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ABSTRACT

In this paper, a blind Network of Extended Kalman Filters (NEKF)
is introduced for nonstationary linear channel equalization. The
structure of NKF was recently suggested for optimal channel equal-
ization. As the knowledge of the channel is the main constraint
within the NKF equalizer, we here propose to extend the state to
estimate, that was previously formed by the lastM transmitted
symbols, to the time-varying channel coefficients. The observation
model becomes nonlinear suggesting thus extended Kalman filter-
ing for state estimation. The proposed NEKF algorithm is com-
pletely blind towards any learning phase, with fast convergence
properties. Compared to the blind Bayesian algorithm proposed
by Iltis et al. in [2], the NEKF-based equalizer shows good perfor-
mance with a really lower complexity.

1. INTRODUCTION

Signal processing literature provides us with a panoply of decon-
volution algorithms adapted for the linear channel equalization.
When channel equalization is viewed as an estimation procedure
of the transmitted symbolsd(k), two main directions can be fol-
lowed : hard and soft estimation of the symbols. In fact, one
can think of the equalizer as a parameterized structure, such that
the Linear Transverse Equalizer (LTE)[11], the Decision Feedback
Equalizer (DFE)[11] or neural network one (MLP [10]), whose
output,d̂(k � r), is a functionf of the noisy observations
fy(k); : : : ; y(k �m+ 1)g and of a set of structural parameters,
W (k), optimized according to a chosen criterion, via a learning
phase. Generally, these are flexible structures with a relatively
low complexity. Nevertheless, according to the chosen parameter-
ization, the equalizer may require a long time of learning which
is unacceptable in many communication systems. Therefore, a
good generalization capacity of the equalizer, driven by the func-
tion f , out of the learning phase and especially in non stationary
environments is required. The second approach is rather seen as
a soft estimation of the transmitted symbols through the deter-
mination of theira posteriori probability density function (pdf)
p(d(k� r)=O)[8][9][5][2], whereO is a finite set of observations
or all of themyk = fy(0); : : : ; y(k)g. In fact, deriving optimal
Minimun Mean Square Error (MMSE) or MaximumA Posteriori
(MAP) symbol-by-symbol estimators is based on the determina-
tion of the conditional symbol pdf. The structure consisting of a
Network of Kalman Filters (NKF) emerges, with the same aim and
according to a state formulation, when expanding the infinite hori-
zona posteriori pdf, p(D(k)=yk) into a Weighted Gaussian Sum
(WGS) [1] whereD(k) = [d(k); : : : ; d(k �M + 1)]T denotes

the unknown symbol state vector. As most of the Bayesian estima-
tors, the NKF-based equalizer [4][5] assumes a perfect knowledge
of the communication system modelling and consequently of the
channel coefficients. One solution is to identify the channel using
the LMS algorithm [4]. If the latter is nonstationary, a Kalman
or RLS identifying block can be used to track nonstationarities
[6]. The solution, suggested here, consists in augmenting the state,
previously considered in the last transmitted symbolsD(k), to the
channel coefficients. The observation model in the new state be-
comes a nonlinear one, and thus, a Network of Extended Kalman
Filters (NEKF) can be used to give the MMSE state estimate. It
appears that the approach by NEKF, in the context of channel iden-
tification, is similar to the blind Bayesian estimator developed by
Iltis et al. in [2], which turns out to be structured into parallel
Kalman filters too. Compared to this blind Bayesian equalizer, the
NEKF achieves good performance with a lower complexity.

In Section 2, the NEKF algorithm is described with its associated
state formulation. Section 3 comments the simulation results. An
open discussion is presented in the fourth Section about the new
blind equalization algorithm proposed in this paper. Finally, we
give our conclusion.

2. BLIND EQUALIZATION BY NEKF

As stated in [4][5], the approach of linear channel equalization by
parallel Kalman filtering, is based on a state formulation of the
digital communication system as follows

D(k + 1) = FD(k) +Gd(k + 1);

y(k) = C
T
D(k) + n(k);

where

F =

2
6664

0 0 0 : : : 0
1 0 0 : : : 0
0 1 0 : : : 0
: : : : : : :
0 : : : 0 1 0

3
7775 is the one-step transition matrix,

G = [1; 0; : : : ; 0]T ,D(k) = [d(k); : : : ; d(k�M+1)]T denotes
the symbol state to be estimated according to the MMSE criterion,
C is the M-vector of the channel coefficients andn(k) is an ad-
ditive white Gaussian noiseN (0; �2n). The symbolsd(k) are in a
finite alphabet
 = fdi; i = 1; : : : ; qg. When the channel is non-
stationary, we propose in this paper to use ana priori known model
for the varying channel, as for example the Markovian transition



which is described by

C(k + 1) = C(k) +w(k) (1)

whereC(k) = [c0(k); : : : ; cM�1(k)]
T andw(k) is a Gaussian

vectorN (0M ; Rw),Rw = �2c IM�M , and to augment the state to
be estimated, previously taken asD(k), toX(k) = [DT (k) CT (k)]T .
The state formulation then becomes

X(k + 1) = F 0
X(k) +

�
Gd(k + 1)
w(k)

�
| {z }

z(k)

; (2)

y(k) = h(X(k)) + n(k); (3)

where

h(X(k)) = X(k)jT1:MX(k)jM+1:2M = DT (k)C(k)

andF 0 =

�
F 0M�M

0M�M IM�M

�
.

The state noise pdf is generally not Gaussian due toGd(k + 1)
([4][5]) and it is approximated by a WGS as below

p(z(k)) =

qX
i=1

1

q
N (z(k)�G0di; Qi)

whereG0 = [GT
0
T
M ]T andQi is a small diagonal matrix.

Denoting the following partial derivatives evaluated in the pre-
dicted statesXi(k=k � 1), as defined in (4),

Hi(k) =
@h

@X(k)
(Xi(k=k � 1))

= [CT
i (k=k � 1) D

T
i (k=k � 1)]T

the linearized model (3) around the predicted states can be ex-
pressed by

y(k) = HT
i (k)X(k)

+ h(Xi(k=k � 1))�HT
i (k)Xi(k=k � 1) + n(k)

Thus, the NKF applied to the linearized observation model be-
comes a Network of Extended Kalman Filters (NEKF) governed
by the following equations.

Given the last estimated statêX(k � 1) and its associated error
covarianceP̂ (k � 1) matrix, compute fori = 1; : : : ; q :

prediction step

Xi(k=k � 1) = F 0
X̂(k � 1) +G0di (4)

Pi(k=k � 1) = F 0P̂ (k � 1)F 0T +Qi (5)

ei(k=k � 1) = y(k)� Ĉ(k � 1)TDi(k=k � 1)

�2i (k=k � 1) = Hi(k)
TPi(k=k � 1)Hi(k) + �2n

filtering step

Ki(k) = Pi(k=k � 1)Hi(k)=�
2
i (k=k � 1)

Pi(k=k) = (IM �Ki(k)Hi(k)
T )Pi(k=k � 1)

Xi(k=k) = Xi(k=k � 1) +Ki(k)ei(k=k � 1)

Then, theMMSE state estimation, EfX(k)=ykg, is derived by

�i(k) = N (ei(k=k � 1); �2i (k=k � 1))

�i(k) =
�i(k)
qX

j=1

�j(k)

X̂(k) =

qX
i=1

�i(k)Xi(k=k)

P̂ (k) =

qX
i=1

�i(k)fPi(k=k)

+[X̂(k)�Xi(k=k)][X̂(k)�Xi(k=k)]
T g

In the above equations, the covarianceQi, in the WGS expan-
sion of the state noise pdf is taken the same for alli and equal to
�2c I2M�2M . The estimated statêX(k) is the concatenation of
the so-resulted estimations of both the symbol vector,D̂(k), and
the channel coefficients,̂C(k) and it corresponds to a blind esti-
mate of both of them. Due to the feedback inP̂ (k � 1) (5), the
updated estimates ofD(k) andC(k) are highly coupled through
the Kalman gain. In fact, notingKi(k) = [KT

i;D(k) K
T
i;C(k)]

T ,
bothKi;D(k) andKi;C(k) are functions of the predicted symbol
statesDi(k=k � 1) and the last channel estimateĈ(k � 1).

In what follows, simulation results of the NEKF-based equalizer
are exhibited for a binary transmission.

3. SIMULATIONS

The simulations are carried out for the time-varying channel de-
picted in Figure 1 withC(0) = [1; 0:2; 0:5]T and�2c = 5 10�5.
For the NEKF algorithm, the state initialization of the symbol state
to the true one is feasible (this is because we can set the transmit-
ter and receiver shift registers to the same value at the beginning
of transmission), the channel coefficients are initialized to zero.
The NEKF performance are compared to those given by the blind
Bayesian algorithm developed by Iltis et al. in [2]. This blind
algorithm computes recursively all the possible conditional chan-
nel estimatesCIltis

i (k=k) = EfC(k)=D(k) = Di; y
kg, Di is

a possible M-binary vector, in order to determine thea posteriori
symbol state vector probabilitiespi(k) = p(D(k) = Di=y

k) for
i = 1; : : : ; qM . Figures 2 and 3 show the Mean Square Error for
both the NEKF and blind Bayesian equalizers. For the last, the
MMSE channel estimate is determined according to

ĈIltis(k) =

qMX
i=1

pi(k)C
Iltis
i (k=k)



For both channel estimates, an empirical Mean Square Error (MSE)
is computed as follows

MSE(k) =
1

card(
)

X
!2


f
1

k

kX
i=1

jjĈ!(i=i)�C(i)jj
2g

the index! refers to a certain realization of the additive obser-
vation noise and
 is the set of the considered realizations. The
MSE, as well as Bit Error Rates (BERs), are obtained by averag-
ing the results collected after 100 runs of a sequence of104 bits.
During the simulations, we have noticed some misconvergences
of both algorithms to the opposite of the channel coefficients. The
problem can be circumvented in fact by introducing ana priori in-
formation for example on the sign of a channel coefficient at the
end of convergence. Even though, because the transitory length is
not controllable, not all the misconvergences were avoided. Table
1 illustrates the rates of good convergence of the two algorithms
and Table 2 shows the averaged BERs for the NEKF and blind
Bayesian algorithm on only the good realizations. We can notice
that the BERs achieved by the NEKF are comparable to those of
Iltis et al. with a faster convergence.

4. DISCUSSION

The idea of augmenting the state to estimate to the unknown sys-
tem parameters is certainly not new. Applied to parallel Kalman
filtering, augmenting the state shows good promising results (Ta-
ble 2) even though there is still a lot of research to do in dealing
with the initialization and stability of such blind algorithm. How-
ever, some noteworthy remarks can be made :

� First, both the blind Bayesian algorithm of Iltis et al., which is the
nearest optimal blind symbol detector to our knowledge in a non-
stationary environment, and the NEKF algorithm determine, recur-
sively, thea posteriori state pdfp(D(k)=yk). More precisely, the
NEKF determines, recursively, the means around which the state
pdf is picked with their corresponding spreads.

� The estimated channel in each algorithm is given by

Ĉ(k) =

qX
i=1

�i(k)Ci(k=k) for NEKF-equalizer

ĈIltis(k) =

qMX
i=1

pi(k)C
Iltis
i (k=k)

with

Ci(k=k) = Ĉ(k�1)+Ki;c(k)(y(k)�D
T
i (k=k�1)Ĉ(k�1))

C
Iltis
i (k=k) = CIltis

i (k=k�1)+KIltis
i (k)(y(k)�DT

i C
Iltis
i (k=k�1))

We note that both channel estimates are updated according to Kalman
filters. The number of Kalman filters required by the blind Bayesian
sequence estimator (qM ) is significantly higher compared to the
one in the NEKF (justq). In fact, this is due to the prediction step
led from only one admissible state, namelyĈ(k�1) for the chan-
nel coefficients and̂D(k�1) for the symbol state ; and as the blind
bayesian algorithm determines all the possible conditional chan-
nel estimatesEfC(k)=D(k) = Di; y

kg, the NEKF computes a

similar conditional mean,EfC(k)=D(k) = Di(k=k � 1); ykg,
relatively to each predicted state. Hence, there is a real gain in
complexity compared to the blind Bayesian algorithm. Also, for
the NEKF-equalizer, assuming that symbols are i.i.d (8 i; Qi is
a constant), many equations in the NEKF-algorithm are the same.
Besides, due to the special structure ofG

0 andF 0, many matricial
products can be seen as delays, thus achieving an additive gain in
complexity.

� Extended Kalman filtering is a local approach to nonlinear filter-
ing. The linearization of the observation model (3) is essentially
dictated from a small deviation of the true state around nominal
values of the state [3], namely in our equalization context, the pre-
dicted statesXi(k=k � 1). Due to the discrete and rough char-
acter of part of the state space (combinations of+1 and�1 in a
binary transmission ), the linearization is accomplished between
real scattered statesDi(k=k � 1), thus risking the violation of the
assumption of small deviations. This may, in fact, cause the insta-
bility noticed during simulations, especially for high SNR, when
the real symbol predicted states,Di(k=k� 1), tend more towards
M-binary vectors.
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Fig. 1. The Markovian channel used for simulations

5. CONCLUSION

A Network of Extended Kalman Filters is proposed in this paper
for nonstationary channel equalization. Coupling the MMSE esti-
mation of the last transmitted symbols and the channel coefficients
via a state formulation achieves good performance compared to
the blind Bayesian algorithm of Iltis et al., with a lower complex-
ity. Both the deduced channel estimates from the output of the
NEKF and the conditional channel estimates of the blind Bayesian
equalizer are updated according to similar Kalman filtering equa-
tions. The last derives all the possible conditional channel esti-
mates whereas the NEKF structure considerably reduces the num-
ber of required Kalman filters thanks to the prediction step. As the
prediction is the heart of the NEKF estimation as presented here, it
will be worthwhile to better characterize admissible symbol state
sets for the NEKF prediction stage.
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