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ABSTRACT

Detecting signals that are long, weak, and narrowband
is a well known and important problem in acoustic sig-
nal processing. In this paper an ad hoc scheme is de-
veloped: its stages include the DFT, a multiresolution
decomposition in the frequency domain, and a GLRT.
The computational load is light, and the performance
is remarkably good. This is so not just in the origi-
nal narrowband situation, but also, due to an inherent
adaptivity to the data, in the detection of signals that
are relatively broadband in nature. Generalizations are
given to CFAR operation in both prewhitened and un-
whitened cases, and to the detection of multi-band sig-
nals. As regards the last, it is discovered that there is
little loss from over-estimating the number of bands.

1. INTRODUCTION

In this paper we are concerned with the detection of
extremely weak and long-duration narrowband signals.
Such signals can arise in a variety of applications, such
as system-condition diagnosis (perhaps indicative of a
problematic vibration), industrial process monitoring
(perhaps chatter in grinding), astrophysics (pulsars,
etc.) and underwater surveillance. At any rate, de-
tecting them is important. Although various physics-
based models are possible, we confine ourselves to the
narrowband model, that the signal to be detected arises
from the passage of a white Gaussian process through
a narrowband filter. This band is not known, although
it can be assumed not to vary with respect to time.
Thus a detector “tuned” for a bandwidth of 10 Hz may
perform poorly when in truth the bandwidth is 30Hz.
Our goal is to establish a detection structure that can
take advantage of a narrowband nature, yet is robust
when the bandwidth increases.
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2. DETECTION STRUCTURES

2.1. Modeling and Detector Background

The problem considered in this paper is of detection of
a long-duration bandpass signal: its energy is known to
be concentrated in contiguous frequencies. But since
these frequencies are unknown, the hypotheses to be
tested are composite. The magnitude-squared FFT is
taken on the time-domain observations, and we pro-
ceed in the frequency domain. We write in a ma-
trix a block of NL time domain observations as x =
(x1, X2, ...,X1,), where x,,, is a column vector of dimen-
sion N whose k' element is the time sample of index
(m—1)L+k. Each column is immediately transformed
to its magnitude-squared frequency domain equivalent
X, and recorded as X = (X, Xa,...,X). It is as-
sumed that X,,’s are independent.

The probability density function (pdf) of the ;"
element of X,,,m = 1,2, ..., L, follows an exponential
distribution with parameter ;. More specifically, pre-
sented in a hypothesis testing framework, we have the
model

Hy : Bj=po=1 1<j<N (1)
) gy ki <i<ke
Ho: 6= { 1, else

Signal energy is to be found in the (unknown) subset
{ki,k1 +1,...,k2} and 6 = {11, k1, k2} are the para-
meters.

In detection with unknown parameters, the GLRT
approach replaces these by their maximum likelihood

estimates (MLEs): Tgrr(X) = W%w, where
the set ©; includes all possible choicgs of parameter
6 under H;. Based on the model of (1), the GLRT
amounts to enumerating all possible values when dis-
crete parameterization is involved, and hence it is un-
appealing here.

Nuttall’s power-law detector [1] has attracted con-

siderable attention due to its simple implementation



and good performance. It is written as

L N
Tre = ), D X}, (2)

m=1j=1

where v is a real exponent. New versions of the power-
law detectors were developed in [3] to take advantage
of a tendency for signals (actually transient signals in
that paper) to agglomerate their energies in the trans-
form domain. For instance, the detector combining 2
contiguous FF'T bins is simply formed as

L-1 N

Z Z(Xj,m + Xjt1,m)"” (3)

m=1 j=1

Ty =

with a similar expression for T'r3. Constant false-alarm
rate (CFAR) and self-whitening versions of these sta-
tistics have also been developed.
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Fig. 1. Reconstructing the i** level approximation A;
from cA;. L' is the reconstruction low-pass filter.

2.2. The Detector

Due to the assumed frequency contiguity of signals of
interest, the {3;}’s are locally-smooth. This motivates
us to estimate {(;}’s using wavelet coefficients in the
frequency domain. Here only the Haar wavelet [2] is
used due to its easy implementation.

Assume the data has been preprocessed as in section
2.1. Detection proceeds as follows:
1. — Coarsely estimate the §’s by averaging across time,
as .

X
6?ML — Emfll/ J (4)

for j = 1,2, ..., N, the superscript uM L denotes uncon-
strained ML estimation.
2. — Do a multi-resolution decomposition on {3}
With the vector {3 "} as the input signal, the wavelet
decomposition process operates with successive approx-
imations being decomposed in turn and generating lower
resolution coefficients having only half the length due
to downsampling. We denote the k" element of the
ith-level approximation decomposition as cA; (k).
3. — Interpolate each scale level to the same length.
The process, as in figure 1, yields a reconstructed ap-
proximation A; having the same length N as the origi-
nal signal, and presumably recognizable as an approx-
imation of it.

4. — For each scale compute the mean level:

1 N
i = NZAZ(IC) (5)
k=1

5. — For each scale find the region of signal energy. It
is assumed that if the bandwidth of the signal is such
that its appearance will be most evident at scale 7, then
there will be a peak in {A4;(k)} around the element
corresponding to that frequency band. Discovery of
this is a two-stage process:

1. Compute
k" = argmax {A;(k)} (6)

which is the location at which the i*"-scale de-
composition reaches its maximum value.

2. Find the left and right “shoulders” of the peak
according to
.
k

max {k: k < k" and A;(k) <m;} +1
min {k : k> k" and A;(k) <n;} —1

For scale i a candidate signal band is thus that of fre-
quencies between 27k! /N and 27k /N rad./sec.
6. — Estimate the signal energy profile for each scale as

ki

. 1 2
(0 = —_—— Al j 7
K11 ké_ki"‘lzk,» (J) (7)

i=k}

7. — Compute the GLR for scale i as

N

T = ﬁ H i,erm(l—l/ﬂ;) (8)

7
m=1j=1 ﬂj

or equivalently

. L k; .
To= 1Y) Xpm (1=1/i11,)

m=1 j:knli
~ Lk - KA D(a,) ()

8. — Find the overall GLR by maximizing over scales.
That is, ,
Te = max{T} (10)

is the overall test statistic.

The above procedure is quite ad hoc. But its com-
putation is relatively light, and it works very well and
robustly, both for narrowband and for broadband sig-
nals, and down to very low SNR values, as shown from
figures 2 and figure 3. Since we have some interest
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Fig. 2. Detection performance of our wavelet-
based GLR detector for a signal with frequency band
[0.2,0.2033]. We set N = 4096 and L = 100. Here
T represents our wavelet-based GLR scheme, Tpy, for
the power-law detectors, T2 and T'f3 for the power-law
detectors combining 2 and 3 contiguous FFT bins re-
spectively, and the Bartlett procedure is from [5]. In
the left figure, the aggregate SINR = 400 is chosen to
obtain the ROC curve. In the right figure, Py, is given

as 1074,
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Fig. 3. Detection performance of our wavelet-
based GLR detector for a signal with frequency band
[0.3,0.4]. (Left: aggregate SNR = 1000; Right:
P, = 1071, Please note that (in this figure and oth-
ers) the per-sample SNR is the given aggregate SNR
minus 56dB — that is, the pictured aggregate SNR of
30dB is actually —26dB per time-domain datum.

in signals with quite narrow bandwidth, we compare in
this case the performance of our scheme to the Bartlett
method (favored in [5] for the detection of a single
tone in white Gaussian noise). In the first and most-
narrowband case of figure 2 to which the Bartlett ap-
proach is “tuned” the performances are essentially iden-
tical; as the bandwidth increases in figure 3, the Bartlett
scheme performs increasingly poorly.

3. EXTENSIONS

3.1. Extension to Signals with Multiple Bands

We can relax our assumptions such that the number of
signal-occupied frequency bands is known to be M > 1,
and use [k1(p), k2(p)] to indicate the location of the pt"
band with energy level 117 ,,. A wavelet-based procedure

as in section 2.2 is taken to estimate the parameters.
The only substantive difference is that in step 7 we
must compute

Y B A 100 ,
=30 | 3 Xom(1-1/ui,) -
p=1 | m=1 j=Fki (p)
M ‘ ‘ ,
_ Z [L(]g%(p) —ki(p)+1)In (ﬂll,p)]

The performance is illustrated and compared to the
power-law detectors in figure 4. Further, the robustness
with respect to an incorrect selection of M is studied

and the loss is minor [4].

3.2. Extension to CFAR Operation for Nonwhite Data

The goal here is to detect a long-duration narrowband
signal buried in colored noise with unknown but sta-
tionary spectrum. (The simpler case that the spectrum
is known up to a scale constant is treated in [4], also.)
We record the data as X = { X1, Xo, ..., Xpnorm, ..., X },
where X ;’s are assumed independent and the first L™°"™
vectors are known to be noise-only.
We define the normalized observations as

1 L

T —Lmnorm Zm:Lnor'm_;’_l X]m
1 L’!’LO’V‘"YY;

Tromm Dam=1 Xjm
for j = 1,...,N. Here {z;} serves as the coarsely esti-
mate {ﬁ;‘M L1, A procedure parallel to that in section
2.2 is used to estimate the (’s and to test — the only
difference is in the seventh step. According to the new
(F-distributed) model we have

(12)

Zj =

ks

T;=L|>

—

_ [ norm

%) (13)

Lnorm

L — [norm 2 )
[ norm ﬂli,l

~ (L= L0~ K+ Diog (i,

The above procedure can be easily modified to accom-
modate multiple signal bands.

From [3] we introduce the comparable power-law
statistics Tepy, defined as Tep = Zjvzl z¥, where v
is a real exponent. By taking advantage of assumed
frequency contiguity, we also form the detectors T.yo
and T¢y3, which combine respectively 2 and 3 contigu-
ous DFT bins. The detection performance of the new
scheme is illustrated and compared to the best CFAR
power-law detectors in figures 5 and 6, with differ-
ent choices of relative frequency bandwidth and signal

power.
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Fig. 4. Detection performance of our CFAR wavelet-
based GLR detector for a signal with multiple fre-
quency bands. Here the aggregate SNR = 1200, the
band number M = 3.

oot i ool

oal I oal

o7t

o7t

o6l

M
4 4 aTos|

o.al

oal o.al

ozl

o1l o1l

>

30 ES)
St (@B)

Fig. 5. Detection performance of the unwhitened

CFAR version of the wavelet-based GLR detector for
a signal with frequency band [0.3 0.31]. We set N =

4096,L™°"™ = 30, and L = 90.
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Fig. 6. Detection performance of the unwhitened
CFAR version of the wavelet-based GLR detector for a
signal with frequency band [0.2 0.5].

4. SUMMARY

In this paper we have sought a detector for a signal
that is long, weak and narrowband. The scheme stages
include magnitude-square discrete Fourier transforma-
tion, a multiresolution decomposition in the frequency
domain with associated interpolation to preserve length,
a peak-/band-picking routine at each scale, and forma-
tion of a GLR statistic. The scheme is admittedly ad
hoc; however, its performance is good, and its com-
putational load is comparable to that of the original
DFT-step alone.

The procedure is flexible enough to admit a simple
generalization to CFAR operation in the sense that, al-
though a white background is assumed, its level may be
unknown. There is little loss (less than 1dB) from this
generalization. A further generalization to the multi-
ple “bands” of signal energy, is also explored. It is
discovered that not only is the procedure straightfor-
ward and numerically-light, but also that there is lit-
tle loss in over-estimating the number of bands. We
additionally present a version of the detector that per-
forms self-normalization on a frequency-by-frequency
basis. (It naturally requires a stationary background
noise process in order to do this.) The performance
of this new scheme is, as above, remarkably good, and
this may be considered a “plug-in” solution for the de-
tection of band-constrained signals.
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