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ABSTRACT

We present an approach to the extraction of frequencies corre-
sponding to chordsin western polyphonic music. In thefirst phase
of this approach constant-Q spectral analysisdirectly providesthe
features from which the fundamental frequenciesfor 43 of the 57
possible categories of chords can be extracted without ambiguity.
Each remaining chord category has a potential ambiguity associ-
ated with it because of frequency resolution problems. The second
phase of our approach is designed to address such ambiguities. A
software implementation of our approach was used successfully
to validate its performance on a representative set of polyphonic
musical signals.

1. INTRODUCTION

Polyphonic music is produced by one or more musical instruments
playing several co-occurring melodies. A primary set of inter-note
constraints specify the valid relationships between the fundamen-
tal frequencies (FO's) of simultaneously played notes in western
polyphonic music [1, 2]. For example, combinations of simulta-
neous notes, which are called chords, can have up to four different
constituent noteswith distinct FO's. The total number of permissi-
ble chordsis 57 as dictated by the allowable ratios of the FO's of
the constituent notes[2].

In order to identify the chords represented in a polyphonic
music signal, we consider the problem of extracting FO's from
an analysis of time-dependent signal spectra. A viable approach
to spectral analysis of monophonic music is the Constant-Q (CQ)
transform [3]. Furthermore, with a@ > 17, the CQ transform ad-
equately dealswith the time-dependent frequency characteristics *
of such signals[2]. For polyphonic music signals, a CQ spectrum
is not guaranteed to contain peaks corresponding to constituent
fundamentals. To further appreciate thisresult, we note that asig-
nal component at f; will giveriseto aspectral peak at f; provided
there is no other signal component at any frequency f» suchthat:

hi-hl< L &

Otherwise, the component at f; givesriseto apeak at f{ where:
fl ! L
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Combining the resultsin (1) and (2), we conclude that a compo-
nent at frequency f» will render the component at f; unresolvable
if:
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An analysisof the permissible chordsin western polyphonic music
shows that 14 out of the 57 cases have a resolvability problem.
For example, supposethat the lowest fundamental in achordis at
fo. Let us consider a chord composed of 4 notes with respective
FOs of fo, 2'9/1%f,, 2197125, and 228/12f,. Applying (3), it is
found that the fundamental at 2'°/'%f, is made unresolvable by
the 3" harmonic of f;. Also, the fundamental at 22%/'2f, is made
unresolvableby the3”¢ harmonicof 2'°/12f, andthe 5" harmonic
of fo.

Using the type of analysisjust outlined, it can be shown that
the 57 permissible chords in western polyphonic music fall into
two categories[2]:

1. Completely Identifiable Chords (43 cases): All fundamen-

tals resolvable, therefore a spectral peak will be found for
every FO.

2. Partially Identifiable Chords (14 cases): Some fundamen-
tals unresolvable, therefore it is not guaranteed that a spec-
tral peak will be found for every FO.

Theapproachwe have devel opedfor chord identificationfirst seeks
out all the resolvable fundamental frequencies. It then uses the
constraints on allowable combinations of fundamental frequencies
in western polyphonic music to seek evidence for the presence of
initially unresolvable fundamental frequencies. Our approachisa
generalization of the approach presented in [4] for musical chords
limited to a maximum of 2 notes.

2. APPROACH

Our approach begins with the observation that the fundamental
corresponding to the lowest FO is always resolvable. This can be
seen by noting that if fo isthe lowest FO, then the rules of west-
ern polyphonic music constrain the next highest fundamental to be
at 2'/'%f, or higher. However, using (3), we note that a compo-
nent at 2'/'2f, cannot render the component at fo unresolvable.
A secondimportant observation behind our approachisthat afun-
damental a f, can only be made unresolvable by aharmonic of a
lower fundamantal. These two observations lead to a straightfor-
ward procedurefor identifying the spectral peakscorresponding to
the resolvable fundamentals.
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Fig. 1. Strategy for the determination of frequencies of resolvable
fundamentals

Resolvable Fundamentals: In seeking the set of resolvable
fundamentals, we first form afrequency ordered list L of the fre-
quencies of all the peaksin the CQ spectrum. The lowest fre-
quency in L representsaresolvable fundamental and its frequency
is therefore considered an element of aset R that is ultimately to
hold all the FO's measured from the current CQ spectrum. For each
harmonic of a measured FO in R we discard all frequencies f1 in
L satisfying (3) with f» denoting the frequency of the harmonic.
If any frequenciesremain in our list L, the lowest frequency cor-
responds to another resolvable fundamental and is therefore ap-
pended to the set R . This process is repeated until the list L is
empty. The agorithm for the determination of the resolvable fun-
damentalsisillustrated in Figure 1.

Our next step isto identify one or more chordsthat are agood
match to the set R of measured fundamental frequencies. Given
f01, the lowest measured frequency in R, we may retrieve a set
T of theoretical fundamental frequencies corresponding to the :-
th chord with lowest fundamental frequency f0, and |7;| > |R|
where | S| denotesthe cardinality of theset S. Notethat aset 7 ; of
cardinality 3 hasthe form 7; = {f0,, 2°(5% f0,, 2% fo, 1.
We now defineadistance measurefor comparing R andeach 7 ;:
d(R,T:) = Y12 (£0,—2209) f0,)2. Minimizing d(R, ) with
respect to :, we identify the theoretical chords that are the best
match in the least-squares sense to the fundamental frequenciesin
R . The minimization of d(R,7;) yields three possible types of
results:

1. Only onechord minimizesd(R,7;) and |R| =|T;|, where
T; is the set of theoretical fundamental frequencies corre-
sponding to the matching chord.

2. Only one chord minimizesd(R,7;) and |R|<|T;|, where
T; is the set of theoretical fundamental frequencies corre-
sponding to the matching chord. In such cases frequency
resol ution problems cause one of the fundamental frequen-
ciesto not appear in themeasured set R . However, musical
rules dictate that the addtional frequency must be present.
See Table 1 for the six casesfor which the measured set R
has asmaller cardinality than the matching chord.

3. Twoor morechordsminimized(R,7:). SeeTable 2 for the

8 cases in which the measured set R has multiple chords
matching it.

Inthefirst two cases, chord identification is already accomplished.
In the third case, the issue of unresolvable fundamentals has to be
addressedin order to obtain unambiguous chord identification.

| Freguenciesin R
| o 22/12f 25712,
| for2 4/12f 2107127,
|f 8/12

Matching Chords

22/12 o, 29/12f 218/12f
4/12f 210/12f 219/12f
8/12 218/12f 227/12f0

Jo,
Jo,
o, 9/12f 214/12f 218/12f
Jo,
Jo,

| f 9/12f 214/12f
| f 9/12f 226/12f0
| o 210712 Q16 12y

9/12f 218/12f 226/12f
210/12 216/12f 219/12f0

|
| f
|
218/12f |
|
|
|

Table 1. Six casesin which |R|
fundamentals

= 3 but the matching chord has 4

Unresolvable Fundamentals: For the 8 casesin Table 2, we
have developed tests which look for evidence for additional FO's
that may be present. We start by hypothesizing that the set of re-
solvable FO's is complete and we look for evidence which may
prove the contrary. This evidence may take the form of spectral
peaks not attributable to the established FO's but consistent with
the presence of additional FO's. Such a possibility exists because
an unresolvable component can still give rise to a distinguishable
spectral peak inaregion consistent with (2). Evenin the casewhen
energy from two unresolvablecomponentsis merged to form asin-
gle peak, we have the option of computing the spectrum with a
higher Q in an attempt to avoid the merging of the energy compo-
nents in the spectral domain. However, care has to be exercised
because of the longer impulse responses corresponding to higher
values of Q. Based on this general approach and on our empiri-
cal experimentation, we have developed strategies to identify the
additional FO'sfor each of the 8 casesin Table 2.

The general procedure for carrying out the test casesinvolves
asearchfor evidence supporting the existence of an additional fun-
damental at a frequency f.. We first identify two frequencies f1
and f> which represent harmonicsof aready-identified fundamen-
talssuchthat f1 isthe nearest harmonic frequency smaller than f.
and f> isthe nearest harmonic frequency greater than f,. Next,
welocate in the CQ transform the peak closest to f; and the peak
closest to f-. Within the region between these two peakswe look
for evidence of another peak corresponding to an additional fun-
damental at frequency f.. If apeak is found, we conclude that
the fundamental at f, is present. Otherwise, in certain cases, it
is feasible to recompute the spectrum with a @ = Q... Which
is sufficient to separate any potentially merged peaks. Using the
recomputed spectrum, we repeat the test, where now, if a peak is
not found, we concludethat f, isactualy not present. We justify
this procedure by noting that even though the peak at f, corre-
sponds to a theoretically unresolvable component, there is till a
likelihood for there to be a peak correspondingto f.. Thelikeli-
hood is greater when the CQ transform is recomputed with Q ¢«
(ahigher Q).

In Table 3 we specify the parameters needed to carry out the



| | Freguenciesin R | Matching Chords

1 fo A. fo

B. f0121/12 o

C. f01211/12f0

A. f0126/12f01215/12f0

B. f0126/12f01215/12f01220/12f0
A. f0129/12f01217/12f0

B. f0129/12f01217/12f01227/12f0

2 f0126/12f01215/12f0

3 f0129/12f01217/12f0

4 f01210/12f0 A. f01210/12f0

B. f01210/12f01219/12f01228/12f0
5 f0129/12 o A f0129/12 o

B. f0129/12f01218/12f0
6 f0128/12f0 A. f0128/12 o

B. f0’28/12f0’218/12f0’227/12f0
A, f0’23/12f0’28/12 5
B. fo,23/12 0’28/12f0’218/12f0
A, f0’28/12f0’215/12f0
B. f0’28/12f0’215/12f0’218/12f0

7 f0123/12f0128/12 o

8 f0128/12f01215/12f0

Table 2. Completing theinitia list of FO's- Two possible comple-
tions

tests for all but one of the eight cases enumerated in Table 2. In
case 1, the peak at focorresponds to a resolvable fundamental in
this 2-note chord, and therefore if 2'/12 f, is present, the spectral
energy dueto fo will not merge with the energy at 2'/'2 f, (i.e
there is no need to use a higher Q in this case). For case 4 in
Table 3 the likelihood of finding peaks corresponding to the ad-
ditional FO's between harmonics of the resolvable fundamentals
isvery low. Instead, the procedure for case 4 involves searching
the CQ spectrum to see if in addition to the spectral peak cor-
responding to 3x2'°/'%f;, there is a nearby peak corresponding
to 2%%/1%f,. If a peak is found, we conclude that 22/'%f,, the
additional FO, is present. If a pesk is not found, we conclude
that 2%2/'%f, is not present. The justification for this procedure
isthat the peak at 3x 2'°/'%f, correspondsto aresolvable compo-
nent unless the peak corresponding to the component at 2 28/'2f, is
present. The spectral energies of the two peakswill not mergein
this case, since although the component at 3x2'%/*2f, is affected
by the component at 2%2/12f,, the reverseis not true.

3. IMPLEMENTATION ISSUES

Gaussian Constant-Q Filtering: The analysisin the constant-Q
filterbank iscarried out with Gaussianfilterswhich were chosenon
the basis of the well-known property that they have the least time-
frequency uncertainty [5]. The center frequencies of thefiltersin
the filterbank are uniformly spaced along the frequency axis and
the impulse response of the i-th filter is given by:

_ 2 27 fy
hifn] = Aexp{—an‘}exp {] ra n},
0, |n| > n;
Here f; isthe center frequency of thefilter, F'. isthesampling rate,
n; is the time index before which the magnitude of the impulse

In| < n;

[Case#t | f1 [ f5 | fu | Quew |
[cael | fo  [2f0 [ 27% [ - |
| cae2 | 3fo [4fo [ 22°f [ 38 ]
| cae3 | 4fo  [5fo | 2276 [ 50 ]
[ case5 |  2fo  [3fo | 2" [ 38 ]
[ case6 |  2fo  [3fo | 2" [ 38 ]
| case7 | 2x2%"%f [ 3fo | 2"/ [ 38 ]
| cae8 | 215/12f0 | 3fo | 218/12f0 | 38 |

Table 3. Parameter specification for test cases

response decays to a small value ¢, A is a scaling factor which
ensures that the filter has unit energy, and « is a parameter that
controls the bandwidth of the filter. To ensure that the filter hasa
bandwidth which follows a constant-Q rule, we utilized thefilter's
frequency response[5] to arrive at the following relation:

1 wf 2
X = 2Tn(g |:QFlsi| :

Peak Picking Algorithm: An initial set of pesks is estab-
lished by detecting local maxima in the spectrum. Any peaks
that are 40dB below the highest peak are eliminated from this set.
Starting with the highest energy peak as the “reference peak,” we
proceed to eliminate all peaksthat are smaller than the magnitude
of the filterbank's frequency response (a function of the center fre-
quencies of the filters in the filterbank) to a complex exponential
with an amplitude and frequency equal to that of the reference
peak. The rationale for this procedure is that peaks smaller than
the frequency response magnitude are essentially sidelobes corre-
sponding to the reference peak. We keep repeating this procedure,
using as the reference peak the peak whose energy is largest from
amongst the un-eliminated peaks that have not already been used
as reference peaks. Once all un-eliminated peaks have been used
asreference peaks, we utilize onefinal procedureto eliminate each
peak that is theoretically unresolvable from another peak of 12dB
greater energy.

Bin Resolution: Thisis the issue of how far apart should we
have the center frequencies of consecutivefiltersin the filterbank.
We note that in accordancewith (3), acomponent at frequency f»
is guaranteed not to be affected by a component at frequency f if
the distance between f; and f- is greater than

Diin = Maz((1 = 3%5) f1, (5% — Df).-
To be able to detect spectral peaks corresponding to such compo-
nents we must have a frequency spacing between the center fre-
quencies of consecutive filters of at least D%"". Assuming that
the smallest possiblevaluefor f; is196Hz (violin G3) and usinga
Q of 17, the corresponding value of D%"" is approximately 5Hz.
For higher valuesof f1, D’gi" would be larger. In our implemen-
tation the filters' center frequencies were kept uniformly spaced
and so we used a 5Hz spacing throughout the filterbank.

4. VALIDATION EXPERIMENTS

A software implementation of our approach was used to success-
fully validate its performance on a representative data set. We
generated 2,266 signals corresponding to all valid 2-note, 3-note
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Fig. 2. The constant Q spectrum of amusica signal and the peaks
identified during various stages of processing

and 4-note chords that a violin quartet can play. Thisincluded all

the chords that can be composed from notes whose fundamental

frequenciesrange from 196Hz(G3) to 3,951Hz(B8), generally ac-
cepted limits for violins. Each test signal was 0.5 seconds long
and sampled at F. = 20480Hz. Therelative energies of the var-
ious harmonics of each note were determined in accordance with

well- established spectral modelsfor violin sounds[6] which sug-
gest a +6dB/octave decrease in spectral energy at frequencies up

to 3KHz and 15dB/octave thereafter. The net energy in each note
was normalized to a fixed value in order to simulate conditions
of “comparable loudness’ for each of the notes in a chord. Any

harmonics at frequencies above % were eliminated (even though
they were included in the energy normalization process). We did
not include in our test signals instances of the half-tone case (the
closest possible fundamentals) in situations where one of the FO's

isbelow 200Hz. Thisis because filters with Q=17 and center fre-
quency below 700Hz have impractically long impulse responses
for the music application. Therefore, in our implementation of the
CQ spectrum, filters centered at frequenciesbelow 700Hz havethe
same bandwidth asthat of afilter centered at 700Hz. However, for
FO's below 200Hz, this higher BW results in low resolution and

the inability to resolve an FO and its half-tone with areasonable Q
factor.

In Figure 2 we present an example of the type of results ob-
tained during the validation process. The musical signd in this
caseisacombination of four noteswith fo = 196.0Hz (G3), and
the remaining three notes: 349.2Hz (F'4), 587.3Hz (D25) (vibrato
rate of 10Hz) and 987.8Hz (B6) (vibrato rate of 10Hz). Note that
this example correspondsto case 4B listed in Table 2. Thetop plot
in Figure 2 shows the CQ spectrum with the initial set of pesks
identified by our peak-picking algorithm. The second plot for the
same CQ spectrum showsthe peaks eliminated through the proce-
dure of Figure 1 aswell asthe two peaksidentified to correspond
to the fundamentals at 196Hz and 349.2Hz. The fina plot also
shows the additional two peaksidentified during the second phase
of our approach.
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