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ABSTRACT

In this paper, a practical and effective approach is proposed to de-
tect a transient or nonstationary signal component of interest from
a composite signal waveform. The detection problem has been
re-formulated in terms of time-frequency analysis, and, thus, the
conventional 1-D (i.e., time-domain) matched filter approach is
extended to the 2-D (here, time-frequency domain) optimal filter-
ing. For that purpose, the reduced interference distribution (RID)
algorithm, the outer product expansion of the time-frequency dis-
tribution, the singular value decomposition (SVD), and a priori
available time-frequency information of a signal part of interest
are employed to derive a time-frequency domain matched filter by
utilizing the singular values of the sampled time-frequency distri-
bution and the corresponding fractions of signal energy. Finally,
one real problem of detecting the snare drum sound event from a
measured musical signal is considered to demonstrate the perfor-
mance of the proposed approach.

1. INTRODUCTION

The classical formulation for the detection of a signal s(t) with
additive noise n(t) can be given as follows [1]:

H0 : z(t) = n(t)

H1 : z(t) = s(t) + n(t) (1)

where t 2 T , and it is assumed that the statistical information of
the noise, i.e., the mean Efn(t)g and the covariance �n(�; �), are
known. The detection problem has been well-established and the
optimal detection filter h(t) can be obtained by solving the Fred-
holm integral equation[2]. In this paper, we address a new time-
frequency formulation of detecting a transient or non-stationary
signal event from an observed composite signal. Such time-frequency
formulation of optimum detection has been addressed by several
references [3] [4]. Previous work on random transient or non-
stationary signal detection has been designed to distinguish tran-
sient or non-stationary signals from stationary noise background.
In this paper, a new time-frequency domain filtering approach is
proposed to detect a certain non-stationary signal component mixed
with non-stationary noise signals, where a priori time-frequency
information of a signal part of interest is assumed to be available
in part. The conventional 1-D (i.e., time-domain) matched filter
approach is extended to the 2-D (here, time-frequency domain)
optimal filtering. Here, a time-varying optimal filter design has
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been approached in the sense of Wiener filter [5], and the opti-
mal time-frequency filter is to be identified with the filtered output
having the maximum signal-to-noise ratio (SNR) by utilizing the
limited a priori information of the object signal. In particular, to
detect a specific object signal component from a mixed signal, we
employ the reduced interference distribution (RID), and singular
value decomposition (SVD) for the outer product expansion of the
sampled time-frequency distribution. More specifically, the RID
reduces, in the time-frequency distribution, the effect of the inter-
ference between multi-components in a given signal, and the SVD
enables one to express the characteristics of signals in terms of
the optimum outer product expansion in the framework of finite-
dimensional vector space.

This paper is organized as follows: In Sec. 2, the detection
problem is re-formulated in terms of time-frequency analysis, and
an optimal time-frequency filter design is discussed. In Sec. 3,
the derived time-frequency filtering approach has been tested by
detecting a specific sound component from a real-world musical
signal. Finally, the conclusion of the paper is given in Sec.4.

2. DETECTION PROBLEM SETTING VIA
TIME-FREQUENCY ANALYSIS

Let x1(t) and x0(t) denote an object non-stationary signal to be
detected and non-stationary noise, respectively. We want to de-
tect the event time of the specific signal component x1(t). If the
observation signal z(t) with a short time interval t1 � t � t2 is
measured, the detection problem can be re-formulated in terms of
the following time-frequency distributions:

H0 : Cz(t; !;�) = Cx0(t; !;�)

H1 : Cz(t; !;�) = Cx0+x1(t; !;�) (2)

where Cx(t; !;�) is a Cohen’s class time-frequency distribution
of x(t) with kernel �(�; �) [6]. Note that Cx0+x1(t; !;�) 6=
Cx0(t; !;�) + Cx1(t; !;�). In particular, it is assumed that a
limited time-frequency a priori information on the object signal
x1(t) is available in terms of the frequency bandwidth Bx1 and
the time duration Tx1 . Also, let the time support of the object sig-
nal part be confined within the interval less than Tx1 .

Let G(t; !;�) be a time-frequency filter associated with g(t),
and y(t) the filtered output given by the time-domain convolution:
i.e., y(t) = z(t)
 g(t). Also, its time-frequency distribution can
be expressed in terms of Cz(t; !;�) and Ch(t; !;�) [7]:

Cy(t; !;�) = Cz(t; !;�)
t Cg(t; !;�)

=

Z
Cz(�; !;�)Cg(t� �; !;�)d� (3)



Now, consider the decision statistics [3] defined by

�(g;�jHi) =

Z Z
Cy(t; !;�jHi)dtd! (4)

As the performance index for the detection, the following SNR is
defined [1] as follows:

SNR(g;�) =
jEf�(g;�jH1)� Ef�(g;�jH0)gj

[varf�(g;�jH0)g]1=2
(5)

Then, by maximizing (5), we can derive the optimal time-frequency
filter Cg(t; !). Within a short time interval (< Tx1 ), it can be as-
sumed that

varf�(g;�jH0)g = 

2
0 (6)

From (4)and (5), the numerator part of (5) can be expressed by

jEf�(g;�jH1)� Ef�(g;�jH0)gj

= jEf
Z Z

[Cy(t; !jH1)� Cy(t; !jH0))]dtd!gj

= j

Z Z
[

Z
EfCx0+x1(�; !;�)�Cx0(�; !;�)g

�Cg(t� �; !;�)d�]dtd!j (7)

For a given time-frequency distribution function C(t; !), the time-
frequency distribution can be decomposed into the sum of the outer
products as follows [8]:

C(t; !;�) =
1X
n=1

1

�n
un(t)v

�

n(!) (8)

where �n denotes the singular value, and un(t)v�n(!) corresponds
to the outer product term obtained by the following equations:

un(t) = �n

Z
C(t; !)vn(!)d! (9)

vn(!) = �n

Z
C
�(!; t)un(t)dt (10)

Then, we get

EfCx0+x1(�; !;�)�Cx0(�; !;�)g =
1X
i=1

1

�1i
ui(t)v

�

i (!)

(11)
Similarly, we can rewrite the time-frequency distribution of the
time-varying filter, Cg(t; !) as

Cg(t; !) =
1X
j=1

1

�2j
uj(t)v

�

j (!) (12)

Then, the optimal solution of gopt(t; !;�) from (7) can be found :

gopt(t; !;�) = argg maxfj

Z Z
[

Z
(

1X
i=1

1

�1i
ui(t)v

�

i (!)) �

(
1X
j=1

1

�2j
u
�

j (t� �)vj(!))d�]dtd!jg

= argg maxfj
1X
j=1

1X
i=1

(

Z Z
ui(t)u

�

j (t� �)d�dt)

1

�1i
�

1

�2j
� (

Z
vi(!)v

�

j (!)d!)
�jg (13)

From the unitary properties of un(t) and vn(!), we can see
that (13) can be maximized only when i = j and � = 0. There-
fore, the optimal detection problem can be solved by finding a
proper set of �i, ui(t), and vi(!) that captures the unique fea-
ture (in time-frequency domain) of x1(t).

Using a priori information of x1(t), one can find an approx-
imate solution: i.e., the sampled time-frequency distribution of a
specific signal component with Bx1 and Tx1 can be located in the
time-frequency plane. In particular, the interference terms due to
the noise component can exist within such time-frequency band-
width. When the sampled time-frequency distribution is decom-
posed using SVD, the dominant component takes a larger singu-
lar value �i. Furthermore, the energy fraction "i, is defined as
the energy fraction of the decomposed signal 1

�i
ui(t)v

�

i (!) with
respect to the total signal energy. In addition, the relatively low
energy fraction "i indicates that the corresponding outer product
term includes the interference effects between a object signal and
a noise signal [8]. Thus, such cross-term effects can be effectively
suppressed by choosing only the indices with dominant singular
values and large energy fraction values. Thus, the time-frequency
optimal detection filtering, yTF (t), can be achieved as follows:

yTF (t) =

Z Z
Cz(�; !;�) � Cg(� � t; !;�)d!d� (14)

If the kernel satisfies �(�; �) 6= 0; 8�;8� , the time-domain
expression of the Cg(t; !;�) can be obtained using the SVD and
the inversion formula of the Cohen’s class [6]. Also, the time-
domain filtered output, ytime(t), can be expressed by

ytime(t) =

Z
z(�)g(t� � )d� (15)

Note that the optimal time-frequency filtering in (14) is ex-
pressed in the time-domain as in (15). That is, from the input-
output relation of the proposed time-frequency filter, we can see
that the classical 1-D matched-filter is a special case of the pro-
posed time-frequency filter. Now, let’s investigate in the next sec-
tion how the conventional time-domain filtering and the proposed
time-frequency filtering provide different detection results, where
the theoretical results derived in this section will be applied to a
real musical sound signal.

3. APPLICATION EXAMPLE

In this section, we demonstrate how the optimal time-frequency
filter can be utilized for real signal detection. In the time series, a
snare drum (object signal, x1(t)) is mixed with voice and sound
signals which are from other instruments (noise, x0(t)). Using the
optimal filter design schemes discussed in previous section, we
want to detect the event time of the snare drum sound.

The musical signal and its corresponding time-frequency dis-
tribution, RID, of the musical signal are provided in Fig. 1, where
the frequency bandwidth of the snare drum is estimated to beB =150
Hz, and its time duration is to be T =25 ms.

With the a priori time-frequency information on the snare drum
sound component, the singular values (�i) and corresponding en-
ergy index ("i) for the sampled time-frequency distribution of the
object non-stationary signal is provided in Fig. 2. Close observa-
tion of the singular values and energy fraction indices of the RID
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Fig. 1. A musical signal (top) and its binomial reduced interfer-
ence distribution (bottom)
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Fig. 2. Principal singular values (a) and the corresponding energy
fraction (b) for snare drum sound components

distribution indicate that (i) the first index (i.e., here, index 1) is
the most appropriate choice for the basis(or outer product term)
because the singular and energy fraction values are large enough,
(ii) while the singular value is relatively high in the case of the
second index (i.e., index 2), the second energy fraction has a small
value due to the interference between the object and noise signals,
(iii) the third index(i.e., index 3) has a higher energy fraction than
index 2, but it corresponds to a small singular value, and (iv) in
the case of the fourth and higher indices, both their singular values
and energy fractions are negligible. In particular, the optimal basis
1

�1
u1(t)v

�

1(!) and its time-domain filtering via (15) are provided
in Fig. 5 and 3, respectively, where the plotted bases are normal-
ized in time-domain so that its correlation is bounded between -1
and 1.

After convolving the measured composite signal with the time-
domain detection filter in Fig. 3, the filtered output in the time-
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Fig. 3. The detection filter in time-domain
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Fig. 4. Detection of the snare drum sound event using time-domain
matched filtering: (a) a composite sound waveform and (b) the
detected snare drum sound event

domain (i.e., via (15)), the detection of the event of the snare drum
part, is displayed in Fig. 4. At the event time of the snare drum
sound, the filtered output is close to 1, while the values at the other
instant times are less than 0.5. From Fig.4 (b), the snare drum
sound events are detected at 110ms., 380 ms., and 660 ms, re-
spectively. However, the filtered output of the snare drum sound
shows a high oscillation, and, also, the time-domain SNR is not
particularly high. If the amplitude of the noise part increases, the
detection may not provide an acceptable detection result.

Next consider the time-frequency domain filtering scheme. The
time-frequency distribution with the selected singular value and its
unitary vectors, 1

�1
u1(t)v

�

1(!), is provided in Fig. 5. The time-
frequency representation indicates that the snare drum sound is
transient with a small time duration, while the frequency band-
width is approximately 150 Hz. Note that the time-frequency plot
in Fig.5 corresponds to the optimal time-frequency domain filter
Cg(t; !;�). With the time-frequency domain filter, the 2-D time-
frequency domain correlation can be obtained by applying (14),
and the time-frequency domain filtering result is provided in Fig.6,
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Fig. 6. Detection of the snare drum sound event using a time-
frequency domain optimal filtering: (a) a composite sound wave-
form and (b) the detected snare drum sound event

where the filter output shows the detection of the snare drum sound
event with high SNR. For each snare drum sound event, the filtered
output value is over 0.8, while the filtered outputs of the noise parts
are under 0.2, which implies that even if the amplitude of the noise
increases, the time-frequency domain filtering leads to the robust
detection results than the just time-domain filtering approach in-
cluding the conventional matched filtering. Also, the time indices
of the three major peaks in Fig. 6 correspond to the exact event
times in Fig. 1.

When the time-domain filtering output in Fig.4 is compared
with the time-frequency domain filtering output in Fig. 6, it is
clear that the time-frequency domain filtering approach provides
more desirable and reliable results for the detection of the snare
drum sound events. This is due to the fact that the time-varying
feature of the signal component can be utilized for the detection
process by applying the time-frequency domain representation of
the basis to the object signal, which yields the better detection re-
sult with higher SNR than the conventional time-domain filtering
does.

4. CONCLUSION

In this paper, a practical and effective method is proposed to detect
a transient signal component of interest from a composite signal
waveform. The approach is based on an extension of the conven-
tional 1-D (i.e., time-domain) matched filter approach to the 2-D
(here, time-frequency domain) optimal filtering. In particular, the
proposed approach, assuming a priori available information of the
specific signal part of interest, is very effective in localizing a tran-
sient signal part or a non-stationary signal part from a measured
composite signal waveform. Also, the proposed detection scheme
provides a filtered output with higher SNR, when compared with
the result obtained by the classical matched filter approach. Note
that the detection filter design in the time-frequency domain needs
to be further refined and generalized by exploiting the truncation
criterion for the outer product expansion of the time-frequency dis-
tribution of a given composite signal.
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