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ABSTRACT

In thispaperanonlinearsubbandiecompositioschemevith per

fectreconstructioris proposedor losslessodingof multispectral
images.Themerit of this new schemas to exploit efficiently both
thespatialandthe spectraredundanciesontainedn amultispec-
tral imagesequence.Besidesiit is suitablefor progressie cod-
ing, which constitutesa desirabldeaturefor telebravsingapplica-
tions. Simulationtestsperformedonrealscenesllow to assesthe
performancesf this new multiresolutioncodingalgorithm. They

demonstratéhat the achieved compressiomatiosare higherthan
thoseobtainedwith currentlyusedlosslesscoders.

1. INTRODUCTION

Multispectralimagesareof interestfor agreatnumberof applica-
tions suchastargetimaging, terrainmappingapplications mete-
orology...Generally theseimagesare suppliedby satellitesob-
servingthe earthin several channels. For instance,the “Satel-
lite Pourl’Obsenation de la Terre” (SPAI) hastwo High Reso-
lution Visible imagingsystemgHRV1 andHRV2). EachHRYV is
designedo operatein two modesof sensing:a 10 m resolution
“Panchromatic’(P) modeover the range[0.5-0.73]um anda 20
m resolutionmultispectraimode. For the multispectraimode,the
XS1 channelis associateavith the range[0.5-0.59]um, the XS2
channelwith therange[0.61-0.78]ym andthe XS3 bandwith the
range[0.79-0.89]um. Therefore for the samescenethe 4 bands
P, XS1,XS2,XS3andXS4 areavailable.
Largerandlargeramountf dataaregeneratedhanksto thecon-
tinuousimprovementand increasedopularity of remotesensing
systems. The problem of managing,transmittingand archiving
sucha tremendoussolume of datais crucious. To give anidea
of the importanceof the problem,recall thata sceneacquiredby
the ThematicMappersensorscorrespondso about200 Mbytes.
This amountof datarequireshugestoragecapabilitiesaswell as
a large transmissiorbandwidthduring downlinking. Therefore,
it is really challengingto develop imagecompressioriechniques
soasto provide solutionsto this problem. Two typesof schemes
canbe ernvisaged: lossyor lossless.In this paper we focus our
attentionon losslessodingtechniquegor multispectralremotely
sensedmagesbecausave are mainly interestedn archving ap-
plications. Indeed,archival storageof imagesrequiresexact re-
producibility of the datasincethe leastdistortionmay leadto an
erroneousnterpretatiorof theconsideredceneor to thecomputa-
tion of incorrectgroundparametersThereforejt mustbepossible
to perfectlyrecover the original image. Furthermoreprogressie
reconstructions a desirablefeaturefor telebravsing throughim-
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ageddatabasedt consistsn encodingheimagein severallayers:
thefirstlevel correspond$o avery highly compressesersionand
eachsuccessie level providesmoredetailsuntil ultimatelytheim-
ageis completelyrecorered.Suchgradualreconstructiomequires
a compactandnon-redundanpyramidalrepresentatiof the in-
put image. Nonlinearsubbanddecompositionfave beendevel-
oppedrecently[1, 2, 3]. They provide hierarchicaland compact
representationfor gradualcodingof imageg4] and,for this rea-
son,they have beenretainedn thestandardlPEG2000[5]. To the
bestof ourknowledge,the problemof extendingsuchkind of rep-
resentationgo multispectralimageshasnot yet beenaddressed.
Indeed,in existing methodseachspectralcomponenis very of-
ten codedindependentlyof the others. In this paper we develop
a new algorithmwhich exploits the mutualdependencelketween
spectrabandsthanksto generalizedhonlinearsubbandiecompo-
sitions. Thispapeiis organizedasfollows. In Section2, we briefly
describetherelatedworksin thefield of losslessodingof multi-
spectralimagessoasto betterdefineour contritution. In Section
3, weproposeanew hybridhierarchicaandreversibledecomposi-
tion which exploits boththe spectralandthe spatialredundancies.
Finally, in Section4, we provide someexperimentalresultsand
comparethemto the performancesf conventionalmethods.

2. A SHORT REVIEW OF EXISTING LOSSLESS
CODERS

Usually differentialpredictve codersareappliedto compressnul-
tispectraldata[6]. More preciselylet {s*)(m,n)},=1....5 bea
2D multibandwhere B is the numberof spectralbandsand let
3® (m, n) denotethepredictedvalueof thecurrentpixel s (m, n).
Among the spatial coders,the Optimal Linear Predictor (OLP)
basedon the 3 nearesfprevious neighborscanbe easily applied.
The predictioncoeficientsare solutionsof the normalequations.
It is alsopossibleto usepredeterminedoeficientsfor the predic-
tors asin the JPEGstandard7]. The userretainsthe bestone
in termsof entrofy (BJPEG).The Contet-basedAdaptive Loss-
lessimageCodec(CALIC) is anothemonlinearpredictor[8]. A
gradient-adjustegbredictoris applied: the predictionis a linear
combinationof the surroundingpixels accordingto the estimated
gradient. Recently the Consultatve Committeefor SpaceData
SystemgCCSDS)hasadopteda standardfor losslessdatacom-
pression basedon extendedversionof Rice algorithm[9]. The
CCsSDsSstandardonsistof a predictionfollowedby Riceentropy
encoding.lnitially, the appliedpredictoris a 1D nearest-neighbor
predictor An effort hasbeenmadein orderto proposeotherpre-
dictors (spatial, spectralor hybrid) [10]. Therefore,the predic-



tor which yields the bestcompressiomatio is selected. Spectral
coderstake into accountthe spectralredundancie®y usingonly
the pixels of the remainingbands. In [11], a simple Monores-
olution SpectralCoding (MSC) was proposedfor SPOI' images
(B = 3). It consistsn codingthe bands(®) (m, n) with anOLP

in a purely spatialmode. Then,the remainingimagess‘®*’ (m,n)

ands®2) (m, n)) arepredictedaccordingo:

{ §(b1)(m,n) =

5§02 (m,n) =

pOS(bO)(m: n) 1)
p15® (m,n) +pas® (m,n)
wherethecoeficientspo, p1, p2 aresolutionsof normalequations.
We will denoteMSC(bo, b1, b2) thedecompositiorstartingby bo,
followedby b, andthenby b,.

Generally it is more appropriateto capturesimultaneouslythe
spectralindthe spatialcorrelationsby applyinghybrid predictors.
For SPOI imagesi,it is proposedn [11] to predictthe multiband
signal componentby component. The first bandb, is predicted
by usingthe previous sampledor all the bands.The predictionof
the secondbandincludesadditionally s®*0) (m, n). Finally, both
5(0)(m,n) ands®*)(m, n) areincorporatedn the predictionof
the lastbandb,. The coeficients achiezing the minimum error
varianceare solutionsof 3 linear systems.More recently anin-
terbandversionof CALIC basedon a gradientadjustednterband
predictorwasproposed12]. A switchingprocedurébetweeerthe
two modes(purely spatial/purelyspectral)is described.Again, it
is possibleto usefixedpredictorsasproposedn [10]. Finally, in a
recentpaper[13], alosslescompressiorof multispectralimages
basecdbn 3D fuzzy predictionwasproposed.

However, in thecontet of losslessand progressie codingof mul-
tispectraimagestherearefew publications Recentlyin [11], the
problemof losslessand hierarchicalcodingof SPQ imageswas
addressednda hybrid two-step methodwasinvestigated Firstly,
the bandsare spatially decorrelatedy meansof a reversiblein-
trabandwavelettransform[2]. More preciselyallifting schemeof
depthJ is appliedseparatelypneachband.Then,thespectrakor-
relationsexisting betweerthe3.J + 1 resultingbandsareexploited
by the MSC purelyspectrakoder The contritution consistsn us-
ing MSC actingon eachtriplets of subbandsvhich have the same
resolutionlevel andthe sameorientation.

In the next section,we will describea nev methodof exact and
gradualcodingof multispectraimages.

3. PROPOSED INTERBAND DECOMPOSITION

3.1. Multiresolution intraband decompositions

First of all, let us describethe nonlinearintrabanddecomposition
toolswhich arethe origin of our work. Figure 1 shaws a classof
nonlinear M -banddecompositiorschemegproposedn [3]. The
resultingsubbandsanbe obtainedby thefollowing equations:

y1 = Ai[z1] +Cifz2,. .., 21)
Yi = Ai[zi] + Bi[Ai[z1], ..., Aic1[zi—1]]+ @
Cilzit1,---,2m] (1=2,...,M —1)

ym = Amlem] + BulAi[zi], ..., Av-afea-a]]

wherezi, ...,z arethe M-polyphasecomponentof the 1D
signalz to becoded.Furthermorewe have:

Vie{2,....M -1}, z = yi = Ci[zi41,- .., 2Mm], 2M = Ym.

@)

Exactreconstructiorholdsfor ary operators3;, C; andinjective
operatorsA; fori € {1,..., M} [3]. Suchsubbandlecomposi-
tion with perfectreconstructioris a very versatiletool for build-
ing multiresolutiondecompositionsThe B;’sdecorrelatéheinput
signalsandthe C;’s smooththe associatedhput. Extensionto 2D
signalis handledn a separablenanner Thedecompositiorstruc-
ture hasthe merit to provide a unifiying framework for lossless
compressioschemedasedn nonlineamultiresolutionanalyses
[14]. Indeed,the conceptof lifting developedby Sweldenst al.
[2] corresponddo a structurewhich is includedin this scheme
with M = 2. Several examplesof suchoperatorshave beenal-
readytalulatedin [2]. In thefollowing, ¢, 5 denoteghewavelet

transformswith IV (resp. N) vanishingmomentsof the analyz-
ing (resp. synthesizinghigh-passilters. The S+P transformis
anothercompellingtransformproposedy SaidandPearlmari1].

3.2. The proposed extension

The objective of this paperconsistsin adaptingthe decomposi-
tion in Fig. 1 to the caseof a multispectralsignalin orderto ex-
ploit both the spatialand spectralcorrelations.The multispectral
caseis actuallysimilar to an M = 2B banddecomposition.In
theintrabanddecompositiordescribedreviously, theinputsignal
are polyphasecomponent®f a single bandapproximationat the
currentresolutionlevel j. Now, the evenandthe odd samplesof

several approximationbandss " (2n), ..., s\ (2n), s (2n +

1),... (B)(2n + 1) constitutethe 2B input coeficients:
Vb e {1,...,B}, zp(n) £ s§b)(2n), Zp+B(N) £ s§b)(2n+ 1).
4
Theoperatord3y, ..., B:g andCy, . .., Cap arehybrid (intraband
andinterband)predictionandupdatingoperatorsThe 2B outputs

can be classifiedinto 2 classes:the prediction errorsd(igl,

d{%, andtheapproximatiorcoeficientss.?,, ..., s\}):
A (b b
Vb e {1,.... B}, y(n) 258 (n),  yosn(n)2dY (n )(5)

Although the dependencesxisting betweenthe bandscould
be extractedby awide classof nonlinearoperatorsthey aremore
easily handledby linear filters followed by roundingoperations.
In a previous work, we have alreadyconsidereda very simplified
caseof sucha decompositiorinvolving linearpredictorg15]. For
a given bandbo, a generalexpressionof the predictionerror at
resolution(j + 1) is givenby:

B
A (m) = s @n+1)— 1Y Y ph s @n-1)1, (6)

b=1 (b)
leP; bo

wherethesetP(b) is the supportof the predictorof bandbg from

bandb at stagej. The coeﬁcnentSp(b) arethe weightsof this
predictor Similarly, it is possibleto expresstheapproxmatlonsis
follows:

b b b b
B0 =0 413 T o)

b=1,,,(b)
1eUj

+Z Z ’J(",SO (b) 2n —1)].

b=1 1(b)
leu 7,b0

@)



Finally, the caseof a 2D multibandsignal (multispectralimages)
is handledby meansof a separablelecomposition.

3.3. Conditionsfor exact recovery

For anexactrecovery, it is necessaryhatatleastfor oneband(say
bo), all the setsl{’; &) areemptyi.e. only detail coeficientsare

J>bo
involvedin thecomputation®f syffl) (n). Fortheremainingbands

bi, i € {1,2}, thesetsu’( bi mustcontainonly evenindices. In-
deed thefirst reconstructlonstepconsnstsn calculatingthe even
sampless{"®(2n) from 5% (n) andd ") (n) by “reversing”Eq.
(7). Then,it is possiblao reCO/ertheotherevensampleg(b )(Zn)
in thesameway.
To recover the odd sampIeSs§b°)(2n + 1), somecaremustbe
taken aboutthe usedneighborhoodsndthe orderof decomposi-
tion of thebands.Indeed to computethepredictiontermof aband
bo from abandb, thesamplesgb)(zn l)forl e ’P(b°) mustbe
avalaible.Consequenthonly thefollowing snuanonsareallowed
o For acoupleof indices(b, bg) (b # bo), if bothP(") andP(b)
containonly evensamplesthe bandsh andbg canbedoecomposed
in ary orderandit is possibleto calculatethe contritution of band
b to the predictionof bandb.
e L etusnown c0n5|derthecasewherethesetP(b) containssome

odd indices. For the sale of clarity, supposahatPgb) contains

oddindicesly, ..., lk. Thesample$§.b)(2n =1li),.. gb)(2n—
lx) mustbe avalaiblein orderto reconstructhe contrltutlon of
bandb to the predictionof bandby. A straightforvard solution
consistsin constrainingthe 73]( 0) to contain only even indices.
Thus, it would be possibleto recover firstly the approximation
J(.b) (n) (in particular the odd samplesf bandb) beforeproceed-
ing to thereconstructiorof bandb,.
. Thesupport’P("O) mustcontaineitherpositive oddindices(past
samplesand causalprocessmg)or negative odd indices (future
samplesandanticausaprocessing).

3.4. Retained solution

In our simulations,we have extendedin differentwaysthe usual
decompositiong, ;. For the sale of clarity, we presentherea
generalizatiorof the ¢z » decomposition. The by imageis pre-
dictedaccordingto:

die)(n) = 5§ (2n) — [p5 s (n)1, (8)
(bo)(27l 1)
wheres " (n) £ (bO)(2n +1) . 9)
(bl)(2n 1) + s(bl)(2n +1)

Thepredictionof theb, imagecanbewritten as:

(b1)

d®H) (n) = s (2n) —

lpTs(n)], (10)

5,0
5,0
wheres?(n) £ | s (2n) : (12)
5,0
85 (

Theb, imageis predictedaccordingo thefollowing equation:

d{Z) (n) = s\ (2n) — |p3s{" (n)], (12)
s(b2) (2n—1)
s(bQ) (2n+ 1)
Wheresj(-bz)(n) £ s(bO)(2n) + s(bl)(Zn) - (13)
s(b(’)(?n 1) +s(”1>( —1)
s(bO)(2n +1)+ s(bl)(Zn +1)

For b: andb,, theupdateoperationsaresimilar:

‘:”< n) = t”( n—1)— Lm(dﬁ’;ﬁl’(n ~1) +d§z+13(nm
m( )= sl 92 (9n — 1) — |ua(dy?] (n — 1) + d52) (n))]
(14)
However, the updateof bo |ncludesthesamples( 1)(2n 1):

ko)

b
J+1( n) = 4¢%)

Lwo,1 (d;21 (n

+uo2s(2n — 1)].

s (2n —1) - 1)+ %) (m)

(15)

It is worth pointing out thatthe considerediecompositioris per
fectly reversible.Indeedxheoddsamplesﬁ.bl)(2n—1) ands](.bZ)(zn—

1) areeasilyrecoreredby reversingEq. (14). Then,s () (2n—1)
is directly obtainedfrom Eq. (15). The even sampfesare recur
sively obtainedstartingwith sj(.bO)(Qn) using Eq. (8), thenwith
s§b1)(2n) usingEg. (10) andfinally with s§b2)(2n) usingEq.(12).

3.5. Optimizing the operators

Obviously, the performancesf the proposeddecompositionin
termsof compressiorare closelyrelatedto the choiceof the pre-
dictors. The effectivenessof the losslesscodingis measuredy
thezero-thorderentropiesH = Zszl H, whereH, is theglobal
entropy associatedvith the bandb. For a .J level decomposition,
it is the weightedsum of the entropiesof the approximationand
detail sub-images Our aim is to apply predictorsensuringa (lo-
cal) minimumof H. Sincethe entropiesareimplicit functionsof
the parameter®f the decompositiona NelderMead simplex al-
gorithmis applied.

4. EXPERIMENTAL RESULTS

The simulationresultsare provided for a SPOr4 imagedepicting
the city of Tunis (Tunisia). The correlationcoeficient between
XSk and XSl is denotedby py;. Sincepia = 0.99, p13 = 0.65
and p23 = 0.64, we deducethat XS1 is highly correlatedwith
XS2. Therefore it seemsausefulto exploit the mutualcorrelation
betweerthesetwo bands.Table 1 providesperformancesf some
corventionallosslesscoders. We have retainedonly the bestor-
der of decompositionmentionedby the triplet (bo, b1,b2). The
line “ca,2 thenMSC” correspondso the two-stagehybrid proce-
duredescribedn [11]: thecs,» transformdecorrelatespatiallythe
bandsandthe MSC decorrelatespectrallytheimages.Ohviously,
multiresolutionrepresentationarethe mostcompactf we except
the monoresolutiorcodersiD#84 and ID#87 which do not allow



progressie coding.

SincethebandsXS1andXS2 arehighly correlatedit is appropri-
ateto take either(bo, b1, b2) = (1,2, 3) or (bo, b1,b2) = (2,1, 3).
Table1 indicatesthatour methodoutperformshe existing coders
andis evenbetterthanthecompetitive two-stagehybrid procedure.
It alsodemonstratethatintroducingatermfrom b, in theupdate
of by yieldsto decreasedtaluesfor theentrofy H.
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Fig. 1. NonlinearM-banddecompositiorstructure.

Table 1. Resultingentropiesof losslesscoders.The multiresolu-
tion decompositionbave J = 4 stages.

Decomposition H, H, H; H
Original 7.1988| 7.3019 | 6.7289 | 21.2296
BJPEG 5.2203| 5.3882 | 4.8366 | 15.4451
OLP 5.1311| 5.2976 | 4.7382| 15.1669
MSC (1,3,2) 5.1311| 6.3316 | 6.7289 | 18.1916
ID#3 (1,2,3) 5.1311| 4.9645| 7.1417| 17.2373
ID#84 (1,2,3) 5.1311| 3.5700 | 5.7374| 14.4385
ID#87 (1,2,3) 5.1311| 3.6139 | 5.8040| 14.5490
ID#100(1,2,3) 5.1311| 5.1311| 6.1852| 16.4474
ID#103(2,1,3) 5.4979| 5.2976 | 6.3832| 17.1787
S+P 5.0184| 5.1817 | 4.5971| 14.7972
C2,2 5.0748| 5.2400 | 4.6639 | 14.9787
c2,2 thenMSC(1,3,2) | 4.9664 | 4.6639 | 4.2158 | 13.8461
Proposedlec.(1,2,3)

ug2 =0 5.0748 | 4.5295| 4.6529| 14.2634
Optimizedparameters 5.0460 | 4.1317 | 4.6581| 13.8407
Proposedlec.(2,1,3)

up2 =0 4.0015| 5.2400| 4.6596 | 13.9010
Optimizedparametery 3.9842 | 5.0962 | 4.6555| 13.7359




