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ABSTRACT
We present an approach to the extraction of frequencies corre-
sponding to chords in western polyphonic music. In the first phase
of this approach constant-Q spectral analysis directly provides the
features from which the fundamental frequencies for 43 of the 57
possible categories of chords can be extracted without ambiguity.
Each remaining chord category has a potential ambiguity associ-
ated with it because of frequency resolution problems. The second
phase of our approach is designed to address such ambiguities. A
software implementation of our approach was used successfully
to validate its performance on a representative set of polyphonic
musical signals.

1. INTRODUCTION

Polyphonic music is produced by one or more musical instruments
playing several co-occurring melodies. A primary set of inter-note
constraints specify the valid relationships between the fundamen-
tal frequencies (F0's) of simultaneously played notes in western
polyphonic music [1, 2]. For example, combinations of simulta-
neous notes, which are called chords, can have up to four different
constituent notes with distinct F0's. The total number of permissi-
ble chords is 57 as dictated by the allowable ratios of the F0's of
the constituent notes [2].

In order to identify the chords represented in a polyphonic
music signal, we consider the problem of extracting F0's from
an analysis of time-dependent signal spectra. A viable approach
to spectral analysis of monophonic music is the Constant-Q (CQ)
transform [3]. Furthermore, with a Q � 17, the CQ transform ad-
equately deals with the time-dependent frequency characteristics 1

of such signals [2]. For polyphonic music signals, a CQ spectrum
is not guaranteed to contain peaks corresponding to constituent
fundamentals. To further appreciate this result, we note that a sig-
nal component at f1 will give rise to a spectral peak at f1 provided
there is no other signal component at any frequency f2 such that:

jf1 � f2j <
f1

Q
: (1)

Otherwise, the component at f1 gives rise to a peak at f 01 where:

f1 �
f1

2Q
� f

0
1 � f1 +

f1

2Q
: (2)
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1such as a vibrato of up to 10Hz, a tremolo of up to 10Hz and a vibrato
depth of up to 1:5%

Combining the results in (1) and (2), we conclude that a compo-
nent at frequency f2 will render the component at f1 unresolvable
if:

Q

Q+ 1
f2 � f1 �

Q

Q� 1
f2: (3)

An analysis of the permissible chords in western polyphonic music
shows that 14 out of the 57 cases have a resolvability problem.
For example, suppose that the lowest fundamental in a chord is at
f0. Let us consider a chord composed of 4 notes with respective
F0's of f 0, 210=12f0, 219=12f0 and 228=12f0. Applying (3), it is
found that the fundamental at 219=12f0 is made unresolvable by
the 3rd harmonic of f0. Also, the fundamental at 228=12f0 is made
unresolvable by the 3rd harmonic of 210=12f0 and the 5th harmonic
of f0.

Using the type of analysis just outlined, it can be shown that
the 57 permissible chords in western polyphonic music fall into
two categories [2]:

1. Completely Identifiable Chords (43 cases): All fundamen-
tals resolvable, therefore a spectral peak will be found for
every F0.

2. Partially Identifiable Chords (14 cases): Some fundamen-
tals unresolvable, therefore it is not guaranteed that a spec-
tral peak will be found for every F0.

The approach we have developed for chord identification first seeks
out all the resolvable fundamental frequencies. It then uses the
constraints on allowable combinations of fundamental frequencies
in western polyphonic music to seek evidence for the presence of
initially unresolvable fundamental frequencies. Our approach is a
generalization of the approach presented in [4] for musical chords
limited to a maximum of 2 notes.

2. APPROACH

Our approach begins with the observation that the fundamental
corresponding to the lowest F0 is always resolvable. This can be
seen by noting that if f0 is the lowest F0, then the rules of west-
ern polyphonic music constrain the next highest fundamental to be
at 21=12f0 or higher. However, using (3), we note that a compo-
nent at 21=12f0 cannot render the component at f0 unresolvable.
A second important observation behind our approach is that a fun-
damental at f0 can only be made unresolvable by a harmonic of a
lower fundamantal. These two observations lead to a straightfor-
ward procedure for identifying the spectral peaks corresponding to
the resolvable fundamentals.
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Fig. 1. Strategy for the determination of frequencies of resolvable
fundamentals

Resolvable Fundamentals: In seeking the set of resolvable
fundamentals, we first form a frequency ordered list L of the fre-
quencies of all the peaks in the CQ spectrum. The lowest fre-
quency in L represents a resolvable fundamental and its frequency
is therefore considered an element of a set R that is ultimately to
hold all the F0's measured from the current CQ spectrum. For each
harmonic of a measured F0 in Rwe discard all frequencies f1 in
L satisfying (3) with f2 denoting the frequency of the harmonic.
If any frequencies remain in our list L, the lowest frequency cor-
responds to another resolvable fundamental and is therefore ap-
pended to the set R . This process is repeated until the list L is
empty. The algorithm for the determination of the resolvable fun-
damentals is illustrated in Figure 1.

Our next step is to identify one or more chords that are a good
match to the set R of measured fundamental frequencies. Given
f01, the lowest measured frequency in R , we may retrieve a set
T i of theoretical fundamental frequencies corresponding to the i-
th chord with lowest fundamental frequency f01 and jT ij � jRj
where jSj denotes the cardinality of the set S . Note that a set T i of
cardinality 3 has the form T i = ff01; 2�(i;2)f01; 2�(i;3)f01g.
We now define a distance measure for comparingR and each T i:
d(R,T i) =

PjRj
j=2(f0j�2�(i;j)f01)2 . Minimizing d(R,Ti) with

respect to i, we identify the theoretical chords that are the best
match in the least-squares sense to the fundamental frequencies in
R . The minimization of d(R,T i) yields three possible types of
results:

1. Only one chord minimizes d(R,T i) and jRj = jT jj, where
T j is the set of theoretical fundamental frequencies corre-
sponding to the matching chord.

2. Only one chord minimizes d(R,T i) and jRj<jT jj, where
T j is the set of theoretical fundamental frequencies corre-
sponding to the matching chord. In such cases frequency
resolution problems cause one of the fundamental frequen-
cies to not appear in the measured setR . However, musical
rules dictate that the addtional frequency must be present.
See Table 1 for the six cases for which the measured set R
has a smaller cardinality than the matching chord.

3. Two or more chords minimize d(R,T i). See Table 2 for the

8 cases in which the measured set R has multiple chords
matching it.

In the first two cases, chord identification is already accomplished.
In the third case, the issue of unresolvable fundamentals has to be
addressed in order to obtain unambiguous chord identification.

Frequencies in R Matching Chords

f0,22=12f0, 29=12f0 f0, 22=12f0, 29=12f0, 218=12f0

f0,24=12f0, 210=12f0 f0, 24=12f0, 210=12f0, 219=12f0

f0,28=12f0, 218=12f0 f0, 28=12f0, 218=12f0, 227=12f0

f0,29=12f0, 214=12f0 f0, 29=12f0, 214=12f0, 218=12f0

f0,29=12f0, 226=12f0 f0, 29=12f0, 218=12f0, 226=12f0

f0,210=12f0, 216=12f0 f0, 210=12f0, 216=12f0, 219=12f0

Table 1. Six cases in which jRj = 3 but the matching chord has 4
fundamentals

Unresolvable Fundamentals: For the 8 cases in Table 2, we
have developed tests which look for evidence for additional F0's
that may be present. We start by hypothesizing that the set of re-
solvable F0's is complete and we look for evidence which may
prove the contrary. This evidence may take the form of spectral
peaks not attributable to the established F0's but consistent with
the presence of additional F0's. Such a possibility exists because
an unresolvable component can still give rise to a distinguishable
spectral peak in a region consistent with (2). Even in the case when
energy from two unresolvable components is merged to form a sin-
gle peak, we have the option of computing the spectrum with a
higher Q in an attempt to avoid the merging of the energy compo-
nents in the spectral domain. However, care has to be exercised
because of the longer impulse responses corresponding to higher
values of Q. Based on this general approach and on our empiri-
cal experimentation, we have developed strategies to identify the
additional F0's for each of the 8 cases in Table 2.

The general procedure for carrying out the test cases involves
a search for evidence supporting the existence of an additional fun-
damental at a frequency fa. We first identify two frequencies f1
and f2 which represent harmonics of already-identified fundamen-
tals such that f1 is the nearest harmonic frequency smaller than fa
and f2 is the nearest harmonic frequency greater than fa. Next,
we locate in the CQ transform the peak closest to f1 and the peak
closest to f2. Within the region between these two peaks we look
for evidence of another peak corresponding to an additional fun-
damental at frequency fa. If a peak is found, we conclude that
the fundamental at fa is present. Otherwise, in certain cases, it
is feasible to recompute the spectrum with a Q = Qnew which
is sufficient to separate any potentially merged peaks. Using the
recomputed spectrum, we repeat the test, where now, if a peak is
not found, we conclude that fa is actually not present. We justify
this procedure by noting that even though the peak at fa corre-
sponds to a theoretically unresolvable component, there is still a
likelihood for there to be a peak corresponding to fa. The likeli-
hood is greater when the CQ transform is recomputed with Qnew

(a higher Q).
In Table 3 we specify the parameters needed to carry out the



Frequencies in R Matching Chords

1 f0 A. f0
B. f0,21=12f0
C. f0,211=12f0

2 f0,26=12f0,215=12f0 A. f0,26=12f0,215=12f0
B. f0,26=12f0,215=12f0,220=12f0

3 f0,29=12f0,217=12f0 A. f0,29=12f0,217=12f0
B. f0,29=12f0,217=12f0,227=12f0

4 f0,210=12f0 A. f0,210=12f0
B. f0,210=12f0,219=12f0,228=12f0

5 f0,29=12f0 A. f0,29=12f0
B. f0,29=12f0,218=12f0

6 f0,28=12f0 A. f0,28=12f0
B. f0,28=12f0,218=12f0,227=12f0

7 f0,23=12f0,28=12f0 A. f0,23=12f0,28=12f0
B. f0,23=12f0,28=12f0,218=12f0

8 f0,28=12f0,215=12f0 A. f0,28=12f0,215=12f0
B. f0,28=12f0,215=12f0,218=12f0

Table 2. Completing the initial list of F0's - Two possible comple-
tions

tests for all but one of the eight cases enumerated in Table 2. In
case 1, the peak at f0corresponds to a resolvable fundamental in
this 2-note chord, and therefore if 21=12f0 is present, the spectral
energy due to f0 will not merge with the energy at 21=12f0 (i.e
there is no need to use a higher Q in this case). For case 4 in
Table 3 the likelihood of finding peaks corresponding to the ad-
ditional F0's between harmonics of the resolvable fundamentals
is very low. Instead, the procedure for case 4 involves searching
the CQ spectrum to see if in addition to the spectral peak cor-
responding to 3�210=12f0, there is a nearby peak corresponding
to 228=12f0. If a peak is found, we conclude that 228=12f0, the
additional F0, is present. If a peak is not found, we conclude
that 228=12f0 is not present. The justification for this procedure
is that the peak at 3�210=12f0 corresponds to a resolvable compo-
nent unless the peak corresponding to the component at 2 28=12f0 is
present. The spectral energies of the two peaks will not merge in
this case, since although the component at 3�210=12f0 is affected
by the component at 228=12f0, the reverse is not true.

3. IMPLEMENTATION ISSUES

Gaussian Constant-Q Filtering: The analysis in the constant-Q
filterbank is carried out with Gaussian filters which were chosen on
the basis of the well-known property that they have the least time-
frequency uncertainty [5]. The center frequencies of the filters in
the filterbank are uniformly spaced along the frequency axis and
the impulse response of the i-th filter is given by:

hi[n] =

(
A expf��n2g exp

n
j
2�fi
Fs

n

o
; jnj � ni

0; jnj > ni
:

Here fi is the center frequency of the filter, Fs is the sampling rate,
ni is the time index before which the magnitude of the impulse

Case # f1 f2 fa Qnew

case 1 f0 2f0 21=12f0 –

case 2 3f0 4f0 220=12f0 38

case 3 4f0 5f0 227=12f0 50

case 5 2f0 3f0 218=12f0 38

case 6 2f0 3f0 218=12f0 38

case 7 2�28=12f0 3f0 218=12f0 38

case 8 215=12f0 3f0 218=12f0 38

Table 3. Parameter specification for test cases

response decays to a small value �, A is a scaling factor which
ensures that the filter has unit energy, and � is a parameter that
controls the bandwidth of the filter. To ensure that the filter has a
bandwidth which follows a constant-Q rule, we utilized the filter's
frequency response [5] to arrive at the following relation:

� = 1
2 ln(�)

h
�fi
QFs

i2
:

Peak Picking Algorithm: An initial set of peaks is estab-
lished by detecting local maxima in the spectrum. Any peaks
that are 40dB below the highest peak are eliminated from this set.
Starting with the highest energy peak as the “reference peak,” we
proceed to eliminate all peaks that are smaller than the magnitude
of the filterbank's frequency response (a function of the center fre-
quencies of the filters in the filterbank) to a complex exponential
with an amplitude and frequency equal to that of the reference
peak. The rationale for this procedure is that peaks smaller than
the frequency response magnitude are essentially sidelobes corre-
sponding to the reference peak. We keep repeating this procedure,
using as the reference peak the peak whose energy is largest from
amongst the un-eliminated peaks that have not already been used
as reference peaks. Once all un-eliminated peaks have been used
as reference peaks, we utilize one final procedure to eliminate each
peak that is theoretically unresolvable from another peak of 12dB
greater energy.

Bin Resolution: This is the issue of how far apart should we
have the center frequencies of consecutive filters in the filterbank.
We note that in accordance with (3), a component at frequency f2
is guaranteed not to be affected by a component at frequency f 1 if
the distance between f1 and f2 is greater than

Dmin = Max((1� Q
Q+1 )f1; (

Q
Q�1 � 1)f1):

To be able to detect spectral peaks corresponding to such compo-
nents we must have a frequency spacing between the center fre-
quencies of consecutive filters of at least Dmin

2 . Assuming that
the smallest possible value for f1 is 196Hz (violin G3) and using a
Q of 17, the corresponding value of Dmin

2 is approximately 5Hz.
For higher values of f1, Dmin

2 would be larger. In our implemen-
tation the filters' center frequencies were kept uniformly spaced
and so we used a 5Hz spacing throughout the filterbank.

4. VALIDATION EXPERIMENTS

A software implementation of our approach was used to success-
fully validate its performance on a representative data set. We
generated 2;266 signals corresponding to all valid 2-note, 3-note
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Fig. 2. The constant Q spectrum of a musical signal and the peaks
identified during various stages of processing

and 4-note chords that a violin quartet can play. This included all
the chords that can be composed from notes whose fundamental
frequencies range from 196Hz(G3) to 3,951Hz(B8), generally ac-
cepted limits for violins. Each test signal was 0:5 seconds long
and sampled at Fs = 20480Hz. The relative energies of the var-
ious harmonics of each note were determined in accordance with
well- established spectral models for violin sounds [6] which sug-
gest a +6dB/octave decrease in spectral energy at frequencies up
to 3KHz and 15dB/octave thereafter. The net energy in each note
was normalized to a fixed value in order to simulate conditions
of “comparable loudness” for each of the notes in a chord. Any
harmonics at frequencies above Fs

2 were eliminated (even though
they were included in the energy normalization process). We did
not include in our test signals instances of the half-tone case (the
closest possible fundamentals) in situations where one of the F0's
is below 200Hz. This is because filters with Q=17 and center fre-
quency below 700Hz have impractically long impulse responses
for the music application. Therefore, in our implementation of the
CQ spectrum, filters centered at frequencies below 700Hz have the
same bandwidth as that of a filter centered at 700Hz. However, for
F0's below 200Hz, this higher BW results in low resolution and
the inability to resolve an F0 and its half-tone with a reasonable Q
factor.

In Figure 2 we present an example of the type of results ob-
tained during the validation process. The musical signal in this
case is a combination of four notes with f0 = 196:0Hz (G3), and
the remaining three notes: 349:2Hz (F4), 587:3Hz (D5) (vibrato
rate of 10Hz) and 987:8Hz (B6) (vibrato rate of 10Hz). Note that
this example corresponds to case 4B listed in Table 2. The top plot
in Figure 2 shows the CQ spectrum with the initial set of peaks
identified by our peak-picking algorithm. The second plot for the
same CQ spectrum shows the peaks eliminated through the proce-
dure of Figure 1 as well as the two peaks identified to correspond
to the fundamentals at 196Hz and 349:2Hz. The final plot also
shows the additional two peaks identified during the second phase
of our approach.
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