therefore base the selection decision on the masked
threshold associated with the original signal, the ESW
methodology seeks to maximize the matching between the
excitation patterns evoked by the coded and original signals
on a short-time basis. In this way, ESW does not seek to
satisfy noise threshold criteria. In contrast to ESW, the
maximum SMR selection criterion does not guarantee
maximal matching between the modeled and the original
excitation patterns [8]. The idea behind the ESW technique



is to select sinusoids in such a way that each new sinusoid
added to a modeled representation is guaranteed to provide a
maximum incremental gain in matching between the auditory
excitation pattern associated with the original signal and the
corresponding auditory excitation pattern associated with the
modeled signal. In order to accomplish this goal, an iterative
process is proposed in which each sinusoid extracted during
conventional analysis is assigned an excitation similarity
weight. During each iteration, the sinusoid having the largest
weight is added to the modeled representation. New
sinusoids are accumulated until some constraint is exhausted,
e.g., a bit budget. The algorithm tends to converge as the
number of modeled sinusoids increases. The ESW sinusoidal
component selection strategy (Fig. 3) works as follows.
First, a complete set of sinusoids is estimated using the
STFT. Then, a reference excitation pattern is computed for
the original signal in a manner similar to the method outlined
in the description of PERCEVAL [10]. The pattern may
contain up to 2500 discrete excitation levels that correspond
to assumed discrete detectors along the basilar membrane.
An iterative ranking procedure is performed next. The
objective on the k-th iteration is to extract from the candidate
set the most perceptually salient sinusoid, given the previous
k-1 selections.  The method assumes that maximum
perceptual salience is associated with the component able to
affect the greatest improvement in matching between the
excitation pattern associated with the original signal and the
excitation pattern that is associated with the modeled signal.
To select from among the candidates during the k-th
iteration, a complete set of candidate excitation patterns is
computed, one each for the patterns associated with the
modeled signal containing the first k-1 selected sinusoids, as
well as each of the candidates currently available. The
candidate that minimizes the difference between the
reference and modeled excitation patterns is selected for the
k-th iteration. The resulting sinusoidal parameters of the best
candidate are passed to the trajectory tracking and model
pruning components. The core ESW calculation comprises
an average difference calculation that operates on the
reference and test excitation patterns. In particular, the

average difference, /A, , between the original (reference) and

the test patterns on the k™ iteration is given by
D
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where E (l) is the reference excitation pattern level (in dB),
X (z) is the level (in dB) any of the candidate test excitation
patterns on the K™ iteration, and D is the number of
detectors. Therefore, for each pattern, the improvement in

matching on the k™ iteration for each candidate pattern,
Xy (i), is given by
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Fig. 3. The ESW scheme.

The ESW technique computes the matching improvement for

all candidate patterns during the k™ iteration and selects the
component that maximizes Eq. 4. Once the best candidate

* . . . . .
pattern, X (i), has been identified on the k" iteration (in

the sense of maximizing Eq. (4), an excitation similarity
weight is assigned to the sinusoidal component that provided
the maximum incremental matching improvement. The ESW

assigned to the K™ comp onent is
ESWk:Ak—l_Ak (5)

2.4 Comparison of ESW Versus Maximum SMR

For validation, the ESW component selection and
ranking scheme was compared against a reference maximum-
SMR selection scheme over a diverse collection of audio
program material. The ESW based output samples generated
from STN model parameters consistently outperformed the
SMR based audio samples in terms of both subjective
informal listening tests and objective evaluations using the
partial loudness model described earlier. We give here
sample comparative results in graphical format for a selection
of rock music that was judged to be spectrally complex and
therefore challenging for a low rate coding application. The
pair of figures shown provides insight on how the ESW
methodology selects components in contrast to the maximum
SMR methodology. These comparative results (Fig. 4) show
a spectral view corresponding to 23 milliseconds of audio.
The vertical arrows in both figure panels correspond to the
complete set of sinusoids returned by classical sinusoidal
analysis. The dashed line corresponds to a short-time
spectral estimate (magnitude FFT) mapped to SPL, and the
solid line corresponds to an estimate of the masked threshold
generated by the MPEG-1 psychoacoustic model 2.
Sinusoids labeled in panel (a) of the figure were selected on
the basis of maximum SMR. Each of the selected sinusoids
is labeled with its rank, one through ten, and its SMR, in dB.
It is clear from the figure that the ranking is in terms of



descending SMR. This ranking corresponds directly to the
currently popular method of sinusoid selection. Panel (b) of
the figure shows the selection process for the ESW
methodology. In this figure, each of the ten selected
sinusoids is labeled with its rank and ESW score (Eq. 5). A
comparison of the figures reveals that the ESW method tends
to choose sinusoids across the spectrum, whereas the
maximum SMR method tends to choose sinusoids of higher
energy that are clustered at lower frequencies. This trend
was manifested across time in the given example and also
across many musical selections.
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Fig. 4. Comparison of sinusoidal component pruning
methodologies: (a) Maximum SMR selection; (b)
Maximum ESW selection.

3. Concluding Remarks

The enhancements in sinusoidal selection have been shown
to lead to several methods for achieving compact
representations of ESW-ranked sinusoidal components.
Perhaps the most intuitive is that of thresholding on the basis
of a minimum ESW. All sinusoids below the minimum ESW
can be discarded. Because ESW ranks components in order
of their impact on excitation pattern matching, the threshold

can be wused as a rate or quality scaling factor.
Experimentation with trajectory ranking by individual
component as well as minimum, mean and maximum ESW
over time has also shown significant promise in informal
listening tests for pruning the set of trajectories that are
generated during STN analysis. Pruning mean ESW
components below a certain threshold has in some cases
reduced the number of trajectories by 15 to 20% without
audible impact.
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