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ABSTRACT

We propose a signal-adaptive robust time-varying Wiener filter for
nonstationary signal estimation/enhancement. This filter uses pro-
jections onto local cosine subspaces and a novel “best subspace”
algorithm. It allows efficient on-line operation including stable on-
line estimation of design parameters. A statistical analysis is pro-
vided, and a speech enhancement example is considered.

1. INTRODUCTION

We consider estimation of a signals(t) from a noisy observation
r(t) = s(t)+ n(t). Signals(t) and noisen(t) are uncorrelated, real-
valued,nonstationaryrandom processes with respective correlation
operators1 Rs andRn. The signal estimate iŝs(t) = (Hr)(t) with H
a time-varyingsystem.

The linear systemH minimizing the mean-square error (the
time-varying Wiener filter) [1,2] is very sensitive to errors in mod-
eling and/or estimatingRs andRn [3, 4], and for long signals its
design and implementation are computationally intensive. There-
fore, in this paper we propose asignal-adaptive robust time-varying
Wiener filterwith efficient on-line operation and stable on-line esti-
mation of design parameters. The filter uses orthogonal projections
onto local cosine subspaces and a novel “best subspace” algorithm
that extends the classical best basis algorithm [5,6].

The paper is organized as follows. Section 2 reviews signal-
adaptive minimax robust time-varying Wiener filters [3]. Section
3 proposes an algorithm for signal-adaptive subspace optimization.
Section 4 provides a statistical analysis of estimated filter and error
parameters. Finally, Section 5 considers the application of the novel
filter to speech enhancement.

2. SIGNAL-ADAPTIVE ROBUST WIENER FILTERS

We first review the signal-adaptive version of theminimax robust
time-varying Wiener filterintroduced in [3]. This filter provides the
basis for our subsequent development.

Local Cosine Subspaces.An efficient on-line version of the
robust Wiener filter is based on a partition{Xk,l}k∈Z,l∈N0 of the real
signal spaceL2(R) into orthogonallocal cosine subspaces (LCSs)

Xk,l , span
{

u(m)
k,l (t)

}
m=1,...,M , k∈Z, l ∈N0 (1)

that have dimensionM and are spanned by the orthonormallocal
cosine basis (LCB) functions2 [6,7]

u(m)
k,l (t) , wk(t)

√
2
Tk

cos

(
2(lM +m)−1

2Tk
π(t−tk)

)
, (2)
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1The correlation operatorRx of a (generally nonstationary) random pro-

cessx(t) is the positive (semi-)definite linear operator whose kernel equals
rx(t, t ′) = E{x(t)x(t ′)}.

2An alternative to LCBs is provided by wavelet packet bases [6,7].

with m= 1,2, . . . ,M. Here, thetk (k ∈ Z) define a partition of the
time axis into disjoint intervals[tk, tk+1] of durationTk = tk+1− tk
andwk(t) is a window associated to thekth interval[tk, tk+1]. For
background and details on the construction ofwk(t) see [6,7].

To any interval partition{[tk, tk+1]}k∈Z of the time axis, (1)
and (2) associate an orthogonal subspace partition{Xk,l}k∈Z,l∈N0

.

Since the LCB functionu(m)
k,l (t) is effectively supported in the time

interval [tk, tk+1] = [tk, tk + Tk] and the frequency band[(lM + m−
1)Fk,(lM + m)Fk] with Fk = 1/(2Tk), the LCSXk,l is effectively
supported in the time-frequency region[tk, tk + Tk] × [lMFk,
(l + 1)MFk] of areaM. Hence, the LCS partition{Xk,l}k∈Z,l∈N0

corresponds to a rectangular tiling of the time-frequency plane.

Robust Wiener Filter. Consider a specific LCS partition
{Xk,l}k∈Z,l∈N0

. The kernels of the associated orthogonal projection

operators [8]Pk,l are given bypk,l (t, t ′) = ∑M
m=1u(m)

k,l (t)u(m)
k,l (t ′).

Whereas the correlation operatorsRs, Rn are unknown, we ini-
tially assume that the expected energies ofs(t) and n(t) within
the subspacesXk,l are known to equalsk,l ≥ 0 and nk,l ≥ 0, re-

spectively, i.e., E{‖Pk,l s‖2}= tr
{

Pk,l Rs
}

= sk,l and E{‖Pk,l n‖2}=
tr
{

Pk,l Rn
}

= nk,l . Theuncertainty classesS andN are defined as
the sets of allRs andRn satisfying the above properties. By defini-
tion, theminimax robust time-varying Wiener filterHR [3, 4] opti-
mizes the worst-case performance within these uncertainty classes:

HR , argmin
H

max
Rs∈S
Rn∈N

e(H;Rs,Rn) ,

with the mean-square error (MSE)e(H;Rs,Rn),E{‖Hr−s‖2}. It
is shown in [3,4] that the signal estimateŝ(t) = (HR r)(t) equals

ŝ(t) =
∞

∑
k=−∞

∞

∑
l=0

hk,l (Pk,l r)(t) with hk,l =
sk,l

sk,l +nk,l
, (3)

where
(Pk,l r)(t) =

M

∑
m=1

〈
r,u(m)

k,l

〉
u(m)

k,l (t) .

Based on these expressions, efficient on-line calculation ofŝ(t) is
possible using fast LCB analysis and synthesis algorithms [6]. Fur-
thermore, foranyRs∈S , Rn∈N the resulting MSE is

e(HR;Rs,Rn) =
∞

∑
k=−∞

∞

∑
l=0

ek,l with ek,l =
sk,l nk,l

sk,l +nk,l
. (4)

We note that previously proposed subband/subspace-based sig-
nal estimation and speech enhancement schemes (e.g. [9, 10]) can
be cast in a similar framework with dim{Xk,l} = 1. Choosing
dim{Xk,l} > 1 entails a resolution loss (since all components of
r(t) lying in a given subspaceXk,l are treated alike) but will turn
out to be advantageous in a signal-adaptive implementation.



Signal-Adaptive Implementation. With certain assumptions,
the subspace projections(Pk,l r)(t) calculated during the analysis
stage can be used for signal-adaptive3 estimation of the filter weights
hk,l = sk,l/(sk,l + nk,l ) in (3). We first note thathk,l = 1−nk,l/rk,l
with

rk,l , sk,l +nk,l = E
{‖Pk,l r‖2} .

Thus, a (nonnegativity-enforced) estimate ofhk,l is given by

ĥk,l = max

{
0,1− n̂k,l

r̂k,l

}
, (5)

where n̂k,l and r̂k,l are suitable estimates ofnk,l and rk,l , respec-
tively. An unbiased estimate ofrk,l is provided by

r̂k,l , ‖Pk,l r‖2.
The statistical properties of the estimatesr̂k,l andĥk,l will be studied
in Section 4.

An unbiased estimate of the noise energiesnk,l can be obtained
if the set of all index pairs(k, l) can be partitioned into disjoint sub-
setsIi such that: (i) the noise energiesnk,l for all (k, l)∈ Ii are equal
and (ii) there exists at least one “noise only” index pair(k0, l0) ∈ Ii
(equivalently, one “noise only” subspaceXk0,l0) for whichsk0,l0 = 0
or equivalentlyrk0,l0 = nk0,l0. Then,r̂k0,l0 provides an unbiased es-
timate ofnk,l within Ii , i.e.,

n̂k,l = r̂k0,l0 for all (k, l) ∈ Ii .
Of practical relevance is the special case where each subsetIi cor-
responds to some frequency indexl and some time intervalk j ≤
k < k j+1, i.e., Ii = {(k j , l),(k j + 1, l), . . .,(k j+1− 1, l)}. That is,
for each frequency indexl , nk,l is constant on the time interval
[k j ,k j+1−1] (which may depend onl ) and at least for one(k0, l) ∈
Ii there issk0,l = 0. Note that the first property corresponds to a
“generalized stationarity” ofn(t). A dual situation is thatIi corre-
sponds to some time indexk and some frequency intervall j ≤ l <
l j+1, i.e.,Ii = {(k, l j ),(k, l j +1), . . .,(k, l j+1−1)}. Here,nk,l is lo-
cally constant with respect to the frequency indexl , corresponding
to a “generalized whiteness” ofn(t).

3. BEST SUBSPACE SELECTION

We now propose a “best subspace” algorithm that allows to adapt
the LCS partition{Xk,l}k∈Z,l∈N0

(equivalently, the associated time-
frequency tiling) to the observed signalr(t). This method is in-
spired by the well-known best basis algorithm [5, 6]. For algorith-
mic simplicity, we have to restrict the LCS partitions to correspond
to dyadic trees.

Dyadic LCS Trees.We first split the time axis into disjoint in-
tervals of durationTmax. (Tmax determines the processing delay and
1/(2Tmax) is the finest frequency resolution of the filter.) For each
such interval—e.g., the interval[0,Tmax]—we construct a dyadic
LCS tree (see Fig. 1) by recursively splitting[0,Tmax] into disjoint
subintervals of lengthTmax/2d with d = 0,1, . . . ,D−1. (D is the
depth of the tree; note that the lowest tree leveld = D− 1 corre-
sponds to the minimal subinterval lengthTmin = Tmax/2D−1.) To
the pth (p = 0, . . . ,2d−1) node at thedth level of the tree, we as-
sociate the subintervalI p

d , [pTmax/2d,(p+ 1)Tmax/2d]. A tree is
admissible if each node has either no or two children.

By this construction, theith admissible tree corresponds to an

interval partition
{

[t(i)
k , t(i)

k+1]
}

k=0,...,Ki−1 of [0,Tmax]. Here,Ki de-

notes the number of subintervals[t(i)
k , t(i)

k+1] into which [0,Tmax] is

split. The disjoint subintervals[t(i)
k , t(i)

k+1]⊆ [0,Tmax] are of the form

3A related discussion of SVD-based data-adaptive minimum MSE esti-
mation is given in [11].

f
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Figure 1: Example of an LCS partition. (a) Admissible LCS tree
(solid) based on a dyadic tree withD = 5 levels (dotted). (b) Time-
frequency tiling corresponding to the LCS tree in (a) (LCS dimen-
sionM = 4; the dotted lines indicate the time-frequency support of
the individual LCB functions spanning the respective LCS).

[pTmax/2d,(p+1)Tmax/2d] with variable lengthsTmax/2d. Via (1)

and (2), the interval partition
{

[t(i)
k , t(i)

k+1]
}

k=0,...,Ki−1 in turn corre-

sponds to an LCS partitionBi , {X (i)
k,l }k=0,...,Ki−1,l∈N0

of the sub-

space corresponding to[0,Tmax] into M-dimensional LCSsX (i)
k,l .

Note that thekth subinterval[t(i)
k , t(i)

k+1] ⊆ [0,Tmax] corresponds to

the subspace
L∞

l=0 X (i)
k,l . Also note that higher levelsd correspond

to longer subintervals and, hence, to subspacesX (i)
k,l with longer

duration and smaller bandwidth (resulting in poorer time resolution
and better frequency resolution).

Cost Function. We next assign a cost to each LCS partition
Bi . Since our goal is signal estimation with small MSE, we will
use an estimate of the MSE as our cost function (a related approach
for denoising is described in [6, 10]). An estimate of the MSEek,l

in (4) contributed by the subspaceX (i)
k,l is obtained by replacing

rk,l = sk,l + nk,l , nk,l , andsk,l with estimateŝrk,l , n̂k,l (cf. Section
2), andŝk,l , respectively:

ê(i)
k,l ,

ŝk,l n̂k,l

r̂k,l
with ŝk,l ,max

{
0, r̂k,l−n̂k,l

}
. (6)

(Note that the estimateŝrk,l , n̂k,l , ŝk,l depend oni since they are

based onX (i)
k,l .) In view of (4), an estimate of the total MSE cor-

responding to theith partitionBi = {X (i)
k,l }k=0,...,Ki−1,l∈N0 is then

obtained by adding all subspace MSE estimatesê(i)
k,l ,

ê(Bi) ,
Ki−1

∑
k=0

∞

∑
l=0

ê(i)
k,l =

Ki−1

∑
k=0

∞

∑
l=0

ŝk,l n̂k,l

r̂k,l
. (7)

A statistical analysis of the subspace MSE estimatesê(i)
k,l will be

provided in Section 4.

Best Subspace Algorithm.For a given observed signalr(t),
the best subspace partitionBopt associated to the interval
[0,Tmax] is defined as theBi minimizing the estimated MSE,

Bopt , argmin
i

ê(Bi) . (8)

An efficient minimization method is provided by the following
best subspace algorithm(a variation of the best basis algorithm [5,
6]) that exploits the additivity of the cost function̂e(Bi) in (7) to
solve (8) by means of a recursive bottom-up strategy. Hereafter,



let {X }p
d denote the set of LCSs associated to the subintervalI p

d =
[pTmax/2d,(p+1)Tmax/2d] via (1) and (2), and let̂e({X }p

d) denote
the sum of the estimated subspace MSEs for all LCSs in{X }p

d.
Start at the lowest leveld = D− 1 of the LCS tree (corre-

sponding to the finest interval partition, i.e., minimal subinterval
lengthTmin = Tmax/2D−1) and compute the costê({X }p

D−1) for all
p = 0, . . . ,2D−1−1. At this leveld = D−1, thebest partial sub-
space partitionassociated to the subintervalI p

D−1 is simply defined
asP p

D−1 = {X }p
D−1.

Next, consider the second lowest leveld = D−2 and compute
the costê({X }p

D−2) for all p = 0, . . . ,2D−2−1. A given node(D−
2, p) at leveld = D−2 corresponds to the subintervalI p

D−2; it has
two children(D−1,2p) and(D−1,2p+1) at leveld = D−1 that
correspond to the subintervalsI 2p

D−1 andI 2p+1
D−1 , respectively (whose

union isI p
D−2). The best partial subspace partition associated to the

subintervalI p
D−2 is now defined asP p

D−2 = {X }p
D−2 (correspond-

ing to the “long” subintervalI p
D−2) if ê({X }p

D−2) < ê({X }2p
D−1) +

ê({X }2p+1
D−1 ) or asP p

D−2 = {X }2p
D−1∪{X }2p+1

D−1 (corresponding to

the two “short” subintervalsI 2p
D−1 and I 2p+1

D−1 ) if ê({X }p
D−2) ≥

ê({X }2p
D−1)+ ê({X }2p+1

D−1 ).
This process of comparing the cost of the partial subspace parti-

tion associated to a parent node with the total cost of the best partial
subspace partitions associated to its two children nodes and adopt-
ing the partial subspace partition with the smaller cost is continued
for d = D−3,D−4, . . . ,0. For thepth node (p= 0,1, . . . ,2d−1) at
a given leveld ∈ {D−2, . . . ,0}, the best partial subspace partition
P p

d is thus determined as

P p
d =

{
{X }p

d if ê({X }p
d) ≤ ê(P 2p

d+1)+ ê(P 2p+1
d+1 ) ,

P 2p
d+1∪P 2p+1

d+1 if ê({X }p
d) > ê(P 2p

d+1)+ ê(P 2p+1
d+1 ) .

Finally, the best total subspace partition defined in (8) is given by
Bopt = P 0

0 ; it can be determined with complexityO(2D−1). How-
ever, it also requires computation of the MSE estimatesê({X }p

d)
which, in a discrete-time implementation, can be achieved with
complexityO(2DN logN) whereN is the block length correspond-
ing to Tmax.

4. STATISTICAL ANALYSIS

We next provide a statistical analysis of the filter weight estimates
ĥk,l in (5) and the subspace MSE estimatesêk,l in (6) for the case
wheres(t) andn(t) (and thus alsor(t)) are Gaussian random pro-
cesses.

We first consider̂hk,l in (5). For simplicity, we assume thatnk,l
is known or has been estimated very reliably (this assumption is
justified forM� 1, see below). Thus, we can replacen̂k,l by nk,l ,
whence (5) becomes

ĥk,l = max

{
0,1−nk,l

r̂k,l

}
. (9)

Sinceĥk,l is determined bŷrk,l = ‖Pk,l r‖2 = 〈Pk,l r, r〉, we first
analyzer̂k,l . Even though the probability density function (pdf)
and characteristic function ofr̂k,l can be determined [12], we here
restrict ourselves to a second-order analysis. We just note that if

R(k,l)
r ,Pk,l RrPk,l = ηk,l Pk,l (with Rr = Rs+Rn andηk,l = (sk,l +

nk,l )/M), i.e., if r(t) is “white within Xk,l ,” then r̂k,l/ηk,l is χ2-
distributed withM degrees of freedom. The mean ofr̂k,l is

E{r̂k,l}= rk,l = tr
{

R(k,l)
r
}

=
M

∑
m=1

λ(m)
k,l ,

where theλ(m)
k,l are the eigenvalues of the projected correlation op-

eratorR(k,l)
r = Pk,l RrPk,l . The variance of̂rk,l can be shown to be

given by

var{r̂k,l} = 2tr
{(

R(k,l)
r
)2} = 2

M

∑
m=1

(
λ(m)

k,l

)2
.

A measure of the reliability of the estimater̂k,l is provided by the
relative variance

v2
k,l ,

var{r̂k,l}(
E{r̂k,l}

)2 =
2∑M

m=1

(
λ(m)

k,l

)2
(

∑M
m=1 λ(m)

k,l

)2 ,

which should be as small as possible. It can be shown that

2
M
≤ v2

k,l ≤ 2.

The lower bound is attained iffλ(m)
k,l ≡ ηk,l or equivalentlyR(k,l)

r =
ηk,l Pk,l . Thus, “whiteness ofr(t) within Xk,l ” is desirable. The

upper bound is attained iffR(k,l)
r has rank one, i.e.,λ(1)

k,l = sk,l +nk,l

and λ(2)
k,l = · · · = λ(M)

k,l = 0. This means that, withinXk,l , r(t) is
almost deterministic. Clearly, this case is undesirable.

In view of the above discussion, we can expect that for typi-
cal situations, the pdf of̂rk,l will become increasingly concentrated
about the true valuerk,l = E{r̂k,l} for growing subspace dimension
M. Thus, the estimatêrk,l will be more reliable for larger subspace
dimensions.

We next analyzêhk,l in (9). We have

ĥk,l = f (r̂k,l ) with f (x) = max

{
0,1−nk,l

x

}
.

Using truncated Taylor series expansions off (r̂k,l ) about E{r̂k,l}=
rk,l , we obtain the following approximations for the bias and vari-
ance ofĥk,l ,

E{ĥk,l}−hk,l ≈ −
v2

k,l

SNRk,l +1
, var{ĥk,l} ≈ nk,l v2

k,l ,

with the “subspace signal-to-noise ratio” SNRk,l , sk,l/nk,l . (These
approximations are the better the more the pdf ofr̂k,l is concen-
trated about the true valuerk,l .) Thus, even thougĥrk,l is an un-
biased estimate,̂hk,l is biased. The bias will be small if SNRk,l

is large and/orv2
k,l is small (the latter will be particularly true for

M�1). Furthermore, the variance ofĥk,l will be small if nk,l and/or
v2

k,l is small. Thus, small noise and/or small relative variance ofr̂k,l

ensure that the estimateĥk,l is reliable.
In a similar manner, it can be shown that the bias and variance

of the subspace MSE estimatesêk,l in (6) can be approximated as

E{êk,l}−ek,l ≈ −
v2

k,l nk,l

SNRk,l +1
, var{êk,l} ≈ n3

k,l v2
k,l .

Here, we again assumed thatnk,l is known or has been estimated
very reliably.

This statistical analysis shows that in a signal-adaptive imple-
mentation of robust time-varying Wiener filters, a large subspace
dimensionM is advantageous as it tends to yield more reliable esti-
mates of the Wiener filter weightshk,l and the subspace MSEsek,l ,
which can be expected to result in a smaller signal estimation MSE.
On the other hand, a largerM also results in a loss of filtering res-
olution and, thus, potentially in a larger signal estimation MSE. In
view of this tradeoff, one may expect that there is an optimal di-
mensionM that yields minimal signal estimation MSE. This will
be verified experimentally in Section 5.
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Figure 2: SNR improvement achieved by the signal-adaptive robust
Wiener filter with (a) fixed interval lengthTk ≡ 92.9ms and vari-
ous subspace dimensionsM and (b) best subspace selection using
Tmax= 92.9ms andD = 5 (- - clairvoyant costs, — estimated costs).

5. NUMERICAL EXPERIMENTS

We finally study the performance of our filter in a speech enhance-
ment context. Our speech signal consisted of three German sen-
tences spoken by a male and a female speaker (total duration7.68s,
sampling rate11025Hz). The speech signal was corrupted by sta-
tionary white Gaussian noise.

Simulation 1. In order to show the advantage of subspace di-
mensionsM> 1, we first used a filter based on a fixed LCS partition
corresponding to fixed interval lengthTk≡ 92.9ms. Fig. 2(a) shows
the SNR improvement4 ∆SNR= SNRout−SNRin achieved by the
filter versusM = 2m (m= 0, . . . ,10) for four different input SNRs.
In all four cases,M� 1 offers significant performance gains with
M = 32. . .64 being a good choice for most SNR levels. However,
for M growing further, the performance starts to deteriorate since
the loss in filtering resolution becomes dominant.

Simulation 2. We next used the filter with best subspace selec-
tion (Tmax = 92.9ms,D = 5) as described in Section 3. For com-
parison, we additionally show the results obtained with clairvoy-
ant best subspace selection using the “true” subspace MSE costs
(estimated using the clean signals) instead of the subspace MSE
costs estimated according to Section 3 (the filtering is still signal-
adaptive, however). Fig. 2(b) shows the SNR improvement versus
input SNR for subspace dimensionM = 1, 16, and256. At low
input SNR, a largerM is seen to be advantageous. For SNRin >−5dB, however,M = 256performs worse thanM = 16 due to the
poorer filtering resolution. Furthermore, using the estimated MSE
costs instead of the clairvoyant MSE costs is seen to result only in
a small performance degradation.

Fig. 3 shows the time-frequency tiling obtained by the best sub-
space algorithm (subspace dimensionM = 32) for a signal block of
length3Tmax= 279ms. Clearly, the algorithm succeeds in adapting
to both short broadband components and long narrowband portions
of the speech signal.

6. CONCLUSION

We proposed a robust time-varying Wiener filter that is based on
a local cosine subspace partition and allows efficient on-line oper-
ation. The filter selects the best subspace partition and estimates
the Wiener filter weights in a signal-adaptive manner, with only a
minimal amount of prior knowledge required. A statistical analysis
and simulation results showed the advantage of choosing subspace
dimensions larger than one. This suggests potential improvements
of current speech enhancement techniques.

4The input and output SNRs are defined as SNRin = ‖s‖2/‖n‖2 and
SNRout = ‖s‖2/‖s− ŝ‖2, respectively.
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Figure 3: Best subspace partition for a speech signal block of
length 3Tmax = 279ms. The lower part shows the clean speech
signal. The upper part shows a smoothed pseudo-Wigner distribu-
tion [13] of the clean speech signal and the time-frequency tiling
corresponding to the best subspace partition (M = 32, D = 5) ob-
tained from the noisy speech signal (SNRin = 2.8dB). The thick
vertical lines indicate the basic intervals of lengthTmax = 92.9ms.
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