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ABSTRACT

In thispaper, anonlinearsubbanddecompositionschemewith per-
fect reconstructionis proposedfor losslesscodingof multispectral
images.Themerit of thisnew schemeis to exploit efficiently both
thespatialandthespectralredundanciescontainedin amultispec-
tral imagesequence.Besides,it is suitablefor progressive cod-
ing, whichconstitutesadesirablefeaturefor telebrowsingapplica-
tions.Simulationtestsperformedonrealscenesallow to assessthe
performancesof this new multiresolutioncodingalgorithm.They
demonstratethat the achieved compressionratiosarehigherthan
thoseobtainedwith currentlyusedlosslesscoders.

1. INTRODUCTION

Multispectralimagesareof interestfor agreatnumberof applica-
tions suchastarget imaging,terrainmappingapplications,mete-
orology,. . .Generally, theseimagesaresuppliedby satellitesob-
serving the earth in several channels. For instance,the “Satel-
lite Pour l’Observation de la Terre” (SPOT) hastwo High Reso-
lution Visible imagingsystems(HRV1 andHRV2). EachHRV is
designedto operatein two modesof sensing:a 10 m resolution
“Panchromatic”(P) modeover the range[0.5-0.73] 	 m anda 20
m resolutionmultispectralmode.For themultispectralmode,the
XS1 channelis associatedwith therange[0.5-0.59] 	 m, theXS2
channelwith therange[0.61-0.78]	 m andtheXS3 bandwith the
range[0.79-0.89] 	 m. Therefore,for thesamescene,the4 bands
P, XS1,XS2,XS3 andXS4 areavailable.
Largerandlargeramountsof dataaregeneratedthanksto thecon-
tinuousimprovementandincreasedpopularityof remotesensing
systems. The problemof managing,transmittingand archiving
sucha tremendousvolume of datais crucious. To give an idea
of the importanceof theproblem,recall thata sceneacquiredby
the ThematicMappersensorscorrespondsto about200 Mbytes.
This amountof datarequireshugestoragecapabilitiesaswell as
a large transmissionbandwidthduring downlinking. Therefore,
it is really challengingto develop imagecompressiontechniques
soasto provide solutionsto this problem.Two typesof schemes
canbe envisaged: lossyor lossless.In this paper, we focusour
attentionon losslesscodingtechniquesfor multispectralremotely
sensedimagesbecausewe aremainly interestedin archiving ap-
plications. Indeed,archival storageof imagesrequiresexact re-
producibility of the datasincethe leastdistortionmay leadto an
erroneousinterpretationof theconsideredsceneor to thecomputa-
tion of incorrectgroundparameters.Therefore,it mustbepossible
to perfectlyrecover theoriginal image. Furthermore,progressive
reconstructionis a desirablefeaturefor telebrowsing throughim-

agesdatabases.It consistsin encodingtheimagein severallayers:
thefirst level correspondsto averyhighly compressedversionand
eachsuccessive level providesmoredetailsuntil ultimatelytheim-
ageis completelyrecovered.Suchgradualreconstructionrequires
a compactandnon-redundantpyramidalrepresentationof the in-
put image. Nonlinearsubbanddecompositionshave beendevel-
oppedrecently[1, 2, 3]. They provide hierarchicalandcompact
representationsfor gradualcodingof images[4] and,for this rea-
son,they havebeenretainedin thestandardJPEG2000[5]. To the
bestof ourknowledge,theproblemof extendingsuchkind of rep-
resentationsto multispectralimageshasnot yet beenaddressed.
Indeed,in existing methods,eachspectralcomponentis very of-
ten codedindependentlyof the others. In this paper, we develop
a new algorithmwhich exploits themutualdependencesbetween
spectralbandsthanksto generalizednonlinearsubbanddecompo-
sitions.Thispaperis organizedasfollows. In Section2, webriefly
describetherelatedworksin thefield of losslesscodingof multi-
spectralimagessoasto betterdefineour contribution. In Section
3, weproposeanew hybridhierarchicalandreversibledecomposi-
tion which exploits boththespectralandthespatialredundancies.
Finally, in Section4, we provide someexperimentalresultsand
comparethemto theperformancesof conventionalmethods.

2. A SHORT REVIEW OF EXISTING LOSSLESS
CODERS

Usually, differentialpredictivecodersareappliedtocompressmul-
tispectraldata[6]. More precisely, let 
���
���������������� ��� ��! " " "#! $ bea
2D multibandwhere % is the numberof spectralbandsand let&� 
���� �������'� denotethepredictedvalueof thecurrentpixel � 
���� ���(����� .
Among the spatial coders,the Optimal Linear Predictor(OLP)
basedon the 3 nearestprevious neighborscanbe easilyapplied.
Thepredictioncoefficientsaresolutionsof thenormalequations.
It is alsopossibleto usepredeterminedcoefficientsfor thepredic-
tors as in the JPEGstandard[7]. The userretainsthe bestone
in termsof entropy (BJPEG).The Context-basedAdaptive Loss-
lessImageCodec(CALIC) is anothernonlinearpredictor[8]. A
gradient-adjustedpredictor is applied: the prediction is a linear
combinationof thesurroundingpixelsaccordingto theestimated
gradient. Recently, the Consultative Committeefor SpaceData
Systems(CCSDS)hasadopteda standardfor losslessdatacom-
pression,basedon extendedversionof Rice algorithm[9]. The
CCSDSstandardconsistsof apredictionfollowedby Riceentropy
encoding.Initially, theappliedpredictoris a 1D nearest-neighbor
predictor. An effort hasbeenmadein orderto proposeotherpre-
dictors (spatial,spectralor hybrid) [10]. Therefore,the predic-



tor which yields the bestcompressionratio is selected.Spectral
coderstake into accountthe spectralredundanciesby usingonly
the pixels of the remainingbands. In [11], a simple Monores-
olution SpectralCoding (MSC) was proposedfor SPOT images
( %*),+ ). It consistsin codingtheband ��
���-.����������� with anOLP
in a purelyspatialmode.Then,theremainingimages��
��0/������(�0���
and ��
���1��2���(����� ) arepredictedaccordingto:3 &�4
#�0/2�2�����0�'�5) 6879�4
#��-��2���(�����&� 
#��1.� �����0�'�5) 6 � � 
#��-�� ���(������:;6=<9� 
���/�� �����0��� � (1)

wherethecoefficients6 7 ��6 � ��6 < aresolutionsof normalequations.
We will denoteMSC��>.7?��> � ��>@<@� thedecompositionstartingby >97 ,
followedby > � andthenby > < .
Generally, it is more appropriateto capturesimultaneouslythe
spectralandthespatialcorrelationsby applyinghybridpredictors.
For SPOT images,it is proposedin [11] to predictthemultiband
signalcomponentby component.The first band >97 is predicted
by usingtheprevioussamplesfor all thebands.Thepredictionof
the secondbandincludesadditionally �4
#��-������������ . Finally, both��
���-.�2�����0��� and ��
���/2����������� areincorporatedin thepredictionof
the last band >@< . The coefficients achieving the minimum error
variancearesolutionsof 3 linear systems.More recently, an in-
terbandversionof CALIC basedon a gradientadjustedinterband
predictorwasproposed[12]. A switchingprocedurebetweeenthe
two modes(purelyspatial/purelyspectral)is described.Again, it
is possibleto usefixedpredictorsasproposedin [10]. Finally, in a
recentpaper[13], a losslesscompressionof multispectralimages
basedon3D fuzzy predictionwasproposed.
However, in thecontext of losslessand progressivecodingof mul-
tispectralimages,therearefew publications.Recently, in [11], the
problemof losslessand hierarchicalcodingof SPOT imageswas
addressedanda hybrid two-step methodwasinvestigated.Firstly,
the bandsarespatiallydecorrelatedby meansof a reversiblein-
trabandwavelettransform[2]. More precisely, a lifting schemeof
depthA is appliedseparatelyoneachband.Then,thespectralcor-
relationsexistingbetweenthe +4AB:(C resultingbandsareexploited
by theMSCpurelyspectralcoder. Thecontributionconsistsin us-
ing MSC actingon eachtripletsof subbandswhich have thesame
resolutionlevel andthesameorientation.
In the next section,we will describea new methodof exact and
gradualcodingof multispectralimages.

3. PROPOSED INTERBAND DECOMPOSITION

3.1. Multiresolution intraband decompositions

First of all, let usdescribethenonlinearintrabanddecomposition
toolswhich aretheorigin of our work. Figure1 shows a classof
nonlinear D -banddecompositionschemesproposedin [3]. The
resultingsubbandscanbeobtainedby thefollowing equations:E � )GF ��H I'�0J :LK �@H M <?�9N9N@N9� M�OPJE4Q )GF Q H I Q J :SR Q H F � H I � J �@N.N9N9��F Q�T � H I Q�T � J�J :K Q H M QVU � �9N9N9N@� M?OPJ ��W )YXZ�@N9N9N9�2D\[]C��E O )GF O(H I=OPJ :^R O(H F ��H I'�0J �@N9N9N9�0F O T ��H I=O T �0J�J (2)

where I'� �9N.N9N9� I=O are the D -polyphasecomponentsof the 1D
signal I to becoded.Furthermore,wehave:_ Wa`b
?Xc�@N.N9N9�2Dd[bC��Z� M Q ) E Q [eK Q H M QfU � �@N9N9N.� M�OgJ � M�O ) E O N

(3)

Exactreconstructionholdsfor any operatorsR Q , K Q andinjective
operatorsF Q for WB`]
ZC��@N.N@N9�2Dh� [3]. Suchsubbanddecomposi-
tion with perfectreconstructionis a very versatiletool for build-
ing multiresolutiondecompositions.The R Q ’sdecorrelatetheinput
signalsandthe K Q ’s smooththeassociatedinput. Extensionto 2D
signalis handledin a separablemanner. Thedecompositionstruc-
ture hasthe merit to provide a unifiying framework for lossless
compressionschemesbasedonnonlinearmultiresolutionanalyses
[14]. Indeed,theconceptof lifting developedby Sweldenset al.
[2] correspondsto a structurewhich is includedin this scheme
with Di)jX . Several examplesof suchoperatorshave beenal-
readytabulatedin [2]. In thefollowing, k@l !�ml denotesthewavelet

transformswith n (resp. on ) vanishingmomentsof the analyz-
ing (resp. synthesizing)high-passfilters. The S+Ptransformis
anothercompellingtransformproposedby SaidandPearlman[1].

3.2. The proposed extension

The objective of this paperconsistsin adaptingthe decomposi-
tion in Fig. 1 to the caseof a multispectralsignalin orderto ex-
ploit both the spatialandspectralcorrelations.The multispectral
caseis actuallysimilar to an Dp)qX�% banddecomposition.In
theintrabanddecompositiondescribedpreviously, theinputsignal
arepolyphasecomponentsof a single bandapproximationat the
currentresolutionlevel r . Now, the evenandtheoddsamplesof
several approximationbands � 
����s ��X������@N9N9N.�2� 
t$'�s ��X������2� 
����s ��X��L:C����@N.N9N9�2� 
t$��s ��X��P:uC@� constitutethe X?% input coefficients:_ >v`(
ZC?�@N9N9N9��%P�4� I � �����xw)�� 
����s ��X������ I � U $ �����xw)�� 
����s ��X��P:GC@��N

(4)
TheoperatorsR � �@N.N9N9��Ra< $ and K � �9N9N.N9�0Ky< $ arehybrid(intraband
andinterband)predictionandupdatingoperators.The X�% outputs
can be classifiedinto 2 classes:the predictionerrors z 
����s U � , . . . ,z 
t$��s U � andtheapproximationcoefficients � 
����s U � �9N9N9N@��� 
�$'�s U � :_ >B`;
ZC��@N.N@N9��%{�Z� E � ������w)L� 
����s U � ������� E � U $ ���'�xw)(z 
����s U � ������N(5)

Although the dependencesexisting betweenthe bandscould
beextractedby a wide classof nonlinearoperators,they aremore
easilyhandledby linear filters followed by roundingoperations.
In a previouswork, we have alreadyconsidereda very simplified
caseof sucha decompositioninvolving linearpredictors[15]. For
a given band >.7 , a generalexpressionof the predictionerror at
resolution �trv:|C�� is givenby:z 
���-��s U � �����})Y� 
���-.�s ��X��}:~C��?[b� $� ����� ��f�?���������� � - 6 
����s ! ��-�! � � 
����s ��X���[�������� (6)

wheretheset � 
����s ! ��- is thesupportof thepredictorof band>97 from

band > at stager . The coefficients 6 
����s ! ��-�! � arethe weightsof this
predictor. Similarly, it is possibleto expresstheapproximationsas
follows:� 
#��-��s U � �����a)�� 
���-��s ��X�����:�� $� ��� � ��f��� �t������ � -'� 
����s ! ��-�! � z 
����s U � ����[L���: $� ��� � ��f���x� �������� � - �

� 
����s ! ��-�! � � 
����s ��X��~[L������N (7)



Finally, thecaseof a 2D multibandsignal(multispectralimages)
is handledby meansof a separabledecomposition.

3.3. Conditions for exact recovery

For anexactrecovery, it is necessarythatat leastfor oneband(say>.7 ), all the sets� � 
����s ! ��- areempty i.e. only detail coefficientsare

involvedin thecomputationsof � 
���-9�s U � ���'� . For theremainingbands> Q , W�`S
4C���X�� , thesets� � 
����s ! ��� mustcontainonly even indices. In-
deed,thefirst reconstructionstepconsistsin calculatingtheeven
samples� 
���-9�s ��X���� from � 
���-.�s U � ����� and z 
���-��s U � ����� by “reversing”Eq.

(7). Then,it is possibleto recovertheotherevensamples� 
������s ��X����
in thesameway.
To recover the odd samples� 
���-.�s ��X���:*C@� , somecaremust be
taken abouttheusedneighborhoodsandtheorderof decomposi-
tion of thebands.Indeed,to computethepredictiontermof aband> 7 from a band > , thesamples� 
����s ��X���[^��� for �a`b� 
���-��s ! � mustbe
avalaible.Consequently, only thefollowing situationsareallowed:� For a coupleof indices ��>���>97�� ( >��)h>.7 ), if both � 
����s ! ��- and � 
����s ! ��-containonly evensamples,thebands> and > 7 canbedecomposed
in any orderandit is possibleto calculatethecontributionof band> to thepredictionof band>.7 .� Let usnow considerthecasewheretheset � 
#���s ! ��- containssome

odd indices. For the sake of clarity, supposethat � 
����s ! ��- contains

oddindices� � �9N9N.N9����  . Thesamples� 
����s ��X���[�� � ���9N9N.N9�2� 
����s ��X���[�   � mustbe avalaible in order to reconstructthe contribution of
band > to the predictionof band >97 . A straightforward solution
consistsin constrainingthe � 
#��-��s ! � to containonly even indices.
Thus, it would be possibleto recover firstly the approximation� 
����s ����� (in particular, theoddsamplesof band > ) beforeproceed-
ing to thereconstructionof band> 7 .� Thesupport� 
#��-��s ! ��- mustcontaineitherpositive oddindices(past
samplesand causalprocessing)or negative odd indices (future
samplesandanticausalprocessing).

3.4. Retained solution

In our simulations,we have extendedin differentwaysthe usual
decompositionsk l !�ml . For the sake of clarity, we presentherea
generalizationof the k@< ! < decomposition.The >97 imageis pre-
dictedaccordingto:z 
���-��s U � �����})Y� 
���-.�s ��X�����[h��¡�¢7=£ 
���-��s ��������� (8)

where£ 
���-.�s ���'� w)¥¤¦§ � 
���-9�s ��X���[SC��� 
���-9�s ��X���:|C��� 
���/��s ��X���[SC���:¨� 
���/��s ��X��g:uC@�
©�ª« N (9)

Thepredictionof the > � imagecanbewrittenas:z 
���/��s U � �����})Y� 
���/2�s ��X�����[h��¡ ¢ � £ 
���/��s ��������� (10)

where£ 
��0/2�s �����xw) ¤¦¦¦¦¦§
� 
#�0/��s ��X��e[¨C@�� 
#�0/��s ��X��P:uC@�� 
#��-��s ��X����� 
#��-��s ��X��e[¨C@�� 
#��-��s ��X��P:uC@�

©�ªªªªª« N (11)

The > < imageis predictedaccordingto thefollowing equation:z 
���1.�s U � ���'��)Y� 
���1.�s ��X�����[h��¡ ¢< £ 
���19�s ���'���?� (12)

where £ 
#��1��s �����xw) ¤¦¦¦¦¦§
� 
#��1.�s ��X��e[¨C@�� 
#��1.�s ��X��P:uC@�� 
#��-.�s ��X����x:¨� 
���/��s ��X����� 
#��-.�s ��X��e[¨C@�':S� 
���/��s ��X���[SC��� 
#��-.�s ��X��P:uC@�':S� 
���/��s ��X���:|C��

©�ªªªªª« N (13)

For > � and >@< , theupdateoperationsaresimilar:¬ � 
���/2�s U � �����})Y� 
���/2�s ��X���[]C�� [,� � � ��z 
���/2�s U � ����[SC��':^z 
���/2�s U � ���������� 
���1.�s U � �����})Y� 
���1.�s ��X���[]C�� [,� � <���z 
���1.�s U � ����[SC��':^z 
���1.�s U � ���������
(14)

However, theupdateof > 7 includesthesample� 
#�0/��s ��X���[¨C@� :� 
���-��s U � �����})Y� 
���-.�s ��X���[]C�� [h� � 7 ! � ��z 
���-9�s U � ���~[]C��x:Sz 
#��-��s U � �������: � 7 ! < � 
���/��s ��X���[]C����?N
(15)

It is worth pointingout that theconsidereddecompositionis per-
fectly reversible.Indeed,theoddsamples� 
��0/��s ��X���[­C�� and � 
#��1��s ��X���[C�� areeasilyrecoveredby reversingEq.(14). Then, � 
#��-��s ��X��®[LC��
is directly obtainedfrom Eq. (15). The even samplesare recur-
sively obtainedstartingwith � 
���-.�s ��X���� using Eq. (8), then with� 
���/��s ��X���� usingEq.(10)andfinally with � 
���1��s ��X���� usingEq.(12).

3.5. Optimizing the operators

Obviously, the performancesof the proposeddecompositionin
termsof compressionarecloselyrelatedto thechoiceof thepre-
dictors. The effectivenessof the losslesscoding is measuredby
thezero-thorderentropies̄°)Y± $����� ¯ � wherē � is theglobal
entropy associatedwith theband > . For a A level decomposition,
it is the weightedsumof the entropiesof the approximationand
detail sub-images.Our aim is to applypredictorsensuringa (lo-
cal) minimumof ¯ . Sincetheentropiesareimplicit functionsof
the parametersof the decomposition,a Nelder-Meadsimplex al-
gorithmis applied.

4. EXPERIMENTAL RESULTS

Thesimulationresultsareprovided for a SPOT4 imagedepicting
the city of Tunis (Tunisia). The correlationcoefficient between
XS² andXS� is denotedby ³µ´ � . Since ³ � <g)·¶cN ¸�¸ , ³ ��¹ )º¶»N ¼4½
and ³ < ¹ )d¶»N ¼?¾ , we deducethat XS1 is highly correlatedwith
XS2. Therefore,it seemsusefulto exploit themutualcorrelation
betweenthesetwo bands.Table1 providesperformancesof some
conventionallosslesscoders.We have retainedonly the bestor-
der of decomposition,mentionedby the triplet ��>97?��> � ��>@<.� . The
line “ k9< ! < thenMSC” correspondsto the two-stagehybrid proce-
duredescribedin [11]: the k < ! < transformdecorrelatesspatiallythe
bandsandtheMSCdecorrelatesspectrallytheimages.Obviously,
multiresolutionrepresentationsarethemostcompactif we except
the monoresolutioncodersID#84 andID#87 which do not allow



progressive coding.
SincethebandsXS1andXS2arehighly correlated,it is appropri-
ateto takeeither ��>97���> � ��>9<@��)¿�0C?�2Xc�2+�� or ��>97?��> � ��>@<.�})À��Xc�.C���+�� .
Table1 indicatesthatour methodoutperformstheexisting coders
andis evenbetterthanthecompetitivetwo-stagehybridprocedure.
It alsodemonstratesthat introducinga termfrom > � in theupdate
of > 7 yieldsto decreasedvaluesfor theentropy ¯ .
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Fig. 1. Nonlinear D -banddecompositionstructure.

Table 1. Resultingentropiesof losslesscoders.Themultiresolu-
tion decompositionshave A;)G¾ stages.

Decomposition ¯ � ¯g< ¯ ¹ ¯
Original 7.1988 7.3019 6.7289 21.2296

BJPEG 5.2203 5.3882 4.8366 15.4451
OLP 5.1311 5.2976 4.7382 15.1669
MSC (1,3,2) 5.1311 6.3316 6.7289 18.1916
ID#3 (1,2,3) 5.1311 4.9645 7.1417 17.2373
ID#84 (1,2,3) 5.1311 3.5700 5.7374 14.4385
ID#87 (1,2,3) 5.1311 3.6139 5.8040 14.5490
ID#100(1,2,3) 5.1311 5.1311 6.1852 16.4474
ID#103(2,1,3) 5.4979 5.2976 6.3832 17.1787
S+P 5.0184 5.1817 4.5971 14.7972k@< ! < 5.0748 5.2400 4.6639 14.9787k@< ! < thenMSC(1,3,2) 4.9664 4.6639 4.2158 13.8461

Proposeddec.(1,2,3)

� 7 ! < )u¶ 5.0748 4.5295 4.6529 14.2634
Optimizedparameters 5.0460 4.1317 4.6581 13.8407

Proposeddec.(2,1,3)

� 7 ! <Á)u¶ 4.0015 5.2400 4.6596 13.9010
Optimizedparameters 3.9842 5.0962 4.6555 13.7359


