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ABSTRACT the unknown symbol state vector. As most of the Bayesian estima-
tors, the NKF-based equalizer [4][5] assumes a perfect knowledge
of the communication system modelling and consequently of the
channel coefficients. One solution is to identify the channel using
‘the LMS algorithm [4]. If the latter is nonstationary, a Kalman
or RLS identifying block can be used to track nonstationarities
[6]. The solution, suggested here, consists in augmenting the state,
previously considered in the last transmitted symin(&), to the
channel coefficients. The observation model in the new state be-
‘comes a nonlinear one, and thus, a Network of Extended Kalman
Filters (NEKF) can be used to give the MMSE state estimate. It
appears that the approach by NEKF, in the context of channel iden-
tification, is similar to the blind Bayesian estimator developed by
litis et al. in [2], which turns out to be structured into parallel
Kalman filters too. Compared to this blind Bayesian equalizer, the
NEKF achieves good performance with a lower complexity.

In this paper, a blind Network of Extended Kalman Filters (NEKF)
is introduced for nonstationary linear channel equalization. The
structure of NKF was recently suggested for optimal channel equal
ization. As the knowledge of the channel is the main constraint
within the NKF equalizer, we here propose to extend the state to
estimate, that was previously formed by the lasttransmitted
symbols, to the time-varying channel coefficients. The observation
model becomes nonlinear suggesting thus extended Kalman filter
ing for state estimation. The proposed NEKF algorithm is com-
pletely blind towards any learning phase, with fast convergence
properties. Compared to the blind Bayesian algorithm proposed
by lltis et al. in [2], the NEKF-based equalizer shows good perfor-
mance with a really lower complexity.

1. INTRODUCTION

In Section 2, the NEKF algorithm is described with its associated
Signal processing literature provides us with a panoply of decon- state formulation. Section 3 comments the simulation results. An
volution algorithms adapted for the linear channel equalization. open discussion is presented in the fourth Section about the new
When channel equalization is viewed as an estimation procedureblind equalization algorithm proposed in this paper. Finally, we
of the transmitted symbolé(k), two main directions can be fol-  give our conclusion.
lowed : hard and soft estimation of the symbols. In fact, one
can think of the equalizer as a parameterized structure, such that
the Linear Transverse Equalizer (LTE)[11], the Decision Feedback 2. BLIND EQUALIZATION BY NEKF
Equalizer (DFE)[11] or neural network one (MLP [10]), whose

output,d(k — r), is a functionf of the noisy observations As stated in [4][5], the approach of linear channel equalization by

{y(k),... ,y(k —m + 1)} and of a set of structural parameters, parallel Kalman filtering, is based on a state formulation of the
W (k), optimized according to a chosen criterion, via a learing digital communication system as follows

phase. Generally, these are flexible structures with a relatively

low complexity. Nevertheless, according to the chosen parameter- D(k+1) = FD(k)+Gd(k+1)
ization, the equalizer may require a long time of learning which ” '
is unacceptable in many communication systems. Therefore, a y(k) = C D(k)+n(k),

good generalization capacity of the equalizer, driven by the func-
tion f, out of the learning phase and especially in non stationary where

environments is required. The second approach is rather seen as 000...0

a soft estimation of the transmitted symbols through the deter- 100...0

mination of theira posteriori probability density function (pdfy F = | 010...0 | isthe one-step transition matrix,

p(d(k —r)/O)[8][9][5][2], where O is afinite set of observations | .- ..

or all of themy® = {y(0),... ,y(k)}. In fact, deriving optimal 0...010

Minimun Mean Square Error (MMSE) or Maximur Posteriori G =[1,0,...,0]",D(k) = [d(k),... ,d(k—M+1)]T denotes

(MAP) symbol-by-symbol estimators is based on the determina- the symbol state to be estimated according to the MMSE criterion,
tion of the conditional symbol pdf. The structure consisting of a C is the M-vector of the channel coefficients antk) is an ad-
Network of Kalman Filters (NKF) emerges, with the same aim and ditive white Gaussian nois&’(0, o2). The symbolsi(k) are in a
according to a state formulation, when expanding the infinite hori- finite alphabety = {d;,i = 1, ... ,q}. When the channel is non-
zona posteriori pdf, p(D(k)/y*) into a Weighted Gaussian Sum  stationary, we propose in this paper to us@arniori known model
(WGS) [1] whereD(k) = [d(k),... ,d(k — M + 1)]” denotes for the varying channel, as for example the Markovian transition



which is described by filtering step

C(k+1) = C(k) + w(k) ) Ki(k) = Pi(k/k—1DHi(k)/o?(k/k—1)
whereC(k) = [co(k),...,cm—1(K)]T andw(k) is a Gaussian Pi(kfk) = (In —Ki(k)Hi (k)") Pi(k/k = 1)
vectorN (0ar, Rw), Rw = 2 Inrxar, and to augment the state to Xi(k/k) = ZXi(k/k—1)+Ki(k)ei(k/k—1)

be estimated, previously takenBgk), toX (k) = [DT (k) CT(k)]*.
The state formulation then becomes

Then, theMMSE state estimation, E{X (k)/y*}, is derived by
X(k+1) = FX(k) + [ de(vlz,;; ) ] )
N Bi(k) = N(ei(k/k—1),07(k/k — 1))
z(k) k) = Bi(k)
y(k) = h(X(k))+ n(k), @) & I
> B;(k)
where j=1
h(X(k)) = X (k)10 X(k)|ar+ 1200 = DT (k)C(k) X(k) = Zal Xi(k/k)

! F 0M><M
dF' = . .
an [ Onxnmr Inoxm ] Pk) = Zal {Pi(k/k)
The state noise pdf is generally not Gaussian du€ gk + 1) R .
([4][5]) and it is approximated by a WGS as below +[X (k) — X, (k/k)][X (k) — X (k/k)]"}

q
=3 SN (alk) - G'di, Q) | .y
— 1 In the above equations, the covarian@g in the WGS expan-
sion of the state noise pdf is taken the same fof alhd equal to
whereG’ = [GT 0%;]7 andQ; is a small diagonal matrix. 02 Ioarxon. The estimated staf (k) is the concatenation of
the so-resulted estimations of both the symbol vedix), and
Denoting the following partial derivatives evaluated in the pre- the channel coefficient€;(k) and it corresponds to a blind esti-
dicted stateX;(k/k — 1), as defined in (4), mate of both of them. Due to the feedbackFtk — 1) (5), the

oh updated estimates @ (k) and C(k) are highly coupled through
Hi(k) = m(xi(k/k -1) the Kalman gain. In fact, notink; (k) = [K{p (k) K{c (k)"
bothK; p (k) andK;, c (k) are functions of the predicted symbol
= [C{(k/k—1) Di(k/k—1)]" statesD; (k/k — 1) and the last channel estimattk — 1).

In what follows, simulation results of the NEKF-based equalizer
the linearized model (3) around the predicted states can be ex-are exhibited for a binary transmission.
pressed by

y(k) = HY (k)X (k) 3. SSIMULATIONS
+ h(Xi(k/k — 1)) — H] (k)Xi(k/k — 1) + n(k) The simulations are carried out for the time-varying channel de-
picted in Figure 1 withC(0) = [1;0.2;0.5]T ande? = 5 1075,
For the NEKF algorithm, the state initialization of the symbol state
to the true one is feasible (this is because we can set the transmit-
ter and receiver shift registers to the same value at the beginning
of transmission), the channel coefficients are initialized to zero.
The NEKF performance are compared to those given by the blind

Thus, the NKF applied to the linearized observation model be-
comes a Network of Extended Kalman Filters (NEKF) governed
by the following equations.

Given the last estimated sta¥(k — 1) and its associated error

covarianceP (k — 1) matrix, compute foi = 1,...,¢g: Bayesian algorithm developed by Iltis et al. in [2]. This blind
algorithm computes recursively all the possible conditional chan-
prediction step nel estimate<C!'“* (k/k) = E{C(k)/D(k) = D;,y"}, D; is
o , a possible M-binary vector, in order to determine maosteriori
Xi(k/k—1) = FX(k-1)+Gd 4 symbol state vector probabiltigs(k) = p(D(k) = D; Jy*) for
Pi(k/k—1) = FPE-1)F" +Q: (5) i=1,...,¢™. Figures 2 and 3 show the Mean Square Error for

both the NEKF and blind Bayesian equalizers. For the last, the
MMSE channel estimate is determined according to
ei(k/k —1)

of(k/k —1)

y(k) — C(k — 1)"Di(k/k — 1)
H, (k)T P (k/k — 1)Hi(k) + 02

M

é]ltls Z Clltzs k/k)



For both channel estimates, an empirical Mean Square Error (MSE}similar conditional meanE{C(k)/D(k) = D;(k/k — 1),y"*},
is computed as follows relatively to each predicted state. Hence, there is a real gain in
. complexity compared to the blind Bayesian algorithm. Also, for
1 1 s 112 the NEKF-equalizer, assuming that symbols are i¥.d, (Q; is
card() Z{E Z 1Cu (/i) — COII"} a constant), many equations in the NEKF-algorithm are the same.
wea =t Besides, due to the special structure®fand F’, many matricial
the indexw refers to a certain realization of the additive obser- products can be seen as delays, thus achieving an additive gain in
vation noise and? is the set of the considered realizations. The complexity.
MSE, as well as Bit Error Rates (BERS), are obtained by averag-
ing the results collected after 100 runs of a sequencebbits. ¢ Extended Kalman filtering is a local approach to nonlinear filter-
During the simulations, we have noticed some misconvergencednd. The linearization of the observation model (3) is essentially
of both algorithms to the opposite of the channel coefficients. The dictated from a small deviation of the true state around nominal
problem can be circumvented in fact by introducingggptiori in- values of the state [3], namely in our equalization context, the pre-
formation for example on the sign of a channel coefficient at the dicted stateX(k/k — 1). Due to the discrete and rough char-
end of convergence. Even though, because the transitory length igcter of part of the state space (combinationstéfand—1 in a
not controllable, not all the misconvergences were avoided. Tablebinary transmission ), the linearization is accomplished between
1 illustrates the rates of good convergence of the two algorithmsreal scattered statd3;(k/k — 1), thus risking the violation of the
and Table 2 shows the averaged BERs for the NEKF and blind @ssumption of small deviations. This may, in fact, cause the insta-
Bayesian algorithm on only the good realizations. We can notice bility noticed during simulations, especially for high SNR, when
that the BERs achieved by the NEKF are comparable to those ofthe real symbol predicted statd;(k/k — 1), tend more towards
lItis et al. with a faster convergence. M-binary vectors.

MSE(k) =

4. DISCUSSION z

The idea of augmenting the state to estimate to the unknown sys- oot 1
tem parameters is certainly not new. Applied to parallel Kalman 151 i
filtering, augmenting the state shows good promising results (Ta-
ble 2) even though there is still a lot of research to do in dealing coeff 2
with the initialization and stability of such blind algorithm. How- ! l
ever, some noteworthy remarks can be made :

coefficients

o First, both the blind Bayesian algorithm of lltis et al., which is the 08 \ ]
nearest optimal blind symbol detector to our knowledge in a non- d
stationary environment, and the NEKF algorithm determine, recur-
sively, thea posteriori state pdfp(D(k)/y*). More precisely, the
NEKF determines, recursively, the means around which the state
pdf is picked with their corresponding spreads.

coeff 3

I I I I I
0 2000 4000 6000 8000 10000 12000
iterations

e The estimated channel in each algorithm is given by

. q Fig. 1. The Markovian channel used for simulations
C(k) = > ai(k)Ci(k/k) for NEKF-equalizer
i=1
qM
Cruis(k) = Zpi(k)Cf“”(k/k)
i=1 5. CONCLUSION
with A Network of Extended Kalman Filters is proposed in this paper

- T - for nonstationary channel equalization. Coupling the MMSE esti-
Ci(k/k) = C(k—1) +Ki.(k)(y(k) —D; (k/k —1)C(k—1)) mation of the last transmitted symbols and the channel coefficients

Iltis _ itis _ Iltis T Ilitis _qyyia a state formulation achieves good performance compared to
Cim(k/k) = C7 (k/k—1)+ K (k) (y (k) =Di C: 7 (k /R 1))the blind Bayesian algorithm of lltis et al., with a lower complex-

ity. Both the deduced channel estimates from the output of the

We note that both channel estimates are updated according to Kalm@aK F and the conditional channel estimates of the blind Bayesian
filters. The number of Kalman filters required by the blind Bayesian equalizer are updated according to similar Kalman filtering equa-
sequence estimatoy/(') is significantly higher compared to the  tions. The last derives all the possible conditional channel esti-
one in the NEKF (jusy). In fact, this is due to the prediction step  mates whereas the NEKF structure considerably reduces the num-
led from only one admissible state, namelgk — 1) for the chan- ber of required Kalman filters thanks to the prediction step. As the
nel coefficients aniD (k — 1) for the symbol state ; and as the blind  prediction is the heart of the NEKF estimation as presented here, it
bayesian algorithm determines all the possible conditional chan-will be worthwhile to better characterize admissible symbol state
nel estimatesZ{C(k)/D(k) = D;,y"}, the NEKF computes a  sets for the NEKF prediction stage.
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SNR (dB) | 6 8 10 [12]14 [16 |18 [20 |22 |25
NEKF (%) | 97 | 100 | 100 | 99 | 100 | 100 | 100 | 100 | 100 | 100
Iltis (%) 100 {98 |98 |96 |96 |96 |95 |92 |87 |87
Table 1 : Rates of good convergence

SNR [0 2 4 6 8 10 12 14 16 18 20 25
NEKF | 0.1747 | 0.1186 | 0.0848 | 0.0149 | 0.0041 | 7.11e * | 1.31e™ % | 1.49¢ % | 1.21e™* | 1.05e " * | 9.4e™° | 7.2¢7°
Iltis 0.1229 | 0.0757 | 0.0416 | 0.0558 | 0.0681 | 0.0770 | 0.0339 | 0.0020 | 4.17¢=° | 7.82¢=% | 0.0014 | 1.14e~*

Table 2 : Bit Error rates fol/ = 3 andr = 2




