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ABSTRACT

We investigate a new framework for the problem of
blind source identification in multichannel signal
processing. Inspired by a neurophysiological data
environment, where an array of closely spaced
recording electrodes is surrounded by multiple neural
cell sources [1], significant spatial correlation of
source signals motivated the need for an efficient
technique for reliable multichannel blind source
identification. In a previous work [2], we adopted a
new approach for noise suppression based on
thresholding an Array Discrete Wavelet Transform
(ADWT) representation of the multichannel data. We
extend the work in [2] to identify sources from the
observation mixtures. The technique relies on
separating sources with highest spatial energy
distribution in each frequency subband spanned by the
corresponding wavelet basis. Accordingly, the best
basis selection criterion we propose benefits from the
additional degree of freedom offered by the space
domain. The amplitude and shift invariance properties
revealed by this technique make it very efficient to
track spatial source variations sometimes encountered
in multichannel neural recordings. Results from
multichannel multiunit neural data are presented and
the overall performance is evaluated.

1. INTRODUCTION

Multichannel signal processing aims at fusing data
collected at several sensors in order to carry out an
estimation task of signal sources. Generally speaking,
the parameters to be estimated reveal important
information characterizing the sources from which the
data is observed. Among the numerous biomedical
applications of array processing [3-4],
neurophysiological recordings of neural cells in the
brain using an array of closely spaced electrodes has
received much attention in the last decade due to
recent advances in microprobe fabrication and
packaging [1]. Nevertheless, the need for efficient
array processing algorithms to process the vast amount
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of information obtained in the nervous system
continues to  emerge  as more  data becomes feasible
to acquire. In a previous work [2], we showed that it is
possible to efficiently suppress noise processes in
multichannel recordings with an array denoising
algorithm with the minimal number of assumptions
governing the underlying signal and noise processes.
In this work, the primary focus is on the source
separation problem. We approach the problem from a
new Multi-Resolution Subspace Analysis (MRSA)
framework. In the next section, we describe the
relevant DWT theory and focus on important
properties revealed by applying MRSA to the
transform domain.

2. MULTIRESOLUTION ANALYSIS

2.1. The Discrete Wavelet Transform

The transform consists of an atomic decomposition
representing the discrete signal in l2(Z) successively
into different frequency bands in terms of shifted and
dilated versions of a prototype bandpass wavelet
function )(nψ and a low pass scaling function )(nφ .
An orthonormal basis is formed with a special choice
of the wavelet and scaling functions [5].The basis
functions can be obtained from the prototype wavelet
and scaling functions as
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where the approximation coefficients and the details
coefficients, comprising the DWT at level j, are
respectively, given by
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where .  denotes a dot product, and L denotes the
number of decomposition levels desired in the
multiresolution analysis.

2.2. The Discrete Wavelet Packet Transform

The DWPT can be best understood using a binary tree
structure, where the root node constitutes the signal
level (level 0), and each level constitutes successive
decomposition of the parent node to its children using
equations (3-5). This amounts to an overcomplete
signal representation. Details of the DWPT will be
omitted here and can be found in [6].
 Best signal representation can be obtained by
pruning the wavelet packet tree according to a best
basis selection criterion. By associating a cost function
to each node of the tree and comparing the parent
node’s cost to its children’s cost, a node is further split
if it yields a lower cost than its children. Many best
basis selection criteria have been proposed in the
literature based on single channel data models [7-8].

3. ARRAY BEST BASIS SOURCE
SEPARATION (ABBSS)

The ABBSS technique relies on applying signal
subspace analysis to the transformed data matrix
obtained by applying an undecimated DWPT to each
of the M channels data vectors. We define a new best
basis selection criterion and show that the obtained
wavelet packet tree characterizes each source
describing its spectral energy distribution across
frequency subbands.

3.1. Blind Source Model

The conventional model for blind source identification
in array processing [3] assumes the presence of P
sources impinging on an M channel array over the N
snapshots, and can be expressed as

ZSAX += (6)

where X is the MxN matrix of observations. The MxP
matrix A denotes the “mixing matrix” (also known as
steering matrix adhering to the Direction Of Arrival
(DOA) estimation literature), S denotes the PxN signal
matrix that we which to estimate, and Z denotes an
MxN matrix of iid additive noise component
independent of the source signals. Unlike most of the
existing array models where the noise is assumed both
temporally and spatially white, we assume the most
general case where the noise is spatially and
temporally correlated [9].

Transforming both sides of (6) with an
undecimated DWPT matrix operator W , we can

write, for the jth node (subband), the MxN Array
DWPT (ADWPT)  of X
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We note here that the mixing matrix is indexed by j, to
emphasize the hypothesis that the sources are mixed
differently in each subband according to their
respective spectral distribution. This will constitute a
key feature in the best basis selection criteria that we’ll
describe later. The ML estimate of the spatial
covariance matrix of j

xW  in (7) can be expressed as
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where j
xkw  denotes the Mx1 DWPT coefficient vector

of the jth node (subband) at the kth translation index.
According to our model, the noise process is not
spatially white. This implies that in the jth subband,

j
xR  will not be diagonal. Using subspace analysis

techniques [10], we can express j
xR  as
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The matrix Hj
xU  is a whitening matrix that

diagonalizes j
xR . The transformation
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whitens the ADWPT matrix j
xW . Substituting from

(7) in (10), the jth whitened wavelet packet can be
expressed as
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where j
zW

~  denotes the whitened wavelet noise packet
in the jth subband.

Using wavelet thresholding techniques for noise
cancellation [11], and denoting the thresholding matrix
operator by jH , shrinking or setting to zeros the low
amplitude coefficients in (11) can be performed to
obtain the noise free wavelet expansion
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Since wavelet observations are decorrelated in
(10), the denoising threshold can be estimated

according to [11]. Substituting for j
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~
from (11)
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Having reached this stage, the problem reduces to
the determination of the MxP unitary matrix j

xV . This
is easily determined from second order statistics as in
[12] or higher order statistics as in [13]. A closed form
expression for an estimate of the mixing matrix jA can
be expressed as
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3.2. Source Identification

Recall that in a neural cell population environment,
neural sources fire spikes that have significant
correlation in waveform shapes. Accordingly, their
spectral distributions overlap to a high extent. Thus the
assumption of a diagonal signal covariance matrix

sR does not hold in general. However, in the wavelet
domain, the overall spectrum is partitioned into
smaller subbands, yielding some subbands, or
equivalently tree nodes, where each source has a
higher spectral energy representation than any of the
other sources. Mathematically, this amounts to
computing mixing matrices jA ’s and selecting the
ones under the constraint that each has rank close to
one. Equivalently, subband eigenvalue/eigenvector
pairs having the strongest mode (highest eigenvalue)
will be selected as the ones best describing the signal
source. Nodes in the tree that best represent each
source can be selected to uniquely identify the spectral
distribution of the source. Mathematically, by denoting
the best basis selection operator by jB
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The signal matrix estimate can be obtained by inverse
wavelet transformation using the DWPT inverse
operator 1−W
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4. RESULTS

The aforementioned technique was applied to a
multichannel neural recording obtained from a Dorsal
Cochlear Nucleus (DCN) of adult guinea pigs using a
silicon substrate microprobe fabricated at the
University of Michigan Center for Neural
Communication Technology where this work was
developed. Raw data from a 16-channel probe was

acquired and a 10 msec 4-channel subset of the data is
shown in Fig.1. The blind source identification task
was required to identify different spike shapes from 3
different neural cells observed on the 4-channel
subarray. Fig. 2 illustrates 3 different spike shapes
detected in Fig.1-b, and the corresponding best
wavelet packet trees. Each identified neural source
was assigned a code word according to the path
followed in the tree in a top-down left-right labeling
scheme (a 0 corrpesonds to a terminal node and 1
otherwise). Fig. 3 shows the average of λmax versus
tree node index, where the tree in this case is labeled
linearly increasing in top/left to bottom/right order
with node 0 being the tree root (signal level). It can be
noticed that all sources share the upper part of the tree
(left section of the Fig.3), typically corresponding to
spectral energy distribution in the first few coarse
subbands. As we progress deeper along the tree (to the
right), subbands become finer in frequency (coarser in
time) permitting separation of sources (middle and
bottom subbands).

5. CONCLUSION

The methodology that we have introduced in this
work has a number of attractive features. First, in
contrast to blind source separation approaches using
second-order and/or high order statistics, the proposed
approach allows the separation of sources with
overlapping spectral shape but with different spatial
time scale signatures. Second, the effects of spreading
the noise power using the wavelet transform while
localizing the source energy in different frequency
subbands amounts to increasing the robustness of the
proposed approach with respect to noise. Third, the
identification method is shift invariant since we use an
undecimated DWPT.  Fourth, spatial variation of the
source signals sometimes encountered in this signal
environment [14] is accounted for by the spatial
weighting inherent in the selection criterion hence the
amplitude invariance property. If the sources were
temporally uncorrelated, their covariance matrix will
have a diagonal structure and this method will
guarantee separation of all sources. In the more
general case where the sources are correlated, this
method offers a more reliable way of best basis
selection. Fifth, the technique works under the
assumption that sources are statistically independent
but correlated unlike most blind source identification
techniques where the lack of information about the
channels is compensated for by assuming that the
source signals are statistically independent and
uncorrelated. Sixth, the compression ability of the
DWT makes it very attractive for economic hardware
implementation.
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Fig. 1. (a) 4-channel experimental data.
(b) Denoised signal and detection result

(a)

(b)

(c)
Fig. 2. Identification results for the 3 sources in Fig. 1

(L=6)

Fig. 3. Max. eigen value average along tree nodes for
sources identified in Fig. 1.b
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