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ABSTRACT

In this work we demonstrat@n improvementin the state-of-the-
artlarge vocalulary continuousspeechrecognition(LVCSR) per
formance,undercleanand noisy conditions,by the useof visual
information, in additionto the traditional audioone. We take a
decisionfusionapproacHor the audio-visualinformation,where
the single-modality(audio-andvisual-only) HMM classifiersare
combinedto recognizeaudio-visualspeech. More specifically
we tacklethe problemof estimatingthe appropriatecombination
weightsfor eachof the modalities. Two differenttechniquesare
described: The first usesan automaticallyextractedestimateof
theaudiostreanreliability in orderto modify theweightsfor each
modality (both cleanandnoisy audioresultsarereported)while
theseconds adiscriminatve modelcombinatiorapproactwhere
weightson pre-definednodelclassesare optimizedto minimize
WER (cleanaudioonly results).

1. INTRODUCTION

In [1] we presentdecisionfusion algorithmsthat focus on both
statesynchronougcombininglikelihoodsat the statelevel) and
phonesynchronousnodeling(combininglikelihoodsatthephone
level) of the audioandvisual streams.The modelinvestigatedn
thisapproactwasa multi-streanrHMM, anda phonesynchronous
variant, a productHMM. The state(phone)conditionalobsera-
tion likelihood of thesemodelsis the productof the obseration
likelihoodsof theiraudio-onlyandvisual-onlystreantomponents,
raisedto appropriatestreamexponentshat capturethe reliability
of eachmodality

In this article,we expandon exponentestimatiorfurther Two
techniquesrepresented:

In the first techniquewe investigatepossiblerefinementsof
streamexponentdependencanakinguseof anautomaticallyex-
tractedaudio streamreliability, estimatedon the basisof the de-
greeof voicing presenin theaudiosignal[2]. This approactfol-
lows the conceptof audio-visualadaptve weightsusedin [3].
We first considerexponentshatareutterancalependentestimat-
ing the averagevoicing over the utterancdrames. This approach
givesus arelative improvementof about7% in cleanand26%in
noisyspeechcocktailparty“babble”speecmoiseat8.5dBSNR),
whencomparedo theaudioonly WER.We alsoshawv animprove-
mentcomparedo the multi-streamHMM usedin [1]. Next we
explore frame dependenexponents,using per framevoicing es-
timates. The resultsare comparedwith the baselineandthe per
utteranceexponentresults.

The secondtechniqueis a discriminatve modelcombination
(DMC) [4] approach:The audioandvisual streamsare usedin-
dependentlyo train modelswhich arethencombinedalongwith
alanguagemodel,with weightsoptimizedto minimizethe WER
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onaheldoutset. Thetwo modalitiesareonly synchronizedhtthe
utterancdevel in this approach Similar to thework in [5, 6], we
considerxponentsstaticfor eachmodality or dynamic(hypothe-
sisdependent)We presentesultsonly in cleanspeeclconditions,
wherewe shav a 5% relative improvementover a baselinenvhich
combinedwo differentaudiomodelsby N-bestrescoring.

Section2 describeshe experimentaketupfor thiswork. Sec-
tion 3 presentghe generalform of the fusion model. The two
weighting techniquesare presentedn sections4 and 5 respec-
tively. We concludewith a discussiorof the accomplishmentsf
thiswork andsomeideasfor futuredirections.

2. DATABASE - EXPERIMENTAL SETUP

To allow experimentson continuoudarge vocahulary, speakr in-
dependentudio-visualspeechrecognition,a databasénasbeen
collectedatIBM for thepurpose®f the CLSP/JHUsummer2000
workshop[7]. For thenoisyexperimentsa cocktailparty“babble”
speechoisewasaddedo theaudiosignalat8.5dBSNR.Baseline
ASR systemsnere obtainedduring the workshop,for cleanand
noisyaudio,usingHTK. Theacoustianodelswerecross-vord tri-
phoneHMMs with about75K Gaussiammixtures.All the models
developedattheworkshopwereusedto rescorevordlattices,gen-
eratedwith the IBM LVCSR recognizemwhich usedpentaphone
cross-vord HMMs with about50K Gaussiarmixtures[8]. The
speakr independen(SI) testset(1038utterances2.5 hours)de-
finedin theworkshopwasusedfor theseexperimentswhile aheld
out setwasusedfor tuningthe parameters.

3. MULTI-STREAM HMMSFOR AUDIO-VISUAL
FUSION

In thiswork we areusinga multi-streamHMM to combinetheau-
dio andvisualmodalities(streams)As describedn [1] themodel
computesthe classconditionalobseration likelihoodas a prod-
uctof theobsenrationlikelihoodsof its single-streancomponents,
raisedto theappropriatestreamexponentshatcapturehereliabil-
ity of eachmodality Giventhebimodal(audio-visualpbseration
vectoro® = {o¥’,0{’} the stateemission(classconditional)
probability of themulti-streamHMM is:

JIsc

Prio®ld = [ [3 weeilp, (003 muci,s0e)] (1)

se{a,v} j=1

wherethestreamexponents\ ; .; arenon-ngative and,in general,
dependon the modality s, the HMM state(class)c, andlocally,
ontheutterancdrame(time) ¢t . Suchmodelhasbeenconsidered
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Fig. 1. Top: Local estimatef R in cleanandin noisy speech
(“babble” noise8.5dB),and XNR referencefor a databaseitter
ance. All calculationsare performedon 128msspeechwindows
shiftedby 64ms. Bottom Noisy audio spectrogranof the same
utterance.

in multi-bandaudio-onlyASR, amongothers[9], and,asa two-
streamHMM, in small-wocalulary audio-visualASR tasks [10,
11, 3].

In (1) the likelihoodsare combinedat the statelevel (state
synchronousnulti-streammodel). We canchooseo combinethe
likelihoodsat a classlevel (classcanbe phone syllable,word, or
evenutterancepllowing differentdegreesof asynchrop between
the two streams. We refer to this model as a class-synchronous
productmodel[1, 8]. During maximumlikelihood(ML) training
of themodel,theweights..; werekeptfixedwith a-priorichosen
values:dact = 0.7, Ayt = 0.3.

4. VOICING ASA MEASURE OF AUDIO RELIABILITY

Varioussignal-to-noiseatio estimatediave beenusedin theliter-
aturein orderto assignan audio-streanweight [12]. Here,we
proposethe useof a measuref voicing, correlatedwith SNR, as
ameansf estimatinghereliability of theaudioobserations,and
we apply it to audio-visuaweighting. We emplo/ an equivalent
harmonicityindex (HNR) [13, 14] to estimatethe averagevoic-
ing perutterance Basedon this index, we subsequentlgstimate
utterancebasedstreamexponents.

We usethe autocorrelogranef a demodulategignalasa ba-
sisfor differentiatingbetweera harmonicsignalandnoise.In the
caseof Gaussiamoise thecorrelogranof anoisycell is lessmod-
ulatedthana cleanone[13]. The peaksin theautocorrelogranof
thedemodulatedell isolatethevariousharmonicsn asignal. This
canbe usedto separate mixture of harmonicnoisesanda domi-
nantharmonicsignal. It is interestingthat suchseparatiorcanbe
efficiently accomplishedusinga time window of durationin the
samerangeastheaveragephonemealuration.

We getan audioreliability estimatefor eachframeof 128ms
duration.Beforetheautocorrelationwe computethe demodulated
signalafterhalf wave rectification followedby band-pas§ltering
in the pitch domain([90,350]Hz). For eachcell, we calculatethe
ratio R = R1/R0, whereR1 is thelocal maximumin time delay
segmentcorrespondingo the fundamentafrequeng, and R0 is
the cell enegy. This measurds stronglycorrelatedwith SNRin
the 5—-20dBrange [15]. Figurel demonstrateexplicitly the cor
relationof this measurén cleanandnoisy speechwith the noisy

Cleanaudio Noisy audio

WER%((relative) | WER% (relative)

[ Audio-only | 1444 — ] 4810 — |
AV-MS 14.62 (+1.2) 36.61 (-23.9)
AV-MS-UTTER 13.47 (-6.7) 35.27 (-26.7)
AV-PROD 1419 (-1.7) 35.21 (-26.8)
AV-PROD-UTTER — 35.43 (-26.3)
AV-PROD-LOCAL — 37.15 (-22.8)

Table 1. Audio-visual decisionfusion WER(%). We compare
with threedifferentbaselinesAudio-only, AV-MS andAV-PROD.

Relatve WERimprovementsarecomputedstherelative (%) gain

overtheaudio-onlybaseline.

signal SNR: We plot R estimateson 128msspeechwindows of

anoisy utteranceagainsthe R estimatesn the cleanaudiocase,
andalinearSNR-alike measuredefinedasXNR = (S/(S+N)),

whereSis theenegy of thecleansignalandN is thenoiseonly en-
emy. Noticethat R andXNR do not give exactly the samekind of

information,but they arequite stronglycorrelated.Their correla-
tion factoris 0.84,computedbvertheentireSI testset.Locally, R

is higherthanXNR on voicedparts,andit is lower on otherparts.
This local divergenceon a per framelevel could be exploited to

obtainalocal streamweightingscheme.

4.1. Utterance Dependent Stream Exponents

In this first approach audio speechreliability is calculatedonly
from the regionswherethe speechis dominant. We assumethat
regionswherelocal SNRis higherthan0dB (stronglycorrelatedo
theregionswhereR, > 0.5 ; seealsoFigurel) arespeechregions.
We subsequentlgalculatestreamexponentsh, ; , constantor all
t within the utterancefo be the meanof all R valueshigherthan
0.5. We assumehis to be an adequatestimateof voicing within
theutteranceThen,in (1): Av: =1 — As¢ .

We foundthatthe audioweight A4 + is mostly spealer depen-
dentand, in a smallerextent, utterancedependen{8]. For the
entireSl testdataset,theaveragel., ; is calculatedo be0.79 and
0.73 for thecleanandnoisyaudiocase yespectiely.

4.2. Local Frame Dependent Stream Exponents

Sincewe estimateramereliability on 128mssignalintenals, we
canusetheseestimatedo computethelocal frameweights,using
the piecavise-lineamappingfunctionproposedy Meierin [16].
We experimentedalso with other linear functionsof R inspired
from studiesasin [11] without successofar. We optimizedthe
parametersf the Meier functionon a smallheld out set. Thuswe
computetheweightsas: Ax; = min(maz(R(t),0.5),0.7).

4.3. Experimental Results- Discussion

The WER resultsfor different systems for the Sl test set, are
presentedn Table1l. We compareour resultsto an audio-only
andtwo audio-visuabaselines The audio-onlybaselineusesthe
HTK trainedacoustianodel(seesection?). The AV-MS modelis
the statesynchronousudio-visualmulti-streammodel described
in (1), while the AV-PROD modelis a phonesynchronougprod-
uct model (seesection3). The detailsfor the developmentof
thesemodelsaredescribedn [1, 8]. Thesebaselinesystemsvere



trainedusingaudioweightA 4 = 0.7. Thevideoweightwassetto
Av = 1— 4. After ML training, A 4 wasoptimizedonaheldout
setfor clean(noisy) speectandwasfoundto be 0.7 (0.6) for AV-
MS, and0.6 (0.7) for AV-PROD. Thesevalueswere usedduring
testing.

In bothcleanandnoisyconditionsthe AV-MS-UTTERmodel
(utterancedependenstreamexponentsutperformedhe compa-
rable AV-MS one,resultingto almost7% relative WER reduction
with respecto theaudio-onlysystem.In thecleanaudiocasethis
modeleven outperformedhe AV-PROD model.

Ourattemptgo modify theweightsfor the AV-PROD modelin
noisy conditionswerenot assuccessful.The AV-PROD-UTTER
modelis slightly worsethatthe AV-PROD (fixed globalweights).
Theresultdeterioratesnorewhenwe uselocal perframeweights
(AV-PROD-LOCAL). It seemghatthe ML training of the phone-
synchronougroductmodel,capturesomeof theinformationabout
streamreliability thatwe aretrying to usein orderto modify the
original weights. We noticethatour improvementover the model
with global weightsis muchbetterin cleanthanin noisy condi-
tions. This may be dueto the fact that our estimateof the audio
streanreliability (voicing)is moreaccuratén cleanspeech.

Furtherinvestigationis dueto examinemoreappropriatevari-
ableweightsover the noisy productmodel. A differentmapping
functionfor R canbeexploredfor thatpurpose[15].

5. DISCRIMINATIVE COMBINATION OF AUDIO AND
VISUAL MODELS

TheDiscriminative Model CombinationDMC) approact4] aims
atanoptimalintegrationof independensourcef informationin
alog-linearmodelthatcomputeghe probability for a hypothesis.
Theparametersf thisnev modelaretheweightsof thelog-linear
combination,and are optimizedto minimize the errorsin a held
outset.

Whenwe have independenbbseration streamsassourcef
information,andwe have trainedmaximumlik elihoodmodelsin-
dependentlyfor eachof thesestreamsthenthe DMC approachs
equialentto optimizingthe streamweightsfor model(1). In the
implementatiorof this approachthough,we useanasynchronous
versionof thatmodelallowing thetwo streamgo be synchronized
only attheutteranceboundaries.

The combinationof the modelscanbe performedeitherstati-
cally, with constantveights[4], or dynamically wheretheparam-
etersmay vary for differentsegmentsof a hypothesi417, 6]. In
the dynamiccombinationthe weightsaim to capturethe dynamic
changeof confidenceon eachof the modelscombinedfor each
hypothesizedegment.

5.1. Static Combination

We can combinethe audio and visual model scores,along with
a languagemodel score,as independensourcesof information
in the DMC framevork. If we denoteby P,(h|O,), with s €
{A, V}, the probability provided by the audio (visual) models’,
we define,in the DMC framework, thelog-linearmodelthatcom-
binesall theavailableinformationZ (audio/visual/linguistiénfor-

1We notethatthe acousticmodel andvisual modelstypically provide
a conditionalprobability of the obserationsgiven the hypothesisut we
approximateéhelikelihoodof thehypothesisgiventheobserations,using

mation)as:

P(h|T) = -2

ZA(I) H Ps(hlos))\s PLM(h))‘LM )

se{Aa,v}

where P (h) is thelanguagemodelprobabilityand Za (Z) is a
normalizationfactorsothatthe probabilitiesfor all h € H addto
one. In this formulationwe only have one staticweightfor each
stream.

5.2. Dynamic Combination - Phone Dependent Weights

We cancombinethe scoredrom the availableinformationsources
dynamically within the simpleform of an exponentialmodel, by
weightingeachof thescoreswith differentexponentsfor different
segmentsof ahypothesigl7]:

P0D) = s (TT TT Ph)™ ) Posce) @)

i=1se{a,Vv}

whereh; is the ith sggment(out of N) in hypothesish. In this
modelwe seethat the exponentvalue changeswith time across
eachutterance.

The weights A(-) we usearetied acrossdifferent classesof
segmentsso that we have only a small numberof parameterso
optimize. Motivatedby the work for multi-lingual modelcombi-
nation[5, 6], wechosehestreamweightsto dependntheidentity
of thehypothesizeghhones Sincethe phonesarenotwell defined
for thevisualmodel,we usedvisemicclasseinsteadthesearethe
visually distinctphones|8]).

5.3. Parameter Optimization

The above definedmodelis usedto rescorethe N-bestlists and
chooseheMAP candidateWetraintheparametera(-) in (2) and
(3) sothatthe empiricalword error countinducedby the modelis
minimized. Sincethe objective functionis not smooth,gradient
descendechniquesrenot appropriatdor estimation.We usethe
simplex downhill method,knovn asamoebasearchto minimize
thenumberof word errorson a heldoutset[17].

5.4. Experimental Results- Discussion

We usedonly the cleanspeectutterancedor our experiments.A

held out set of about1500 utterancesvas set asidein orderto

optimizetheweights,andthe Sl testsetavailableat the workshop
was usedfor testing. For the purposef the experiments 2000-
besthypothesesvere obtainedfor eachutteranceusing acoustic
modelscoregprovided by IBM andthey werethenrescoredwith

the new acousticandvisual modelscreatedduring the workshop
usingHTK 2.

Bayesrule anda uniformlanguagenodel P, (h) = c. Thus:

P(O5/h)P,(h B(Os]h
Py(bj0,) = ot OdWPb) - P(Oh)
D " P(0s|h)Py(h') > P(0,/h')
b’ b’
2The IBM systemusedto generatethe N-bestlists had a WER of
14.24%. Due to the rescoringof theseN-besthypothesesvith the HTK

audioonly model,the nev baselineis betterthanthe one obtainedusing
theHTK modelalonein Tablel (ROVER effect).

= P(Os|h)



Experiment train Sltest
WER | WER (relative)
0. Baselineacoustic? 12.8 | 13.65( - )
1. Static(acoustict+ visual)weights | 12.5 13.35(-2.0)
2. 1 acoustict 13 visemicweights | 12.2 13.22(-3.1)
3. phonemict 13 visemicweights 11.8 12.95(-5.1)

Table 2. DMC experimentakesultson cleanaudio.

We performed3 experiments:

Experiment 1: The audioandvisual modelsarecombinedstati-
cally with oneweightfor eachof themodels.

Experiment 2: Oneglobalweightis still usedfor theaudiomodel
scores but we use 13 differentweightsfor visual modelscorre-
spondingto the eachof the 13 visemicclasses.

Experiment 3: Differentweightsareusedfor eachof the43audio
phone-modelandeachof the 13 visemic-classes.

Theresultsaredepictedn Table2. We foundthis methodeffi-
cientenoughto obtainan extra 5% relative improvementover the
improved baseline resultingto a total of 10% relative improve-
mentover theworkshopcleanaudiobaselingseeTablel). There-
fore half of theimprovementin the systemis dueto the useof the
visualinformation.

Our exponentparameterizatioschemes rathersimple: We
only allow exponentghat dependon the identity of hypothesized
phones/visemeDifferentexponentclassificatiorschemestuising
information aboutthe reliability of eachmodel, might be worth
exploring in future work. We alsoneedto point out one of the
limitationsof thisapproachThelackof synchronizationThetwo
streamareusedndependenthandtheir scoresaarecombinednly
at the utterancdevel. This way the wealer visual modelcannot
utilize the information provided by its betteraudio model about
theword or phoneboundaries.

6. CONCLUSIONS

We demonstratedwo differenttechniquedor improving speech
recognitionusingaudio-visuaimodels.Thetechniquesreaiming
atoptimalweightingschemedgor audio-visuafusion. We shaved
significantimprovementsin LVCSR, particularlyin cleanspeech
whichin previouswork hadbeendifficult to improve with theuse
of visualinformation. HNR basedexponentmodificationreduced
theerrorratein cleanaudiobut did notleadto betterresultsin the
noisyaudiocase.

It would beinterestingo examinewaysof combiningthetwo
training approachesNamely we can explore the discriminatve
optimizationof HNR-baseatlassexponentsandtheapplicationof
DMC with differentlevelsof asynchrop betweerthetwo streams.
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