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ABSTRACT

In this work we demonstratean improvementin the state-of-the-
art largevocabulary continuousspeechrecognition(LVCSR)per-
formance,undercleanandnoisyconditions,by the useof visual
information, in addition to the traditionalaudioone. We take a
decisionfusionapproachfor the audio-visualinformation,where
thesingle-modality(audio-andvisual-only) HMM classifiersare
combinedto recognizeaudio-visualspeech. More specifically,
we tacklethe problemof estimatingthe appropriatecombination
weightsfor eachof the modalities. Two differenttechniquesare
described:The first usesan automaticallyextractedestimateof
theaudiostreamreliability in orderto modify theweightsfor each
modality (bothcleanandnoisyaudioresultsarereported),while
thesecondis adiscriminative modelcombinationapproachwhere
weightson pre-definedmodelclassesareoptimizedto minimize
WER(cleanaudioonly results).

1. INTRODUCTION

In [1] we presentdecisionfusion algorithmsthat focus on both
statesynchronous(combininglikelihoodsat the statelevel) and
phonesynchronousmodeling(combininglikelihoodsat thephone
level) of theaudioandvisualstreams.Themodelinvestigatedin
thisapproachwasamulti-streamHMM, andaphonesynchronous
variant,a productHMM. The state(phone)conditionalobserva-
tion likelihoodof thesemodelsis the productof the observation
likelihoodsof theiraudio-onlyandvisual-onlystreamcomponents,
raisedto appropriatestreamexponentsthatcapturethe reliability
of eachmodality.

In thisarticle,weexpandonexponentestimationfurther. Two
techniquesarepresented:

In the first techniquewe investigatepossiblerefinementsof
streamexponentdependence,makinguseof anautomaticallyex-
tractedaudiostreamreliability, estimatedon the basisof the de-
greeof voicing presentin theaudiosignal[2]. This approachfol-
lows the conceptof audio-visualadaptive weightsusedin [3].
We first considerexponentsthatareutterancedependent,estimat-
ing theaveragevoicing over theutteranceframes.This approach
givesusa relative improvementof about7% in cleanand26%in
noisyspeech(cocktailparty“babble”speechnoiseat8.5dBSNR),
whencomparedto theaudioonlyWER.Wealsoshow animprove-
mentcomparedto the multi-streamHMM usedin [1]. Next we
explore framedependentexponents,usingper framevoicing es-
timates. The resultsarecomparedwith the baselineandthe per
utteranceexponentresults.

Thesecondtechniqueis a discriminative modelcombination
(DMC) [4] approach:Theaudioandvisual streamsareusedin-
dependentlyto train modelswhich arethencombinedalongwith
a languagemodel,with weightsoptimizedto minimize theWER

on aheldoutset.Thetwo modalitiesareonly synchronizedat the
utterancelevel in this approach.Similar to thework in [5, 6], we
considerexponentsstaticfor eachmodality, or dynamic(hypothe-
sisdependent).Wepresentresultsonly in cleanspeechconditions,
wherewe show a 5% relative improvementover a baselinewhich
combinestwo differentaudiomodelsby N-bestrescoring.

Section2 describestheexperimentalsetupfor thiswork. Sec-
tion 3 presentsthe generalform of the fusion model. The two
weighting techniquesare presentedin sections4 and 5 respec-
tively. We concludewith a discussionof theaccomplishmentsof
thiswork andsomeideasfor futuredirections.

2. DATABASE - EXPERIMENTAL SETUP

To allow experimentson continuouslargevocabulary, speaker in-
dependentaudio-visualspeechrecognition,a databasehasbeen
collectedat IBM for thepurposesof theCLSP/JHUsummer2000
workshop[7]. For thenoisyexperimentsacocktailparty“babble”
speechnoisewasaddedto theaudiosignalat8.5dBSNR.Baseline
ASR systemswereobtainedduring the workshop,for cleanand
noisyaudio,usingHTK. Theacousticmodelswerecross-wordtri-
phoneHMMs with about75K Gaussianmixtures.All themodels
developedattheworkshopwereusedto rescorewordlattices,gen-
eratedwith the IBM LVCSR recognizerwhich usedpentaphone
cross-word HMMs with about50K Gaussianmixtures[8]. The
speaker independent(SI) testset(1038utterances;2.5 hours)de-
finedin theworkshopwasusedfor theseexperiments,while aheld
out setwasusedfor tuningtheparameters.

3. MULTI-STREAM HMMS FOR AUDIO-VISUAL
FUSION

In thiswork weareusingamulti-streamHMM to combinetheau-
dio andvisualmodalities(streams).As describedin [1] themodel
computesthe classconditionalobservation likelihoodasa prod-
uctof theobservationlikelihoodsof its single-streamcomponents,
raisedto theappropriatestreamexponentsthatcapturethereliabil-
ity of eachmodality. Giventhebimodal(audio-visual)observation
vector � 	 
���
�� � 	 
����� � 	 
����� the stateemission(classconditional)
probabilityof themulti-streamHMM is:����� � 	 
���� �! 
 "#�$&% �&' �)( *,+.-0/12�3 �54 #76 298;: -=< � 	?>��#A@CB #76 2 �ED #76 2=FHGJI -K/ > (1)

wherethestreamexponentsL #M6ON arenon-negativeand,in general,
dependon the modality P , the HMM state(class)

�
, andlocally,

on theutteranceframe(time) Q . Suchmodelhasbeenconsidered
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Fig. 1. Top: Local estimatesof R in cleanand in noisy speech
(“babble” noise8.5dB),andXNR reference,for a databaseutter-
ance. All calculationsareperformedon 128msspeechwindows
shiftedby 64ms. Bottom: Noisy audiospectrogramof the same
utterance.

in multi-bandaudio-onlyASR, amongothers[9], and,asa two-
streamHMM, in small-vocabulary audio-visualASR tasks [10,
11, 3].

In (1) the likelihoodsare combinedat the statelevel (state
synchronousmulti-streammodel).We canchooseto combinethe
likelihoodsat a classlevel (classcanbephone,syllable,word, or
evenutterance)allowing differentdegreesof asynchrony between
the two streams.We refer to this modelasa class-synchronous
productmodel[1, 8]. During maximumlikelihood(ML) training
of themodel,theweightsL #H60N werekeptfixedwith a-priorichosen
values: LTS 6�N 
VU5W X

, LZY 60N 
VU5W [
.

4. VOICING AS A MEASURE OF AUDIO RELIABILITY

Varioussignal-to-noiseratio estimateshave beenusedin theliter-
aturein order to assignan audio-streamweight [12]. Here,we
proposetheuseof a measureof voicing, correlatedwith SNR,as
ameansof estimatingthereliability of theaudioobservations,and
we apply it to audio-visualweighting. We employ an equivalent
harmonicityindex (HNR) [13, 14] to estimatethe averagevoic-
ing perutterance.Basedon this index, we subsequentlyestimate
utterancebasedstreamexponents.

We usetheautocorrelogramof a demodulatedsignalasa ba-
sisfor differentiatingbetweena harmonicsignalandnoise.In the
caseof Gaussiannoise,thecorrelogramof anoisycell is lessmod-
ulatedthana cleanone[13]. Thepeaksin theautocorrelogramof
thedemodulatedcell isolatethevariousharmonicsin asignal.This
canbeusedto separatea mixtureof harmonicnoisesanda domi-
nantharmonicsignal. It is interestingthatsuchseparationcanbe
efficiently accomplished,usinga time window of durationin the
samerangeastheaveragephonemeduration.

We getanaudioreliability estimatefor eachframeof 128ms
duration.Beforetheautocorrelationwecomputethedemodulated
signalafterhalf waverectification,followedby band-passfiltering
in thepitch domain([90,350]Hz). For eachcell, we calculatethe
ratio R 
 R]\O^_R U , where R]\ is thelocal maximumin time delay
segmentcorrespondingto the fundamentalfrequency, and R U is
the cell energy. This measureis stronglycorrelatedwith SNRin
the5–20dBrange [15]. Figure1 demonstratesexplicitly thecor-
relationof this measurein cleanandnoisyspeechwith the noisy

Cleanaudio Noisyaudio
WER%(relative) WER%(relative)

Audio-only 14.44 — 48.10 —

AV-MS 14.62 (+1.2) 36.61 (-23.9)
AV-MS-UTTER 13.47 (-6.7) 35.27 (-26.7)

AV-PROD 14.19 (-1.7) 35.21 (-26.8)
AV-PROD-UTTER — 35.43 (-26.3)
AV-PROD-LOCAL — 37.15 (-22.8)

Table 1. Audio-visual decisionfusion WER(%). We compare
with threedifferentbaselines:Audio-only, AV-MS andAV-PROD.
RelativeWERimprovementsarecomputedastherelative(%)gain
over theaudio-onlybaseline.

signalSNR: We plot R estimateson 128msspeechwindows of
a noisyutterance,againstthe R estimatesin thecleanaudiocase,
andalinearSNR-alikemeasure,definedas̀badc 
 <Je ^ <Jegfih FEF ,
whereSis theenergy of thecleansignalandN is thenoiseonlyen-
ergy. Noticethat R andXNR donotgiveexactly thesamekind of
information,but they arequitestronglycorrelated.Their correla-
tion factoris 0.84,computedover theentireSI testset.Locally, R
is higherthanXNR on voicedparts,andit is loweron otherparts.
This local divergenceon a per framelevel could be exploited to
obtaina localstreamweightingscheme.

4.1. Utterance Dependent Stream Exponents

In this first approach,audiospeechreliability is calculatedonly
from the regionswherethe speechis dominant. We assumethat
regionswherelocalSNRis higherthan0dB(stronglycorrelatedto
theregionswhereckj U5W l

; seealsoFigure1) arespeechregions.
WesubsequentlycalculatestreamexponentsL � N , constantfor allQ within theutterance,to bethemeanof all R valueshigherthan
0.5. We assumethis to beanadequateestimateof voicing within
theutterance.Then,in (1): L � N 
 \nmAL � N .

We foundthattheaudioweight L � N is mostlyspeaker depen-
dent and, in a smallerextent, utterancedependent[8]. For the
entireSI testdataset,theaverageL � N is calculatedto be

U5W X_o
andU5W X_[

for thecleanandnoisyaudiocase,respectively.

4.2. Local Frame Dependent Stream Exponents

Sincewe estimateframereliability on 128mssignalintervals,we
canusetheseestimatesto computethelocal frameweights,using
thepiecewise-linearmappingfunctionproposedby Meier in [16].
We experimentedalsowith other linear functionsof R inspired
from studiesasin [11] without successso far. We optimizedthe
parametersof theMeier functiononasmallheldoutset.Thuswe
computetheweightsas: L � N 
qp;rKs < p;t&u < R < Q F � U5W l F � U5W X F .
4.3. Experimental Results - Discussion

The WER resultsfor different systems,for the SI test set, are
presentedin Table 1. We compareour resultsto an audio-only
andtwo audio-visualbaselines.Theaudio-onlybaselineusesthe
HTK trainedacousticmodel(seesection2). TheAV-MS modelis
the statesynchronousaudio-visualmulti-streammodeldescribed
in (1), while the AV-PROD modelis a phonesynchronousprod-
uct model (seesection3). The details for the developmentof
thesemodelsaredescribedin [1, 8]. Thesebaselinesystemswere



trainedusingaudioweight LTS 
VU&W X
. ThevideoweightwassettoL Y 
 \vm;L S . After ML training, L S wasoptimizedonaheldout

setfor clean(noisy)speechandwasfoundto be0.7(0.6) for AV-
MS, and0.6 (0.7) for AV-PROD. Thesevalueswereusedduring
testing.

In bothcleanandnoisyconditionstheAV-MS-UTTERmodel
(utterancedependentstreamexponents)outperformedthecompa-
rableAV-MS one,resultingto almost7% relative WER reduction
with respectto theaudio-onlysystem.In thecleanaudiocasethis
modelevenoutperformedtheAV-PROD model.

Ourattemptsto modify theweightsfor theAV-PRODmodelin
noisyconditionswerenot assuccessful.TheAV-PROD-UTTER
modelis slightly worsethattheAV-PROD (fixedglobalweights).
Theresultdeterioratesmorewhenwe uselocal perframeweights
(AV-PROD-LOCAL). It seemsthattheML trainingof thephone-
synchronousproductmodel,capturessomeof theinformationabout
streamreliability thatwe aretrying to usein orderto modify the
original weights.We noticethatour improvementover themodel
with global weightsis muchbetterin cleanthanin noisy condi-
tions. This may be dueto the fact that our estimateof the audio
streamreliability (voicing) is moreaccuratein cleanspeech.

Furtherinvestigationis dueto examinemoreappropriatevari-
ableweightsover the noisy productmodel. A differentmapping
functionfor R canbeexploredfor thatpurpose[15].

5. DISCRIMINATIVE COMBINATION OF AUDIO AND
VISUAL MODELS

TheDiscriminativeModelCombination(DMC) approach[4] aims
at anoptimalintegrationof independentsourcesof informationin
a log-linearmodelthatcomputestheprobabilityfor a hypothesis.
Theparametersof thisnew modelaretheweightsof thelog-linear
combination,andareoptimizedto minimize the errorsin a held
outset.

Whenwe have independentobservationstreamsassourcesof
information,andwe have trainedmaximumlikelihoodmodelsin-
dependentlyfor eachof thesestreams,thentheDMC approachis
equivalentto optimizingthestreamweightsfor model(1). In the
implementationof this approachthough,we useanasynchronous
versionof thatmodelallowing thetwo streamsto besynchronized
only at theutteranceboundaries.

Thecombinationof themodelscanbeperformedeitherstati-
cally, with constantweights[4], or dynamically, wheretheparam-
etersmayvary for differentsegmentsof a hypothesis[17, 6]. In
thedynamiccombinationtheweightsaim to capturethedynamic
changeof confidenceon eachof the modelscombinedfor each
hypothesizedsegment.

5.1. Static Combination

We can combinethe audioand visual model scores,along with
a languagemodel score,as independentsourcesof information
in the DMC framework. If we denoteby

� # <Kw � x # F , with Pzy�O{ �E| � , the probabilityprovided by the audio(visual)models
�
,

wedefine,in theDMC framework, thelog-linearmodelthatcom-
binesall theavailableinformation} (audio/visual/linguisticinfor-�

We notethat the acousticmodelandvisualmodelstypically provide
a conditionalprobabilityof the observationsgiven the hypothesisbut we
approximatethelikelihoodof thehypothesis,giventheobservations,using

mation)as:� <Kw � } F 
 \~�� < } F
�� "#�$�% �)' �T( � # <Kw � x # F I -!�� �v�)� <Kw F IM��� (2)

where
� �)� <Kw F is thelanguagemodelprobabilityand

~ � < } F is a
normalizationfactorsothattheprobabilitiesfor all w y�� addto
one. In this formulationwe only have onestaticweight for each
stream.

5.2. Dynamic Combination - Phone Dependent Weights

Wecancombinethescoresfrom theavailableinformationsources
dynamically, within thesimpleform of anexponentialmodel,by
weightingeachof thescoreswith differentexponents,for different
segmentsof ahypothesis[17]:� <Kw � } F 
 \~ � < } F

����"��3 � "#C$&% �5' �T( � # <K� �HF I -��?�_�J� �� � ��� <Kw F I ��� (3)

where � � is the
r
th segment(out of N) in hypothesisw . In this

model we seethat the exponentvalue changeswith time across
eachutterance.

The weights L <�� F we useare tied acrossdifferent classesof
segmentsso that we have only a small numberof parametersto
optimize. Motivatedby thework for multi-lingual modelcombi-
nation[5, 6], wechosethestreamweightsto dependontheidentity
of thehypothesizedphones.Sincethephonesarenotwell defined
for thevisualmodel,weusedvisemicclassesinstead(thesearethe
visuallydistinctphones[8]).

5.3. Parameter Optimization

The above definedmodel is usedto rescorethe N-bestlists and
choosetheMAP candidate.WetraintheparametersL <�� F in (2)and
(3) sothattheempiricalword errorcountinducedby themodelis
minimized. Sincethe objective function is not smooth,gradient
descendtechniquesarenot appropriatefor estimation.Weusethe
simplex downhill method,known asamoebasearchto minimize
thenumberof word errorsonaheldoutset[17].

5.4. Experimental Results - Discussion

We usedonly thecleanspeechutterancesfor our experiments.A
held out set of about1500 utteranceswas set asidein order to
optimizetheweights,andtheSI testsetavailableat theworkshop
wasusedfor testing. For thepurposesof the experiments,2000-
besthypotheseswereobtainedfor eachutteranceusingacoustic
modelscoresprovidedby IBM andthey werethenrescoredwith
the new acousticandvisualmodelscreatedduring the workshop
usingHTK

�
.

Bayesruleandauniformlanguagemodel �Z�Z���Z����� . Thus:� # ���v  ¡ # �,¢ £�b�0¡ #   �Z�K� � �0�Z�¤?¥_¦ £�d�0¡ #   �)§��K� � ���)§0� � £�d�0¡ #   �Z�¤¨¥M¦ £�d��¡ #   �)§�� � £�d��¡ #   �Z��
The IBM systemusedto generatethe N-best lists had a WER of

14.24%. Due to the rescoringof theseN-besthypotheseswith the HTK
audioonly model,the new baselineis betterthanthe oneobtainedusing
theHTK modelalonein Table1 (ROVER effect).



Experiment train SI test
WER WER(relative)

0. Baselineacoustic
�

12.8 13.65( – )
1. Static(acoustic+ visual)weights 12.5 13.35(-2.0)
2. 1 acoustic+ 13 visemicweights 12.2 13.22(-3.1)
3. phonemic+ 13 visemicweights 11.8 12.95(-5.1)

Table 2. DMC experimentalresultsoncleanaudio.

Weperformed3 experiments:
Experiment 1: Theaudioandvisualmodelsarecombinedstati-
cally with oneweightfor eachof themodels.
Experiment 2: Oneglobalweightis still usedfor theaudiomodel
scores,but we use13 differentweightsfor visual modelscorre-
spondingto theeachof the13visemicclasses.
Experiment 3: Differentweightsareusedfor eachof the43audio
phone-modelsandeachof the13visemic-classes.

Theresultsaredepictedin Table2. Wefoundthismethodeffi-
cientenoughto obtainanextra 5% relative improvementover the
improved baseline,resultingto a total of 10% relative improve-
mentover theworkshopcleanaudiobaseline(seeTable1). There-
fore half of theimprovementin thesystemis dueto theuseof the
visualinformation.

Our exponentparameterizationschemeis rathersimple: We
only allow exponentsthatdependon the identity of hypothesized
phones/visemes.Differentexponentclassificationschemes,using
informationaboutthe reliability of eachmodel,might be worth
exploring in future work. We alsoneedto point out oneof the
limitationsof thisapproach:Thelackof synchronization.Thetwo
streamsareusedindependentlyandtheirscoresarecombinedonly
at the utterancelevel. This way the weaker visual modelcannot
utilize the informationprovided by its betteraudiomodelabout
thewordor phoneboundaries.

6. CONCLUSIONS

We demonstratedtwo different techniquesfor improving speech
recognitionusingaudio-visualmodels.Thetechniquesareaiming
atoptimalweightingschemesfor audio-visualfusion.Weshowed
significantimprovementsin LVCSR,particularlyin cleanspeech
which in previouswork hadbeendifficult to improve with theuse
of visualinformation.HNR basedexponentmodificationreduced
theerrorratein cleanaudiobut did not leadto betterresultsin the
noisyaudiocase.

It wouldbeinterestingto examinewaysof combiningthetwo
training approaches.Namely, we canexplore the discriminative
optimizationof HNR-basedclassexponents,andtheapplicationof
DMC with differentlevelsof asynchrony betweenthetwostreams.
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