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ABSTRACT

The problem of detecting the number of uncorrelated narrowband
signals received by an array of sensors when the direction of ar-
rival (DOA) and power level of each source is unknown is investi-
gated. A multi-hypothesis generalized likelihood ratio test (GLRT)
approach is used, resulting in a procedure which maximizes the
likelihood function with respect to the number of signals and their
DOAs and powers. A tuning mechanism for controlling the trade-
off between the probability of correct detection and the probability
of false alarm is obtained by imposing a constraint on the mini-
mum allowable value for the power level estimate. A sequential
search over the number of sources is used for a computationally
feasible solution. Performance comparisons are made to the Min-
imum Description Length (MDL) and Minimum Variance Distor-
tionless Response (MVDR) signal detection approaches.

1. INTRODUCTION

The problem of detecting and localizing uncorrelated narrowband
sources using an array of sensors is an important problem in many
fields including radar, sonar, wireless communications, and med-
ical imaging. The problem can be decomposed into a detection
process where the number of sources is estimated, followed by an
estimation process where the source parameters, (direction of ar-
rival (DOA) and power level), are estimated. Unstructured model
order estimation techniques such as Minimum Description Length
(MDL) [1] may be used for the detection phase, and a direction
finding technique such as maximum likelihood (ML), MUSIC, or
ESPRIT (to name a few) may be used for the estimation phase. Al-
ternately, a simultaneous detection and estimation procedure can
be used, such as structured MDL [2] or Minimum Variance Dis-
tortionless Response (MVDR) [3].

The unstructured MDL detector analyzes eigenvalues of the
sample covariance matrix for the “best” grouping of signal and
noise eigenvalues. It is straightforward to implement, but does not
exploit the physical and statistical structure of the data. MDL is
known for its conservative estimates and has no mechanism to ad-
just the probability of false alarm. Therefore, a penalty is paid in
detection sensitivity. The structured MDL detector operates on the
same principle but makes more use of the data model. It is for-
mulated for the case of unknown noise power and possibly corre-
lated signals. It requires a maximum likelihood estimation of the
source DOAs for each model order, which can be a considerable
computational burden for large model orders. It also has no means
for controlling false alarms and tends to underestimate the number
of sources when the SNR is low. The MVDR detector computes
a spatial spectrum, and estimates the number of signals from the

number of peaks exceeding a threshold, with their DOAs given by
the location of the peaks. It is easy to implement, and the detection
threshold can be adjusted to trade-off false alarms and detection
sensitivity. The MVDR procedure has difficulty detecting closely
spaced targets.

In this paper, we take a generalized likelihood ratio test (GLRT)
approach to the detection problem. For each hypothesized model
order, we find the parameter estimates which maximize the like-
lihood function, and choose the hypothesis which has the largest
likelihood. This results in a procedure which maximizes the like-
lihood function with respect to the number of signals and their
parameters. A constraint is imposed on the minimum allowable
power level estimate to obtain a tuning mechanism for control-
ling the trade-off between the probability of correct detection and
the probability of false alarm. A sequential search over the num-
ber of sources is used for a computationally feasible solution. The
technique is primarily a detection technique which provides pa-
rameter estimates as part of the detection process. The parameter
estimates can always be further refined by an estimation process.
Performance comparisons are made to the MVDR and unstruc-
tured MDL signal detection approaches.

2. MATHEMATICAL MODEL

Complex scalar data zn;� is observed at each sensor n for N sen-
sors at observation time � for K observation times. Element n of
Nx1 vector ~z� is zn;�. The observation model for ~z� is

~z� = V
(L)~s� + ~w� � = 1; : : : ; K (1)

where ~w� is a Nx1 vector of additive noise samples, ~s� is a Lx1
vector of source signal samples. V(L) is a NxL matrix whose
columns are the array response vectors for each of the L sources,

V
(L) = [~v(u1) � � � ~v(uL)]; (2)

where ul is the DOA of the lth signal. All signal samples s�;l and
noise samples w�;n are uncorrelated complex zero mean Gaussian
random variables. The LxL signal covariance matrix S(L)s is the
diagonal matrix

S
(L)
s = E[~s�~s

H

� ] = Diag(�2l ) l = 1; : : : ; L (3)

where �2l is the power of signal l. The NxN noise covariance ma-
trix is given by E[~w� ~w H

� ] = �2n I, where �2n is the noise power.
It is assumed to be known and the same for all sensors. The NxN
observation data covariance matrix S(L)z has the form

S
(L)
z = E[~z�~z

H

� ] = V
(L)
S
(L)
s V

(L)H + �2n I: (4)



The number of signals L, the signal DOA’s u1; : : : ; uL, and the
signal powers �21 ; : : : ; �

2
L are assumed constant but unknown over

the entire observation time interval.
Let z denote the collection of K observation vectors ~z�. The

probability density function (PDF) of all observed data is given by

pL(z) =
1

�KN jS
(L)
z jK

exp

 
�

KX
�=1

~z H� S
(L)
z

�1
~z�

!
: (5)

We will find it convenient to normalize with respect to the noise
only PDF p0(z) obtained when no signals are present (L = 0).
Using the matrix inversion lemma, the L signal log likelihood ratio
(LLR) �L(z) = ln (pL(z)=p0(z)) has the form

�L(z) =
1

�2n

KX
�=1

~z H� A
(L)~z� �K ln

����2n S
(L)
z

�� ; (6)

where AL = V
(L)
�
V

(L)H
V

(L) + �2nS
(L)
s

�1�
�1
V

(L)H: (7)

3. MULTIHYPOTHESIS GLRT APPROACH

The problem can be formulated as a multi-hypothesis detection
problem, where the hypotheses correspond to the number of sig-
nals. If we could specify the DOAs and power levels of the L
sources for each hypothesis, we could compute �L(z) for L =
0; : : : ; Lmax, and choose the hypothesis corresponding to the largest
value. However, the DOAs and power levels are unknown, thus
there are 2L unknown parameters for each hypothesis. We can take
a generalized likelihood ratio test (GLRT) approach and find the
parameter estimates which maximize the likelihood function for
each hypothesized number of sources, and choose the largest. The
generalized log likelihood ratio (GLLR) then becomes

�̂L(z) =
max

u1 � � �uL;
�21 � � ��

2
L

1

�2n

KX
�=1

~z H� A
(L)~z��K ln

����2n S
(L)
z

�� : (8)

This is the basic approach studied here. The main drawbacks
of the technique as stated are that it becomes increasingly difficult
to estimate the unknown parameters as the number of hypothesized
signals increases, and there is no mechanism for trading off the
probability of correctly detecting the number of signals versus the
probability of detecting too few or too many signals.

The complexity issue can be handled by computing the GLLR
for increasing L sequentially using the parameter estimates from
the previous stage. First note that the GLLR �̂0(z) requires no
optimization and is equal to zero. We start by finding the GLLR
�̂1(z) assuming one signal present. When L = 1, (8) reduces to

�̂1(z) =
max
u1; �

2
1

K

�2n

~v(u1)
H
R̂z~v(u1)

N + �2n=�21
�K

�
1 +N

�21
�2n

�
; (9)

where R̂z is the sample covariance matrix R̂z = 1
K

PK

�=1
~z�~z

H

� .
The optimum power estimate as a function of DOA is given by

�̂21(u1) = max

�
�2nom;

~v(u1)
H
R̂z~v(u1)

N2
�
�2n
N

�
: (10)

The power estimate is constrained to be no less than some nomi-
nal power level �2nom. The standard ML estimate uses �2nom = 0,

however this results in excessive false alarms in the GLRT. The
nominal power level serves as a tuning devise to control the prob-
ability of false alarm, at the expense of a reduction in detection
sensitivity. The power estimate in (10) is substituted back into (9),
and the result maximized with respect to the DOA. If �̂1(z) <

�̂0(z) = 0, stop the search. The final solution is no signals present
(L = 0). If �̂1(z) > 0, compute �̂2(z). The DOA and power
from the L = 1 solution are fixed initially. Again, a closed form
expression for �̂22 is obtained subject to a minimum power level
constraint, and a search is performed over the DOA u2. The previ-
ous parameter estimates û1 and �̂21 are then refined in an iterative
manner to find �̂2(z). If �̂2(z) < �̂1(z), stop the search. The final
solution is L = 1. If not, continue the search. This procedure is
repeated for as many model orders as necessary until the process
is stopped.

Investigation of the LLR �L(z) in (6) reveals that the effec-
tive role of the determinant j��2n S

(L)
z j is a penalty function for

the number of signals. For a fixed L, the determinant is largest
when the signals are spatially orthogonal (V(L)H

V
(L) = N I).

The orthogonal signals determinant is the product j��2n S
(L)
z j =QL

l=1

�
1 +N�2l =�

2
n

�
. The determinant decreases as source DOAs

become closer, and the procedure tends to favor estimating two sig-
nals at the same location, rather than a single signal with the same
total power. This problem can be alleviated by modifying the deter-
minant term to always have the orthogonal signals form regardless
of the DOA estimates. The penalty function is now more indicative
of the physical number of signals rather than the effective number.
The modified GLLR becomes

�̂L(z) =
1

�2n

KX
�=1

~z H� Â
(L)~z� �K

LX
l=1

ln

�
1 +

�̂2l
�2n

�
(11)

where Â(L) is given by (7) with the estimated DOAs û1; : : : ; ûL
and powers �̂21 ; : : : ; �̂

2
L. This modification constitutes the final im-

plementation.

4. SIMULATION RESULTS

For purposes of simulation results, a standard uniform linear ar-
ray is assumed with number of observation times K equal 20 and
number of sensors N equal 15.

4.1. No Signals Present Scenario

The first scenario is a no signals present scenario. Figures 1, 2, and
3 show the one signal LLR with estimated signal power vs. u1 for
three different nominal power constraints. �̂1(z) is the value of the
LLR at the highest peak. If this value is larger than zero, then the
location of the peak is the estimate of u1. The desired performance
for the no signals present scenario is �̂1(z) < 0, so that the test is
stopped and no signals are declared.

In Figs. 1, 2, and 3, �2nom corresponding to �1 dB, -6 dB,
and +6 dB ASNR (ASNR = N�2nom=�

2
n) respectively are used.

Fig. 1 is the unmodified ML signal power case. Performance in
Fig. 1 appears unusual (all LLR�0), but is normal. No informa-
tion is given as to expected signal power except that it is positive,
thus every noise spike is interpreted as a signal. Performance im-
proves as the nominal signal power is increased. In Fig. 2, there
are several noise spikes which exceed the threshold, while in Fig.
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Fig. 1. Single signal log likelihood ratio with estimated power vs.
DOA No signals present. Nominal ASNR set to zero (-1 dB).
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Fig. 2. Single signal log likelihood ratio with estimated power vs.
DOA No signals present. Nominal ASNR set to -6 dB.

3, the nominal power is set high enough to discriminate against
noise spikes.

The probability of false alarm for 1000 trials is shown in Ta-
ble 1 for various nominal ASNR’s. The purpose of Table 1 is to
demonstrate that Pf can be controlled by selection of nominal
ASNR. Higher nominal ASNR lowers Pf . The trade-off is that it
also lowers probability of detection (Pd) for a fixed actual ASNR.
Based on the results in Table 1, a nominal ASNR of 6 dB is used
for all remaining simulations.

4.2. One Signal Present Scenario

In this scenario, one signal present is simulated for the purposes
of testing the orthogonal determinant modification against the ex-
act determinant solution. Desired performance for this scenario is
�̂1(z) > 0 and �̂2(z) < �̂1(z). The probability of correct de-
tection is shown in Table 2 for both procedures as a function of
source ASNR. Both procedures have difficulty detecting the signal
at low ASNR. At high ASNR, the orthogonal determinant proce-
dure correctly finds only one signal near the correct DOA. The
exact determinant procedure has difficulties at high ASNR due to
detecting two coincident signals.

Nominal ASNR (dB) 0 3 6 9
Pf 0.801 0.219 0.004 0.000

Table 1. False alarm performance for 1000 trials.
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Fig. 3. Single signal log likelihood ratio with estimated power vs.
DOA No signals present. Nominal ASNR set to 6 dB.

Sig. ASNR (dB) -6 0 6 12 18
Exact Det. Pd 0.021 0.501 0.992 0.451 0.053
Orth. Det. Pd 0.021 0.501 0.997 0.992 0.988

Table 2. Detection performance for a single signal for 1000 trials.

4.3. Three Signals Present Scenario

A walk-through of the final implementation is given. Three sig-
nals are present. Two are closely spaced at DOA’s u1 = �0:333
and u2 = �0:28 with 15 and 9 dB ASNR respectively. The third
widely separated signal has DOA u3 = 0:4 with 3 dB ASNR.

This test is successful. The correct number of signals is found,
and accurate estimates of the signal DOA’s are found. As desired,
the LLR increases over the one, two, and three signals search and
then decreases at the four signals search, so that the test is stopped
and three signals are declared. The single source LLR is shown vs.
DOA u1 in Fig. 4. There is a single peak near the stronger of the
two closely spaced signals with some bias toward the weaker sig-
nal. A peak is also seen at the third widely separated weaker signal.
The two source LLR with the first source DOA and power level
held fixed is shown vs. DOA u2 in Fig. 5. The LLR imposes a null
at DOA u1. The second closely spaced signal is now revealed due
to this null and is the peak. The three source LLR with the first two
source’s parameters held fixed is shown vs. DOA u3 in Fig. 6. De-
sired nulls are seen at DOA’s u1 and u2. The peak is at the widely
separated signal DOA. The four source LLR with the first three
source’s parameters held fixed is shown vs. DOA u4 in Fig. 7. The
four signals present LLR decreases over the three signals present
LLR as desired. The key to this performance is the desired nulls at
DOA’s u1, u2, and u3. The signal energy has been suppressed with
only noise energy left. The DOA estimates are sufficiently good to
allow the detection process to perform as desired. More accurate
estimates can always be found by a subsequent estimation process.

5. PERFORMANCE COMPARISONS

Signal detection performance is compared among three approach-
es: 1) the presented GLLR approach 2) unstructered MDL, and
3) MVDR. Probability of correct number of signals is empirically
estimated on simulated data from 100 trials. The MVDR detection
threshold is set to have equivalent probability of false alarm as
the GLLR procedure. The MDL procedure has no mechanism to
control false alarms, and appears to almost never falsely declare a
signal present.
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Fig. 4. Three Signals Present. One signal LLR vs. u1.
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Fig. 5. Three signals present. Two signal LLR vs. u2.

The first case is a one signal present scenario. The probabil-
ity of correct detection is shown in Fig. 8 as a function of the
source ASNR. At low ASNR, GLLR and MVDR are identical as
expected. GLLR and MVDR significantly outperform MDL (5 dB
better) in this region. MDL does not exploit the physical and sta-
tistical structure of the one signal case as does GLLR and MVDR.
At high SNR, MDL approaches perfect detection, while GLLR
and MVDR are slightly lower. This is the trade-off for improved
performance at low SNR.

The second case is a two signals present scenario. The ASNR
of one signal is held constant at 9 dB ASNR. The ASNR of the
second signal is varying. The same closely spaced signal DOA’s
are used as in Fig. 4. Fig. 9 shows probability of correct detection
as a function of the second signal ASNR. GLLR outperforms both
MDL and MVDR. MVDR is not able to resolve the signals and
always underestimates the number of sources. MDL clearly can-
not perform on this scenario. On widely spaced signals, detection
of each signal is an approximately independent event and similar
performance to Fig. 8 is obtained.
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Fig. 6. Three signals present. Three signal LLR vs. u3.
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Fig. 7. Three signals present. Four signal LLR vs. u4.
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Fig. 8. One signal detection performance
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Fig. 9. Two signal detection performance.


