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ABSTRACT

In this paper, we present novel algorithms for mul-
tichannel blind deconvolution under output whiten-
ing constraints. The algorithms are inspired by re-
cently-developed procedures for gradient adaptive
paraunitary filter banks. Several algorithms are de-
veloped, including one algorithm that successfully
deconvolves mixtures of arbitrary non-zero kurtosis
source signals. We provide detailed local stability
analyses of the proposed methods to verify their
capabilities. Simulations show that the methods
successfully deconvolve spatio-temporal mixtures of
statistically-independent source signals.

1. INTRODUCTION

In multichannel blind deconvolution, an m-dimensional vec-
tor sequence s(k) containing statistically-independent sam-
ples s;(k), 1 < ¢ < m is mixed by an (n x m), m < n
unknown multichannel linear system with impulse response
A;, —00 <1 < 00, to produce the measured sequence

x(k) = > As(k—i). (1)

1=—00

The goal is to process x(k) by an (m x m) multichannel
adaptive linear system to produce estimates of the source
sequences {s;(k)} in the adaptive system’s outputs without
precise knowledge of {s;(k)} or of {A;}. Multichannel blind
deconvolution is particularly useful in wireless communica-
tions employing smart antennas [1].

Although single-channel blind deconvolution is a well-
studied topic [2], there exist relatively few successful multi-
channel blind deconvolution algorithms. Two simple multi-
channel blind deconvolution algorithms are described in [3]
and [4], respectively. The former algorithm is an extension
of the constant modulus algorithm (CMA) equalizer, and
the latter algorithm is an extension of the natural gradi-
ent blind signal separation (BSS) algorithm in [5]. Both
of these algorithms rely on knowledge of the probability
density functions (p.d.f.’s) of each s;(k), and they fail to
extract these signals if the chosen density models do not
accurately match the p.d.f.’s of each s;(k). More recently,
contrast-based criteria for BSS have been extended to the
multichannel blind deconvolution task [6, 7]. These crite-
ria identify separated and deconvolved sources regardless of
their p.d.f.’s.
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Fig. 1: Contrast-based multichannel blind deconvolution.

In this paper, we derive novel multichannel blind decon-
volution algorithms based on the contrast functions in [6, 7].
Our methods are inspired by recent work on gradient adap-
tive paraunitary filter banks [8]. Unlike the approaches in
[3, 4], ours do not require precise knowledge about the un-
derlying source p.d.f.’s; rather, they only require knowledge
of the number of positive-kurtosis and negative-kurtosis
sources within the mixture. The algorithms are simple, re-
quiring between four and seven multiply/adds per adaptive
system coefficient at each time instant. We provide detailed
local stability analyses of the proposed methods to verify
their extraction capabilities. Simulations of the proposed
method show their abilities to extract spatio-temporal mix-
tures of statistically-independent source signals.

2. STRUCTURES AND CRITERIA

Our proposed methods share the common system structure
shown in Fig. 1. The (m X n) prewhitening filter, denoted
by P(z), calculates the m-dimensional prewhitened signal

v(k) = ZPix(k—z’). (2)
=0

where P;, 0 < 7 < M is this system’s impulse response.
The coefficients of this system are designed so that v(k) is
approximately spatially- and temporally-uncorrelated, i.e.

E{v(k)v" (k- §)} =~ 15()),

Any one of a number of procedures can be used to cal-
culate P;, such as the multichannel Levinson algorithm or
other adaptive approaches [9]. The (X m) separation filter
W (z, k) calculates the source signal estimates as

—M<j<M. (3)

y(k) = D Wilkyv(k-1), (4)
=0

where Wi(k), 0 < | < L are the adaptive coefficients of
the separation system. In this paper, we develop adaptive
algorithms for adjusting {W;(k)} to obtain separated and
deconvolved source estimates in y (k).



Table 1: Contrast-Based Multichannel Blind
Deconvolution Algorithm for Arbitrary Mixtures
Initialize: {w;;;(0)} paraunitary
for k>0 do
qu(k) =0, Z()j(k) =0,1<j<m
for i =1 to m do

K= > wi(k)o;(k =1)

j=11=0
ei(k) = yi (k)
for j=1ltomdo
L
wij (k) = w1 (k) + D _wijr g (K)ei(k — q)
q=0
end
if 1 <m do
Vi) = Z Zwm (k)uij (k — 1)
end o
end
for i =1 to m do
for j =1tom do
L
zi5(k) = 21, (k) + Y _wij—q (k)i (k —q)
q=0
end
m L
)= DD wink)z(k—1)
j=11=0
end
for s =1 to m do
&i(k) = Biei(k), y; (k) = Biyi(k)

for j =1tom do
wiji(k + 1) = wiji (k) + €&(k — L)v;(k— L —1)
—7;(k — Lyus;(k - 1)
end

for j = (M + 1) to m do
wiji(k + 1) = wiji (k) + ¢; (k)vj (k — 2L — 1)
— Gk — 2Lyusj(k — L—1)
end
end

In [6, 7] a contrast function for the multichannel blind de-
convolution task is proposed. A contrast function is a cost
function that depends on the source signal estimates whose
extrema over the separation system parameters extract all
of the source signals [10]. This formulation assumes that
(i) the sources are spatially- and temporally-uncorrelated,
such that E{s(k)s”(k — 1)} =~ Dé(l), —o0 < I < oo for an
arbitrary nonsingular diagonal scaling matrix D with diag-
onal entries d;;, and (ii) each source is spatially- fourth-
order uncorrelated, such that E{s;(k)s;(k)si(k)sp(k)} =
K[8:(k)|6ijip + diidudijdip + disdjj [0:05p + dipdji].

Under these assumptions, the following procedure solves
the multichannel blind deconvolution task:

maximize J({Wi}) = |s[yi(k)]] (5)
E{y(k)y"
where J({W;}) is the contrast function and x[y;(k)] =
E{ly:(k)|*} — 3E%{|y:(k)|?} is the kurtosis of yi(k). As-

such that (k—D}=15(l), —0o <1< oof6)

sume for the current discussion that all {s;(k)} have the
same kurtosis sign, such that x[s;(k)] > 0 or [s;(k)] < 0
for all 1 < 7 < m. Then, an equivalent formulation to

(5)~(6) is

maximize

Fqwiy) = §Z Bllw®} (@)
L
such that Y W, (k)Wi,,(k) ~ 16(3), (8)
=0
where (3 satisfies Bk[s;(k)] > 0 for all 1 < ¢ < m.

3. ALGORITHM DERIVATION

Multichannel linear systems whose impulse responses
obey (8) are called paraunitary filter banks. In [8], the fol-
lowing differential update is proposed to adapt the coeffi-

cients of a paraunitary filter bank to maximize T {W:i}):

dW,
dt

where G; = 8.7 ({W;})/0W; and “+” denotes discrete-time
convolution of matrix sequences. Eqn. (9) maintains (8) for
a doubly-infinite multichannel ITR system. Modifications
are required, however, to make the resulting system both
causal and numerically-stable [11].

Applying (9) to (7)—(8), discretizing the resulting up-
dates, and assuming slow adaptation of the system’s co-
efficients results in the first proposed stochastic gradient
algorithm for the multichannel blind deconvolution task:

= WI*WZI*GI_WI*GZI*WI, (9)

Wi(k+1) = W(k)+Dg [¢(k)v' (k—L—1)
— y(k—Lyu" (k- 1)] (10)
uk) = Y Wi (Bfy(k—q) (11)
Yky = > Wilkyu(k—1), (12)

where Dg is a diagonal matrix of step sizes {8;}. This algo-
rithm is simple, requiring 5m?(L + 1) + 3m multiply/adds
per adaptive filter coefficient. Unfortunately, this algorithm
fails to maintain the paraunitary constraint in (8) over time
due to numerical effects. Similar difficulties have appeared
in algorithms for minor subspace analysis and contrast-
based BSS [12, 13], and they can often be addressed by
modifying the updates to allow numerically-stable behavior.
To this end, we propose the following modified algorithms
for all 8; > 0 and B; < 0, respectively:

Wi(k+1) = Wi(k)+Dg[f(y(k—L)v'(k—L—1)

— y(k — L)u"(k - 1)] (13)
and Wi(k+1) = W;(k) +Dg[¢(k)v (k — 2L — 1)
— y(k—2L)u"(k — L —1)] (14)
2(k) = > Wi_g(k)p(k—q) (15)
q=0
k) = Y Wik)a(k—1). (16)



Table 2: Local stability analysis results for the multichannel blind deconvolution algorithms.

[Algorithm || Hi0, i<y Hiu, [ 20 [ huo
Ean. (10) [ feee fis | T 0
Ean. (13) || — | (s ;‘ﬁfjj +3) Byt iﬂ;j 3 B 2m3+ 3 2n,-3+ 5 —9Bi(ki +3)
Ean. (14) || — | & (—nﬂJ@? " gg 5 (_,5(_2? + gg B | _omit3) (2 +3) 26; (ki + 3)
Ban. (17) B %ﬂ? Bi (k; —Eni +3) A 2m3+ ’ 2ni3+ 3 —2Bi(ki +3)
Ban- (18) ]| =] (ﬂ;:f+ 5 Brlns—ni—9) 5| _omvn it 2Pi(ri +3)

These algorithms require 4m?(L + 1) 4+ 3m and 7m?(L +
1) 4+ 3m multiply /adds per iteration, respectively.

While useful for separating mixtures of positive- or
negative-kurtosis sources, respectively, the updates in (13)
and (14) cannot separate mixtures containing both positive-
and negative-kurtosis sources. We now propose modified al-
gorithms that are the spatio-temporal extensions of those
in [14]. These algorithms can be approximately described

using the convolution operator “+” over the time index [ as

Wi(k + 1) = Wi(k) + Dglf(y(k—L))v'(k— L—1)
— trify (k—L)f* (y (k— L—1)]« W (k)] (17)
for all 8; > 0 and

Wik +1) = Wi(k) + Dg[((k)v'(k—2L—1)
— trify(k—2L)f" (y(k—2L—1)]«W, (k)|[18)

C(k —1) = tri[W (k) * WL (k)] *tri[W; (k) « W (k)]
«f(y(k—2L—1)) (19)

for all 8; < 0, respectively, in which

. _ fij fi>j
trilF] = { 0 otherwise. (20)

for an (m x m) matrix F with entries {f;; }. Assuming slow
adaptation, these algorithms can be combined and simpli-
fied to produce the algorithm listed in Table 1, where choos-
ing m = 0 and m = m yields updates identical to (17)
and (18), respectively, as |8;| — 0. These algorithms have
the same computational complexities as (13) and (14). In
addition, when m corresponds to the number of negative-
kurtosis sources in s(k), the combined algorithm in Table 1
can potentially separate arbitrary source mixtures, as will
be shown.

4. STABILITY ANALYSES

We now provide stability analyses of (10), (13), (14), (17),
and (18). These analyses determine the constraints on the
step size parameters {3;} to guarantee stability of the algo-
rithms about separating and deconvolving solutions. The
procedure used is the ordinary differential equation (ODE)
method, in which the dynamics of the linearized averaged
ODE of the coefficient updates is elucidated. For a similar
analysis of orthonormal-update BSS algorithms, see [13].
Our analyses use a simplified notation whereby time indices
are suppressed, such that y(k + p) = yp. Our analyses also
ignore truncation of the prewhitening and deconvolution fil-
ters. Without loss of generality, we describe the evolution-
ary behaviors of the algorithms near a separating solution

Cl = Wl * Pl * Al = I(S(l) + Al, (21)

where A; are (m x m) matrices with > _° _[|A||7 < m.
For each algorithm, the first step of the analysis is to

find the averaged ODE of the coefficient updates in the

combined impulse response C;. For (10), the ODE is

dC
= =Ds) CoB{Ci f(y-q)sTi—s-p"(y-0)Ciq} (22)

p,q

The averaged ODE is then linearized about a separating
solution satisfying (21), yielding an averaged ODE for A;.
The statistical properties of the sources are then used to
simplify the relations. In every case, we can express these
updates in terms of {A;j;}, the (¢, j)th entries of all A;, as

d [ Ay } [ Ain } o
LN Hi | AV 2
dt [ Ajic-1y | Ajiey |7 E<HVEE)
— H;; , 24
dt [ Aji—y) oA Vi#£0  (24)
d
—Aiio = hioAio, 2
g Do hiioAio (25)

where the H;j;, H;;, and hio depend on f3;, B, and the
statistics of s;(k) and s;(k). Shown in Table 2 are the ex-
pressions for these quantities for the five proposed algo-
rithms; detailed derivations for each case are omitted for
brevity. Because (23)-(25) are linear ODEs, local stability
is guaranteed if H;;;, H;;;, and hio have negative eigenval-
ues, producing constraints on the values of {3;} and {x;}.

From these results, a number of conclusions can be drawn:

1. Because hj;o = 0 for the analysis of (10), this algorithm
fails to maintain a paraunitary filter impulse response in
the multichannel blind deconvolution task.

2. Eqns. (13) and (17) are locally stable for positive-kurtosis
source mixtures (k; > 0) if 8; > 0 for all 7. Similarly, Eqns.
(14) and (18) are locally stable for negative-kurtosis source
mixtures (k; < 0) if 8; < 0 for all 3.

3. Due to the lower-triangular nature of H;j;; for (17) and
(18), these algorithms can be combined, such that the al-
gorithm in Table 1 is locally stable if k; < 0 for 1 <13 <m,
kj > 0 for m < j < m, and sgn[f;] = sgn[k;] for 1 <i < m.
This algorithm can successfully deconvolve arbitrary source
mixtures, so long as the numbers of negative- and positive-
kurtosis sources are known.

5. SIMULATIONS

‘We now explore the behavior of the proposed multichannel
blind deconvolution algorithms via simulations. In these
simulations, we have generated v(k) directly from s(k) using
a paraunitary filter of the form

vilk) = awi(k = 1) + Y aij [assi(k) —si(k = 1], (26)

=1
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Fig. 2: Evolutions of (a) E{ps(k)} and (b) E{ns(k)} for
the multichannel blind deconvolution algorithms in the first
simulation example.

where m = 4, {on1 a2 a3 as} = {—0.4 0.5 0.2 0.3}, and g;;
are elements from a different random orthonormal matrix
for each simulation run. Thus, no prewhitening is necessary.
For the combined system in (21), the performance factors

(k) = N+1 m—l i 133'5%%)2151\, |ciji (k)]
Ps m(N+1) -1 2 £ m N
1= 2
SO lea(k)
j=11=0
max |Cju(k)|2
1<j<m,0<I<N
+ — and (27)
DN leu k)l
j=1 1=0

Y N Wi W () ~ T80
C X Wik W (Rl

were computed for each algorithm using ten simulation
runs, where L = 32, N = 3L, and w;;;(0) = §;;6(l — L/2).

Figs. 2(a) and (b) show the average values of ps(k) and
n¢ (k) for Eqns. (10), (13), and (17) for common step sizes
of 0.000012, 0.000012, and 0.00002, respectively, in which
each s;(k) is approximately Laplacian-distributed (k; = 3).
As can be seen, (10) quickly diverges due to its inability to
maintain a paraunitary impulse response. Both (13) and
(17) successful separate and deconvolve the source signals,
and (13) outperforms (17) due to its use of additional con-
straints within the updates.

Figs. 3(a) and (b) show the performance of the algorithm
in Table 1 in separating and deconvolving mixtures of two
Laplacian (x; > 0) and two binary (k; < 0) source signals.
In this case, we have chosen 3; = —0.00002 for : € {1,2}
and 3; = 0.00002 for ¢ € {3,4}. As can be seen, this algo-
rithm separates and deconvolves the signal mixture without
precise knowledge of and without estimating the character-
istics of the sources.

6. CONCLUSIONS

In this paper, we propose novel adaptive paraunitary fil-

ny (k) (28)
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Fig. 3: Evolutions of (a) E{ps(k)} and (b) E{ns(k)} for
the algorithm in Table 1 in the second simulation example.

ter bank algorithms for contrast-based multichannel blind
deconvolution. One of these algorithms deconvolves spatio-
temporal mixtures of arbitrary non-zero-kurtosis sources
without precise knowledge of the sources’ statistics. Sev-
eral algorithm forms are proposed and their local stability
properties analyzed. These results, along with simulations,
verify the capabilities of the self-stabilized methods. Char-
acterizations of the steady-state MSEs of the proposed al-
gorithms are underway.
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