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ABSTRACT

withm=12 ... M. Here, they (k € Z) define a partition of the
time axis into disjoint intervalfy,ty. 1] of durationTy =ty 1 —tk

We propose a signal-adaptive robust time-varying Wiener filter forandw(t) is a window associated to theh interval [t tiy1]. For

nonstationary signal estimation/enhancement. This filter uses pr
jections onto local cosine subspaces and a novel “best subspa
algorithm. It allows efficient on-line operation including stable on-

C%e'ackground and details on the constructiomvg(t) see [6, 7].

To any interval partition{[t,tcy1]}xc7 Of the time axis, (1)

line estimation of design parameters. A statistical analysis is proand (2) associate an orthogonal subspace part{tiq },.; |y, -

vided, and a speech enhancement example is considered.

1. INTRODUCTION

We consider estimation of a signst) from a noisy observation
r(tR =s(t) +n(t). Signals(t) and noisen(t) are uncorrelated, real-
ued,nonstationaryandom processes with respective correlation

val

operator$ Rs andRy. The signal estimate &t) = (Hr)(t) with H
atime-varyingsystem.

Since the LCB functiorml((T) (t) is effectively supported in the time
interval [ty, tx1 1] = [tk, tk + Tk] and the frequency barfdM + m—
DR, (IM + mR] with /= 1/(2Ty), the LCSXy is effectively
supported in the time-frequency regiofty,tx + Ti] x [IMFy,
(I+1)MFR of areaM. Hence, the LCS partitiofXi¢| }y7 |,
corresponds to a rectangular tiling of the time-frequency plane.

Robust Wiener Filter. Consider a specific LCS partition

The linear systenH minimizing the mean-square error (the {XkJ}keZIeNO. The kernels of the associated orthogonal projection

time-varying Wiener filter[1, 2] is very sensitive to errors in mod- . , M (M) m) .y
eling and/or estimatin@®s and Ry, [3,4], and for long signals its Operators [8]P | are given bypy(t,t") = Y m_q1 Uy, (t) U, (t').
design and implementation are computationally intensive. Therewhereas the correlation operatd®g, R, are unknown, we ini-
fore, in this paper we proposes@gnal-adaptive robust time-varying tially assume that the expected energiess@©f and n(t) within
Wienerfiltgrwith efficient on-Iinehopfelration and slgable orll-line esti- the subspacegy, are known to equad, > 0 andny, > 0, re-
mation of design parameters. The filter uses orthogonal projectio . : 2y _ _ : 2y _

onto local cosine subspaces and a novel “best subspace” algoritrﬁ?em'vely’ i.e., Bf[Pisi|®} = tr,{Pk:' Rs} = s and B||P n,” =

that extends the classical best basis algorithm [5, 6]. tr{Px/Rn} = ng|. Theuncertainty classes and#\( are defined as

The paper is organized as follows. Section 2 reviews signalthe sets of alRs andR,, satisfying the above properties. By defini-

adaptive minimax robust time-varying Wiener filters [3]. Sectiontion, theminimax robust time-varying Wiener filtétg [3, 4] opti-

3 proposes an algorithm for signal-adaptive subspace optimizatiomizes the worst-case performance within these uncertainty classes:
Section 4 provides a statistical analysis of estimated filter and error
parameters. Finally, Section 5 considers the application of the novel

Hr £ argminmax e(H;Rs,Ry),
filter to speech enhancement. H o RS

RheN
2. SIGNAL-ADAPTIVE ROBUST WIENER FILTERS with the mean-square error (MSEH; Rs, Rn) £ E{HHI’—SHZ}. It

We first review the signal-adaptive version of tiénimax robust IS Shown in [3, 4] that the signal estimaig) = (Hrr)(t) equals
time-varying Wiener filtemtroduced in [3]. This filter provides the © o S
basis for our subsequent development. §t) = > Nt (Piir)(t)  with - by = X (3)
. - . . s ’ ’ S| + Nk
Local Cosine SubspacesAn efficient on-line version of the k=—wl=0 ' '
robust Wiener filter is based on a partiti@¥y | }kez 1, Of the real
signal spacé,(R) into orthogonalocal cosine subspaces (LCSs)

where

M
(Pan® = 3 (ruf)ud'©).

Xi) = spar{uf(T) O} mer..m:  KEZTENo (1)  Based on these expressions, efficient on-line calculaticftpiis
' possible using fast LCB analysis and synthesis algorithms [6]. Fur-

thermore, fomnyRse S, Ry € AL the resulting MSE is

S Sk Nkl

e(Hr;Rs,Rp) = .
(HRiRs.Rn) k;wlgoq" Sl + Nkl

We note that previously proposed subband/subspace-based sig-
: nal estimation and speech enhancement schemes (e.g. [9, 10]) can
Funding by FWF grant P11904-TEC. : o A h - !
1The correlation operatdy of a (generally nonstationary) random pro- b.e cast in a Slmlla.lr frameworl_< with d}{v{.k*'} = 1. Choosing
cessx(t) is the positive (semi-)definite linear operator whose kernel equal@'m{x.k.l}.> 1 gntalls a resolution loss (since gll components of
r(t,t) = E{x(t)x(t")}. r(t) lying in a given subspacgy are treated alike) but will turn
2An alternative to LCBs is provided by wavelet packet bases [6,7].  out to be advantageous in a signal-adaptive implementation.

that have dimensioM and are spanned by the orthonorradal
cosine basis (LCB) functioA$6, 7]

with g =

(4)




Signal-Adaptive Implementation. With certain assumptions, Af
the subspace projectiori® r)(t) calculated during the analysis

stage can be used for signal-adaptiestimation of the filter weights
hk,| = | /(Sk| + I’]k_|) in (3). We first note thath =1- nk,|/rky|
with

Mk 2 S+ = E{|[Per]?}.
Thus, a (nonnegativity-enforced) estimatehpf is given by

rk,ll } 7 ®

wherefy| andfy, are suitable estimates o, andry,, respec- &b 6o 6o
tively. An unbiased estimate of is provided by

P = max{ i %

1 btaty Tmax:VtS
(a) (b)

Figure 1: Example of an LCS partition. (a) Admissible LCS tree

The statistical properties of the estimaﬁ@sandﬁm will be studied gfé’(;ﬁigr?ca;gﬁn%nc%gggggnté?ﬁgv‘{ﬂ; esl_lg\ée![‘?e(g?rgt?g))'(é@g I(;rilrﬁ-en-

in Section 4. . £the noi . . sionM =4; the dotted lines indicate the time-frequency support of
_Anunbiased estimate of the noise energigscan be obtained e individual LCB functions spanning the respective LCS).

if the set of all index pairgk,|) can be partitioned into disjoint sub-

setslj such that: (i) the noise energimg for all (k,I) € Ij are equal

and (i) there exists at least one “noise only” index [{ai;, lo) < I [meax/2d7 (p+ 1)Tmax/2d] with variable lengthdmax/29. Via (1)
(equivalently, one “noise only” subspaag, |,) for whichs |, = ) o () () i

or equivalentlyry, |, = N 1,. Then,fi,, ), provides an unbiased es- and (2), the interval partitiof [t "t /1] }y o k1 in tum corre-

timate ofn within Ij, i.e., sponds to an LCS partitiofy £ {xk(il)}k o Kk 11en, Of the sub-
’ =i T4, 0

ficl = Fig o forall (k1) € L. space corresponding 16, Trma into M-dimensional LCSs,).
Of practical relevance is the special case where each sijl=mt ] (i) +() :
responds to Some frequency mdeand some fime interval; < Note that thekth subil)nterval[tk stta] € [0, Tmax| corresponds to
k< Kji1, e, I = {(kj,1),(kj + 1,1),...,(Kjz1 — L,1)}. Thatis, the subspacedy 0% - Also note that higher levels correspond
for each frequency indek ny is constant on the time interval
[kj,Kj+1— 1] (which may depend oh) and at least for ongkp, 1) €
Ij there iss, | = 0. Note that the first property corresponds to a
“generalized stationarity” ofi(t). A dual situation is thal; corre- Cost Eunction. We next assi o,
gl ; . gn a cost to each LCS partition
sponds to some time inddxand some frequency intengl< | < B;. Since our goal is signal estimation with small MSE, we will

L, el = {(k 1)), (k1j+1),...,(kIj;1—1)}. Here,ng  islo-  se an estimate of the MSE as our cost function (a related approach
cally constant with respect to the frequency indegorresponding  for denoising is described in [6, 10]). An estimate of the M&E
to a “generalized whiteness” oft). ’

g R 2 2
60000000 0=tg

fis 2 [Py T2

to longer subintervals and, hence, to subspa)z;g)swnth longer

duration and smaller bandwidth (resulting in poorer time resolution
and better frequency resolution).

in (4) contributed by the subs,pacf?((_il> is obtained by replacing
3. BEST SUBSPACE SELECTION Ikl = Skl + N1, Nk, andse with estimatedy, A (cf. Section

and§ |, respectivel
We now propose a “best subspace” algorithm that allows to adapt) |, 1eSP y:

the LCS partition{ka}kezl eNo (equivalently, the associated time- o) A & A |

frequency tiling) to the observed signgk). This method is in-

spired by the well-known best basis algorithm [5, 6]. For algorith- B s A oA .

mic simplicity, we have to restrict the LCS partitions to correspond(NOte that the estimatef), fic), & depend ori since they are

to dyadic trees. based onXk('> ) In view of (4), an estimate of the total MSE cor-
Dyadic LCS Trees.We first split the time axis into disjoint in- o .

tervals of duratioMmax. (Tmax determines the processing delay and "€SPONding to théth partition % = {Xk| }k=0,...K~1]€N, IS then

1/(2Tmax) is the finest frequency resolution of the filter.) For eachgptained by adding all subspace MSE estlma@s
such interval—e.g., the intervé, Tnay—we construct a dyadic

LCS tree (see Fig. 1) by recursively splittif@ Tmax into disjoint A(| & A
subintervals of Iengtﬁ'm(,lx/Zd withd =0,1,...,D—1. (D is the Z) = Z) 7 : @)
depth of the tree; note that the lowest tree levet D — 1 corre- & K=0 1 k|
sponds to the minimal subinterval lengthin = Tmax/2°~1.) To
the pth (p=0,...,29—1) node at thedth level of the tree, we as-
sociate the subintervdl’ £ [pTmax/29, (p+ 1) Tmax/29]. A tree is
admissible if each node has either no or two children.

By this construction, thé&h admissible tree corresponds to an

interval partition{[tlg),t&l}}k:O .k—1 0 [0, Tmad. Here,K; de-

with § S max{O, Fie 1 — i } . (6)

A statistical analysis of the subspace MSE estimé&%will be
provided in Section 4. '

Best Subspace Algorithm.For a given observed signg(t),
the best subspace partitioBypt associated to the interval
[0, Tmax is defined as th&; minimizing the estimated MSE,

Ki—1 a -
notes the number of subinterve{té'),tl((ﬁl} into which [0, Tmay is Bopt = argmin(%;). ®

split. The disjoint subintervall,t\") ] C [0, Trax are of the form An efficient minimization method is provided by the following
P : B bra] & [0, Tma best subspace algorithga variation of the best basis algorithm [5,
3A related discussion of SVD-based data-adaptive minimum MSE estlﬁ]) that exploits the additivity of the cost functi@3;) in (7) to
mation is given in [11]. solve (8) by means of a recursive bottom-up strategy. Hereafter,




let {X}g denote the set of LCSs associated to the subinté@a& where thexf(T) are the eigenvalues of the projected correlation op-

[PTmax/2%, (P-+1) Tmax/2] via (1) and (2), and le¥({ X }§) denote eratorR™") — P, |R/Py,. The variance ofy, can be shown to be
the sum of the estimated subspace MSEs for all LCSQG}]@. given by ’ ’ ’
Start at the lowest levadl = D — 1 of the LCS tree (corre- M
sponding to the finest interval partition, i.e., minimal subinterval var{fy|} = 2tr{(R§k">)2} —25 ()‘|(<T))2-
lengthTmin = Tmax/2°~1) and compute the cot{x}5 ;) for all ’ =

p=0,...,2P~1 1. Atthis leveld = D — 1, thebest partial sub- A measure of the reliability of the estimaitg, is provided by the
space partitiorassociated to the subinten&] , is simply defined ~ relative variance

asfy_y ={X}p_y. . var{fig}  23hg A)?
Next, consider the second lowest lede D — 2 and compute kI = 7 — M (M2
the cos&({X}p ,) forall p=0,...,2°2— 1. A given node(D — (E{fii}) (Sme1Mvr)

2,p) at leveld = D — 2 corresponds to the subintervg_,;ithas  which should be as small as possible. It can be shown that
two children(D — 1,2p) and(D — 1,2p+1) at leveld = D — 1 that 5

correspond to the subintervatg” , and 15”1, respectively (whose 7 < Vi < 2.

union islgfz). The best partial subspace partition associated to the ] ) () ) (k1)
subintervaIIDpQ is now defined a@S,Z _ {X}sz (correspond- The lower bound is attained m‘kJ =Nk or equivalenthyR;™"’ =

ing to the “long” subintervallg_z) it é({X}B_z) - é({X}ZDp_l) n Nk1 Pki. Thus, “whiteness of (t) within X" is desirable. The

i inad Bk Fen(b
X)) or asiE, — (X120, U LX) (comesponding to “PPeTBound s atained B has ank ane, e —sq +
the two “short” subintervalsi2? | and 12P4Y) it &({x}B_,) >  @ndAg ==X~ = 0. This means that, withitki, r(t) is
A 2p R 2p+1 almost deterministic. Clearly, this case is undesirable.
e({X}Dfl) +e({X}D71 ) ) ) . In view of the above discussion, we can expect that for typi-
_ This process of comparing the cost of the partial subspace parttal situations, the pdf df,; will become increasingly concentrated
tion associated to a parent node with the total cost of the best parh@?out the true valug,) = E{f } for growing subspace dimension

subspace partitions associated to its two children nodes and ado L p .
ing the partial subspace partition with the smaller cost is continuedir'ng‘]l;is‘érgze estimaty | will be more reliable for larger subspace

ford=D—3,D—4,...,0. Forthepth node p=0,1,...,29 —1) at oo
agiven leveld € {D —2,...,0}, the best partial subspace partition We next analyzéy in (9). We have

5 , . n
P4 is thus determined as R = f(Fa)  with F(x) = max{o,l—ﬁ}.
xyP if 8({X}0) < &%) + g(22PiY) | | X
PP = { 2pd 2t e % - d;r;l i dZ-[;lkl ’ Using truncated Taylor series expansions (7 ) about B fy } =
Py U if e({X}g) > &(Ply) +E(P5t1 ) rc;, we obtain the following approximations for the bias and vari-

Finally, the best total subspace partition defined in (8) is given hyance offy |,
Bopt = BY; it can be determined with complexi®(2P-1). How- A V2 A

ever, it also requires computation of the MSE estim@(e{sc}g) E{hg } — i1 = *ﬁv var{h } ~ n Vﬁl )
which, in a discrete-time implementation, can be achieved with Rl +

complexity O(2PNlogN) whereN is the block length correspond- With the “subspace signal-to-noise ratio” SNRE s /N (These
ing to Tmax- approximations are the better the more the pdfigfis concen-

trated about the true valug.) Thus, even thougﬁd is an un-
4. STATISTICAL ANALYSIS biased estimatefy is biased. The bias will be small if SNR
We next provide a statistical analysis of the filter weight estimatess large and/ovvﬁI is small (the latter will be particularly true for

hi1 in (5) and the subspace MSE estimaigs in (6) for the case  \5.1). Furthermore, the variance bf | will be small ifny; and/or
wheres(t) andn(t) (and thus alse(t)) are Gaussian random pro- V2, is small. Thus, small noise and/or small relative variandi pf

cesses. .
We first consideﬁkJ in (5). For simplicity, we assume thag ensure that the estimaltg) is reliable.

is known or has been estimated very reliably (this assumption is In a similar manner, it can be shown that the bias and variance
justified forM > 1, see below). Thus, we can replagg by g, of the subspace MSE estimat&gg in (6) can be approximated as
whence (5) becomes 2

" E{8t—a0 ~ L var(a )~ 2

ﬁk,l _ max{o,l—f—k"}. ©) | |~ SNRq 1’ Jr &N V) -
k|

- Here, we again assumed thay is known or has been estimated
Sincehy | is determined by = \|Pk,|r\|2 = (Pyr,r), we first very reliably.
analyzefy. Even though the probability density function (pdf)  “This statistical analysis shows that in a signal-adaptive imple-
and characteristic function @ can be determined [12], we here mentation of robust time-varying Wiener filters, a large subspace
restrict ourselves to a second-order analysis. We just note that Cfm}enSI??r\]/' |\sNadvan]Ez|itgeous. ahsh:‘: ten(zjstho yleléj more ﬁ'sl%bge esti-
(k) & _ . B B mates of the Wiener filter weightg and the subspace 5,
R = Pk_a' R"_Dks' =Mkl PK'_(W'th_ R_f =Rs+Rn anf’”'“' = (_Sk»' j which can be expected to result in a smaller signal estimation MSE.
ng1)/M), i.e., if r(t) is “white within Xi,” then fi;| /nk) is X~ On the other hand, a largst also results in a loss of filtering res-
distributed withM degrees of freedom. The meanfgf is olution and, thus, potentially in a larger signal estimation MSE. In
M ' view of this tradeoff, one may expect that there is an optimal di-
E{fig} =rq) = tr{Rﬁk")} =3 Am mensionM that yields minimal signal estimation MSE. This will
: : Ly K be verified experimentally in Section 5.
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Figure 2. SNR improvement achieved by the signal-adaptive robust
Wiener filter with (a) fixed interval lengtfy = 92.9ms and vari-

ous subspace dimensiokband (b) best subspace selection using
Tmax=92.9ms and = 5 (- - clairvoyant costs, — estimated costs).
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5. NUMERICAL EXPERIMENTS
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Figure 3: Best subspace partition for a speech signal block of

) o length 3Tmax = 279ms. The lower part shows the clean speech
We finally study the performance of our filter in a speech enhancesignal. The upper part shows a smoothed pseudo-Wigner distribu-
ment context. Our speech signal consisted of three German setien [13] of the clean speech signal and the time-frequency tiling

tences spoken by a male and a female speaker (total duraéi®s,

corresponding to the best subspace partitibh£ 32, D = 5) ob-

sampling ratel 1025Hz). The speech signal was corrupted by sta-tained from the noisy speech sign&NR, = 2.8dB). The thick

tionary white Gaussian noise.

Simulation 1. In order to show the advantage of subspace di-
mensiondM > 1, we first used a filter based on a fixed LCS partition
corresponding to fixed interval length = 92.9ms. Fig. 2(a) shows

the SNR improvemef‘ltASNR: SNRyut — SNR;, achieved by the
filter versusM = 2™ (m= 0, ..., 10) for four different input SNRs.

In all four casesM > 1 offers significant performance gains with
M = 32...64 being a good choice for most SNR levels. However,
for M growing further, the performance starts to deteriorate since[2]
the loss in filtering resolution becomes dominant.

Simulation 2. We next used the filter with best subspace selec-
tion (Tmax = 929ms, D = 5) as described in Section 3. For com- 3]
parison, we additionally show the results obtained with clairvoy-
ant best subspace selection using the “true” subspace MSE costs
(estimated using the clean signals) instead of the subspace MSII?4]
costs estimated according to Section 3 (the filtering is still signal-
adaptive, however). Fig. 2(b) shows the SNR improvement versus
input SNR for subspace dimensidh = 1, 16, and256. At low [5]
input SNR, a largeM is seen to be advantageous. For GNR
—5dB, howeverM = 256 performs worse thah = 16 due to the
poorer filtering resolution. Furthermore, using the estimated MSE 6
costs instead of the clairvoyant MSE costs is seen to result only in(6]
a small performance degradation.

Fig. 3 shows the time-frequency tiling obtained by the best sub- [7]
space algorithm (subspace dimendir-= 32) for a signal block of
length3Tmax= 279ms. Clearly, the algorithm succeeds in adapting [8]
to both short broadband components and long narrowband portions
of the speech signal. [9]

(1]

6. CONCLUSION

1
We proposed a robust time-varying Wiener filter that is based or[1
a local cosine subspace partition and allows efficient on-line oper-
ation. The filter selects the best subspace partition and estimates)
the Wiener filter weights in a signal-adaptive manner, with only a
minimal amount of prior knowledge required. A statistical analysis
and simulation results showed the advantage of choosing subspage
dimensions larger than one. This suggests potential improvements
of current speech enhancement techniques. [13]

4The input and output SNRs are defined as $NR||s||?/||n||> and
SNRout = |82/ lls— §/|%, respectively.

vertical lines indicate the basic intervals of lengithax = 92.9ms.
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