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ABSTRACT

In some types of imaging, the signal is strictly limited in
one domain while sampling takes places in another. If
sampling is done in a rectangular array pattern at sub-
Nyquist density, the array must be dithered to sample
the image at the Nyquist density in each dimension.
However, the Nyquist density oversamples the image
due to the nonrectangular support in the transform
domain. We present an efficient forward selection algo-
rithm for optimizing the dithering pattern so that the
image can be reconstructed as reliably as possible from
a periodic nonuniform set of samples, which can be
obtained from a dithered rectangular-grid array. Our
examples show that this new algorithm makes selec-
tive sampling possible in a real-time image acquisition
setting for MR spectroscopic imaging.

1. INTRODUCTION

In some types of imaging, the signal is strictly limited
in one domain while sampling takes places in another.
This is the case in passive millimeter-wave imaging, in
which the finite aperture produces strictly bandlimited
images with a circular frequency support while sam-
pling takes places in the spatial domain. Also, in MRI,
sampling occurs in the spatial-frequency domain, but
the spatial-domain image sometimes has a limited re-
gion of support (ROS). Either for convenience or due
to hardware limitations, sampling is often done in a
rectangular array pattern at sub-Nyquist density [1-3].
The array must be dithered to sample the image at
the Nyquist density in each dimension. However, the
Nyquist density oversamples the image due to the non-
rectangular support in the transform domain [4].

In previous work, we developed a sequential back-
ward selection method for optimizing the dithering pat-
tern [5]. Taking into account the transform support
of the image, we sequentially eliminated the least in-
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formative array recursively until the minimal number
of arrays remain. This approach has two drawbacks.
First, the method is too computationally intensive for
some applications. Second, in some real-time imag-
ing applications — MRI, for instance — we desire a
method that can select rather than eliminate one array
at a time so that the imaging process can run in par-
allel with the selection process. No existing technique
allows one to sequentially select rectangular arrays.

In this paper, we develop an efficient sequential for-
ward selection algorithm. The computational complex-
ity is lowered considerably by the changed structure of
the selection criterion that is used for forward selection.
Furthermore, imaging can begin as soon as the first ar-
ray is selected. As long as the selection algorithm is
faster than the imaging process, no delay occurs due to
sampling.

2. MATHEMATICS OF SAMPLING

2.1. Structure of the Observation Equation

We consider a sampling geometry in which the individ-
ual samples are laid out in a rectangular grid pattern as
shown in Figure 1(a). The heavy dots represent the lo-
cations of the samples in the unshifted sampling array.
The light dots represent other locations to which the
sampling array can be shifted. If we allow nonuniform
sampling we can reduce the average sampling density
below the Nyquist density [4]. In particular, we can
sample an image using a periodic replication of a non-
periodic sampling pattern to capture the information in
a bandlimited image without aliasing. An example of
this kind of sampling pattern is shown in Figure 1(b).
In this example, each 3 x 3 block sampling pattern is pe-
riodically replicated over the image plane. This pattern
results from shifting the array in Figure 1 according to
each offset sample in one of the 3 x 3 blocks.

Without loss of generality, our derivation assumes
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Figure 1: (a) Sensor array sampling pattern. (b) Peri-
odic nonuniform sampling example.

that sampling is done in the frequency domain and the
image is spatially limited. If we represent the frequency
samples as a vector y, the unknown discretized spatial
support by a vector x, and the mapping from the spa-
tial samples to the frequency domain by F', the fully
sampled frequency domain can be expressed as

y=Fx+u (1)

where v is zero-mean, i.i.d. noise. If we sample y using a
single position of the sampling array with offset indexed
by 4, we can represent this by

Y = Qiy (2)

where @); downsamples the fully sampled frequency do-
main and orders the result into a vector. Then we can
rewrite y in a rearranged form v, as

ye = [y i .oyl)? (3)
[ Q¥ ... QI (Fa +w)
= QFr+u,

where u, is the similarly rearranged version of u and

Qr=[QI QY ... QHIH . If we choose a subset of k of
the n shifted arrays, we obtain
(N T T T (4)
H HH H1H
= [ ni ng " °° nk] (FCB + U)
= QTFHy + Uy

where u, is the corresponding subset of u, and QT is
the corresponding subset of Q...

Aslong as the {Q;} are properly chosen and enough
subsets are selected, the unknown samples = can be
reconstructed from g, in a least-squares sense by

T = (FHQEQTF>71FHQ~£{?;T (5)
2.2. Selection Criterion

Assuming that u has unit variance, the sum of squared
errors (SSE) in the reconstructed image is given by

$(Qr) = tr (FFQIQ,F)™! (6)

Unfortunately, this criterion is unsuitable for a forward
selection algorithm, since QTF will have more columns
than rows at the beginning of the selection process,
making the criterion undefined. In a previous paper [6],
we proposed the use of the following modified criterion:

¢M(Qr) =tr (QTFFHQE)_l (7)

This criterion reflects the sum of squared errors due to
noise in a minimum-norm least-squares solution. Be-
cause F'H Q,{q begins with more rows than columns, the
criterion is defined initially.

As samples are selected, the number of columns in
FH Qfl increases. Eventually, if we select more samples
than unknowns, the number of columns will exceed the
number of rows, forcing (7) to be undefined at that
point (if not before). Therefore, this criterion cannot be
used throughout the selection process either. Instead,
we propose to use the following:

¢5(Qr) =tr (QTFHFQE + 51)71 (8)

This criterion is always defined. We can show that
when the number of selected samples is less than or
equal to the number of unknowns

bm (QT) = limEHO‘ﬁs(QT) 9)

where f(k) is a function of the number of selected sam-
ples and not of QTF as long as QTF is chosen not to be
rank-deficient. When the number of selected samples
is greater than or equal to the number of unknowns

8(Q)) = lime—olo-(@:) < f(K)  (10)

where f(k) is a function of the number of selected sam-
ples and not of QTF as long as QTF is chosen not to be
rank-deficient. This means that if we choose € small, we
can use (8) to obtain the approximate selection perfor-
mance of (7) when fewer samples than unknowns have
been chosen and the performance of (6) after that. The
term 1 f(k) in (10) will have no effect on the selection,
since it is not a function of the particular array being
selected in each step.

3. BASIC OPTIMIZATION ALGORITHM

To simplify the computational method, we first trans-
form the block matrix in (8) into a diagonal block ma-
trix after some modulation.

Q-FF" Q)
= QN QL - QI FF"[Qn, Qny -+ Qn,.]



Qu FFQu, Qu FFQu, Qu FFY Q)
Q. FFYQNL  Qu, FFPQF, Qo FF7 Qn
Qu, FF"QY,  Qn FF'QL, Qn FFH Q3

(11)

QiFFHQf,Lj =1,2,---,n, are easily seen to be cir-
culant matrices, since FF! is circulant. Furthermore,
Q;FFHQ; are the same for i = 1,2,---,n because
FFH is a circulant matrix. Therefore, (11) is a conju-
gate symmetric matrix with circulant blocks (circulant-
block-circulant blocks in the 2-D case).

Let Fy represent a Fourier matrix for a downsam-
pled array corresponding to the dithered array. Then
Fde = 1. FdQZ—FFHQij diagonalizes the circu-
lant matrix Q;FF7Q;,i,j = 1,2,---,n. Define B;;
and d;;4 such that

Bij = diag(dij1, dij2, -+ dijm)
= F,QFFPQ;Ff (12)
Also, let Fp be a block-diagonal matrix formed by
replicating Fj; along the diagonal k times, Finally, de-

fine
—1

diig +¢€ di2g s dikg
) da1g dozg +€ - dakg
(Dg +el)” = .
dk1g dk2g dikg + €
(13)
forg=1,2,---,m. Then
(Q-FFHQF +en™*
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=Fp [Qr blockdiag(D1 + €1, ..., Dm +¢el) Qfl]—l P
=FpQr blockdiag((D1 +el)™",..., (Dm +e1)") Q' Fp
(14)

We calculate the vector d;; as follows, using FFT’s
instead of matrix operations.

1. Take the FFT of the ROS image to get the im-
pulse response h, which is the first column of
FFH_ FFH is a circulant matrix. Only the first
column needs to be stored.

2. Shift h by 7, then downsample the shifted h by Q;
to get the first column hy of the circulant matrix
QZFFHQ_]?%] = 1,2,"',7’L.

3. Take the FFT of hy to get the diagonal vector of
the diagonal matrix F,Q; FF7Q;F1.

By using the property tr (ABC) = tr (CAB) and the
fact that FgF =TI and QHQ, = I, we have

tr (Q. FFHQHE +cI)™! == itr (D; +e)7t  (15)
=1

Using the method detailed in [6], we can derive an
efficient method for comparing each array using the
available (D; + ¢)~! matrices so that one array is se-
lected in each step. Furthermore, we can efficiently
update the (D; + ¢)~! matrices when new arrays are
selected without having to perform a matrix inverse.
This leads to a highly efficient selection algorithm.

4. EXPERIMENTS

Figure 2(a) shows the water image from a full 64 x 64 k-
space (spatial-frequency-domain) 1H MR spectroscopic
imaging (MRSI) data set (courtesy of the Center for
Nuclear Imaging Research, University of Alabama at
Birmingham). The spatial ROS identified by hand is
shown in Figure 3(a). It contains 1561 possibly nonzero
voxels. Using this ROS, the k-space data were selected
using a forward selection algorithm that selects shifted
uniform arrays using the criterion (8) with ¢ = 1073.
We selected 1792 out of 4096 samples. The algorithm
required only 26 seconds in Matlab on a Sun Ultra 1.
The sampling pattern is shown in Figure 3(b). A ran-
domly shifted set of uniform arrays also containing 1792
samples was selected for comparison purposes. This
pattern is shown in Figure 3(c). As a further compari-
son, we attempted to construct by hand a sample dis-
tribution as evenly spaced in the 64 x 64 grid as possible
with 1792 samples. The evenly spaced distribution is
shown in Figure 3(d).

The reconstruction from the SFS-selected samples
is shown in Figure 2(d). The reconstruction from the
randomly selected sample set is shown in Figure 2(b).
The reconstruction from optimal selection is slightly
noisier than the image reconstructed using all the data,
but it is reconstructed from only 44% of the data of the
original. If random selection is used, the reconstruc-
tion tends to have much greater reconstruction error
and artifacts, as illustrated in the figure. In this case,
the MSE is about six times higher than the reconstruc-
tion from optimized sampling, if the full 64 x 64 data
is considered to be ground truth. As it turns out, the
system defined by the evenly spaced sample distribu-
tion is singular! Clearly, nearly uniform spacing is not
a desirable choice.
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Figure 2: Water images: (a) from FFT of full data,
(b) from random data, (c) from lowpass data and ze-
ropadded FFT, (d) from optimized samples.

We also show an image reconstructed from lowpass
sampling. Approximately the same number (1793) of
low-frequency samples in a circle around DC were se-
lected. The Fourier domain was then zeropadded and
the image reconstructed from an FFT (Figure 2(c)).
A close examination of the lowpass image shows that
the reconstruction has about half the resolution of the
optimized image. If the lowpass image is reconstructed
by a least-squares technique with the ROS used as a
constraint, the resulting system is nearly singular and
the image is swamped by noise.

5. DISCUSSION

The optimized sampling scheme can reliably reduce the
overall sampling requirements without any loss of res-
olution while also controlling noise amplification. In
fact, our simulations show that if we reduce the num-
ber of samples in each shifted array and select a larger
number of arrays to maintain the same overall num-
ber of samples, we can reduce the MSE by a further
factor of two in the example in the experiment. This
comes at the expense of longer computational time —
about 6 minutes in this case. Most importantly for se-
lective sampling in MRSI, the increased speed achieved
by this algorithm makes selective sampling possible in
a real-time image acquisition setting.
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