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ABSTRACT

An EM-type of recursiveestimationalgorithmis formulatedin
the DFT domainfor joint estimationof time-varyingparameters
of distortion channeland additive noise from online degraded
speech. Speechfeaturesare estimatedfrom the posterior esti-
matesof short-timespeectpowerspectran anon-the-flyfashion.
Experimentavere performedon speaker-independenbntinuous
speeclrecognitionusingfeaturef perceptuallybasedinearpre-
diction cepstralcoeficients, log enegy, andtemporalregression
coeficients. Speechdatawere takenfrom the TIMIT database
andweredegradedy simulatedtime-varyingchannelandnoise.
Experimentakesultsshowedsignificantimprovemenin recogni-
tion word accuracydue to the proposedrecursiveestimationas
comparedwith the resultsfrom direct recognitionusing a base-
line systemandfrom performingspeecheatureestimationusing
a batch EM algorithm.

1. INTRODUCTION

Therehavebeenactiveresearclefforts on robustspeectrecogni-
tion in degradatiorenvironments.n generalthe focushasbeen
on stationaryor slowly time-varying conditions,e.g., stationary
within a speechutterance.ln suchcasesenvironmeniparameters
are often estimatedprior to systemoperationfrom a small setof
adaptatiordata,or from online speechusingbatchEM algorithm
in an utterance-by-utteranciashion. The estimatedparameters
are then usedin feature estimationor model compensatiorfor
recognitionof online speech.

Certainenvironmentsare known to havefast time-varying
characteristicand hencethe parametersieedto be trackedcon-
tinuously. For example,the level of additive noise may fluctu-
ate due to movementof noise source,and the characteristicof
channelmay vary due to changesin signal paths. As the re-
sult, parameterestimatesobtainedprior to systemoperationare
no longer relevantto subsequenspeechinput, and averagepa-
rameterestimatesbtainedby batchalgorithmscannotaccurately
representhe underlying changingenvironment.
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A number of techniqueshave been proposedin speech
researchfor handling nonstationaryacousticenvironmentsand
three approacheghat were aimed at robust speechrecognition
are summarizedhere. In the 1st approach,noise and channel
weremodeledby HMMs thatweretrainedby prior measurement
data of acousticsconditionsand transducercharacteristics.For
example afive-stateHMM wasusedto modelmachinegunnoise
[1], and an emgotic HMM was usedto model the variation of
room acousticpathsdue to talker movement2]. In suchcases,
the problem of parameterestimationbecamea simpler task of
identification of the underlying state sequence®f the noise or
channelHMMs. Mixture modelswere also usedfor capturing
the on-and-of activities of multiple noise sources[3]. In the
2nd approachevolving environmentswvere representedy state
spacemodelsof Kalman filtering and estimationwere madeon
time-varyingadditive noiseparameterén cepstralor log spectral
domains[4,5]. The 3rd approachusedsequentiaEM algorithm
to track additive noise meanparametersn cepstraldomain[6].
In addition, Bayesianrecursive estimation has been proposed
recentlyfor online speakeadaptatiorandwasshownto offer the
advantage®f insensitiveto parametemupdatinginterval lengths
andflexible in accommodatinglifferentforms of priors [7].

In the currentwork, recursiveestimationis proposedfor
trackingbothchannelndnoiseparameterin time-varyingdegra-
dationenvironmentgo improverobustnessf speectrecognition.
Thealgorithmis basednthefrequency-domaimodelsof speech
and noiseformulatedpreviouslyin [8]. The recursivealgorithm
updatesparameterestimatesin a frame-by-framefashion, and
producesapproximateMMSE of speechfeatureson the fly. The
techniqueis applicableto many commonlyusedspeechfeatures
that are derivablefrom short-timespeechpower-spectrafor ex-
ample, LPC, MFCC, PLP. A preliminary experimentwas con-
ductedto evaluatethe proposedechniquefor improving recogni-
tion accuracyof speaker-independenbntinuousspeech.Time-
varying channeland noise were simulatedto generatedegraded
test speechfrom the TIMIT database.Significant improvement
in recognitionword accuracywas obtainedin comparisonwith
direct recognitionusing the baselinesystem[9] andfeatureesti-
mation using the frequency-domairEM algorithm[8].

2. SPEECH, NOISE AND CHANNEL MODELS

A speechdegradatiorenvironmentwith both channeland noise



can be describedby the frequency domain models defined in
[8]. The systemequationis Y, (w) = O(w)Xn(w) + Vi (w),
with Y, (w), Xn(w), Va(w) denoting the short-time discrete
Fourier transforms (DFT) of degradedspeech,clean speech,
and noise of the analysis frame n, and ©(w) the DFT of
channel’sfinite impulse responsed. For a sizeN DFT, the
probability density function (pdf) of the clean speechis as-
sumedto be a mixture of Gaussiardensitiesfx (X ,,(w); Ax) =

M N-—1
> ai [T N(Xa(wi);0, @xx,i(wi)), with ai’s the mixture

=1 =

Weightls ;nd ®x x,i(wi)'s the class-conditionalspectral vari-
ances. The parametersAx can be estimatedfrom clean
training speechand hence is assumedknown. The addi-
tive noise is assumedto be autoregressiveGaussianof or-
der p (AR(p)). The pdf of degradedspeechis the same
as the clean speech except that the spectral variances are
changedas ®yv,i(w) = |O(w)[*®xx,i(w) + ®vv(w), where
®yv(w) denotesspectralvarianceof noise. Denotingthe un-
known parametersof the channeland noise as A, the con-
dltlonal pdf of clean speechis fxy (X, (w)|Y,(w);A) =

ZMY HN( n(w);uxy, i(wi), ®x x|y, i(w1)). Inthe

currentwork A is consideredto be time-varying within each
speechutterance.

3. RECURSIVE ESTIMATION

3.1. Basic Formulation

A recursiveestimationalgorithmthatupdategparameteperanal-
ysis frameis consideredj.e., a new parametelestimateis com-
puteduponacquiringan observatiorvectorY , (w). A sequence
of parameterestimates A"t = (AP A2 ... A("“))
is thus generatedfrom an observationsequenceY((w) =
(Yo(w),Y,(w), -, Y, (w)), startingfrom an initial parameter
A% The time-varying environmentcharacteristicis therefore
capturednto the time-trajectoryof the parametesequence\(") .

A variety of recursive estimationalgorithms exist in the
literature, with trade-ofs in computationalcomplexity, conver-
gencerate,andstability [7]. The EM-type of recursiveestimator,
alsoreferredto assequentiaEM, is adoptedherefor estimating
A to effectively handlethe incompletedataproblem,i.e., clean
speechis missingand only degradedspeechis available. Com-
plete data vectorsare definedas Z,,(w) = (Y, (w), X, (w)),

n =0,1,2,---, andthe auxiliary objectivefunctionis definedas
Q" (X A™) = E flog f2(25 (w); N)[Y5 (w); AT
Based on the assumption that Y, (w)'s are iid.

and upon using the definition of Qk(k;)\(k)) =
E{logfz(Z( )i M) Y (w); (k)] , onehas

Q(n) ()\; A(")) — Zn:Qk ()\; )‘(k))
k=0

A maximizationof the 2nd-orderTaylor serieson Q'™ (/\; A("))
aroundA™ w.r.t. X leadsto a new estimateX("t!) as

\(n 1) :A(n)+](Am;A(m)*ls(w);A(n)) 1)

where$ (A("); A(")) and] (A("); A(")) arethe 1standnegative

2nd order derivativesof Q(™ (X; Al evaluatedat A = A(™,
andthey arereferredto asscorestatisticandinformation matrix,
respectively.

For recursivecomputation the scorestatisticand informa-
tion matrix are approximatedas

S (,\("); A(")) =S (W,n: jx(nl))jLM

o A=A
j()\(n);A(")> = pf()\("_l);z\(n_l)>—%A=>\(n)

wherep (0 < p < 1) is a forgetting factor that adjuststhe effect
of pastdatain the estimationof currentA. A large p should
be usedin slowly varying conditionsto fully make use of all
available data, and a small p should be usedin fast varying
conditionsto de-emphasiz@astdata. As in mostgradient-based
algorithms, a small positive parametere can be usedto adjust
the step-sizeof adaptiveestimation. As the result, a recursive
estimationformula for A is obtainedas

At — () + ff()\(");A(”))_ S(A(n);z\(")) @

3.2. Parameter Estimation

As in the frequency-domaireM algorithm[8], the outer-product
matrix of the DFT basisvector is definedas B(w:), the av-
erageposteriorspectralvarianceis defined as \I!XX‘L (wi) =

Z aiy Pxx|y_i(wi), andthe averageposteriorpower spec-
=1
M

Zai‘znGxx‘Xnyz‘(W[). The
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trumis definedasG x x|y (wi) =

1stand2nd orderderivativesof Q,, (A; (™)) arederivedbelow
for the channeland noise parametergo facilitate computingthe
scorestatisticsand information matrices.
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Noise

In orderto sequentiallyestimatethe noise AR parameters,

the correlationcoeficients of noise,i.e., ry x, £ = 0,1,---,p,
are first estimatedusing recursiveestimation,and then the AR
parametersre solved by the Durbin’s methodat eachframen.
By using the relation
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the 1st and 2nd order derivativesare derived as
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Note that a white Gaussiamoisewith the enegy parameter?
is a GaussianAR(0) processwith o2 = ry .

Speech Features

The speecHeaturesof analysisframen areestimatedjsing
A" by the formula ¢, ~ Za v, f( VA )) which

was shownto provide an approxmateMMSE estlmateof any
speechfeaturesderivablefrom short-timepower spectra[8]. |

batchEM, Gx x|y, ,i(w) wasestimatedusingthe conveged pa-

rameterestimate\*; in recursiveestimation, G()?;(‘Y [(w) is

estimatedusingthe mostrecentlyupdated)\(”) i.e., the features
are estimatedon the fly. The latter hasthe obvious advantage
of alleviatingtime delay, and at the sametime enablingfeature
estimationusing tracked rather than averagedenvironmentpa-

rameters. Dynamic speechfeaturesare computedvia temporal

regressiorfrom severalsuccessivénstantaneouspeectfeatures,
incurring insignificant delay.

4. EXPERIMENTS

Experimentsvere performedon continuousspeectof the TIMIT
databasavhich were down-sampledo 10.67 KHz. The training
andtestspeecltdatasetswerethe sameasusedin [8]. In thecur-
rentwork, the testdatawas degradedy simulatedtime-varying
noiseandchannel.Noise samplesvere generatedy modulating
the enepgy of white noisewith a 1-Hz cosinefunction over a dy-
namic rangeof 10 dB. The time-varying channelwas simulated
by interpolatingthe FIR filter parameterg50 coeficients) of a
distortionchannelwith thatof a unitimpulseresponsewherethe
distortion channelwasthe sameasusedin [8] andthe interpola-
tion parametemwas modulatedby a 0.5—-Hzcosinefunction. The
resultingSNR in eachtestsentencevaried betweenl0 dB to 20
dB. It is recognizedthat the currentsimulationof time-varying
channelmerelyservesthe purposeof testingthe capabilityof the
proposedalgorithmin tracking channelvariation, and more re-
alistic time-varyingchannelsneedto be basedon measurements
of real world conditions.

Short-time power spectrawere computedusing 256-point
FFTs with zero-paddingand without taperingwindow. Speech
feature vectors each consistedof 18 components:8 PLP cep-
stral coeficientsandlog enegy, andfirst-ordertemporalregres-
sion coeficients with the regressionintervals of 50 ms. The
speectrecognizerwas a speaker-independenbntinuousspeech
recognitionsystembasedon phoneunit HMMs [9]. Eachphone-
unit HMM had three tied-states,and each state was modeled
by a Gaussianmixture density. Decodingwas basedon time-
synchronoudeamsearchusinga word-pairgrammar.Therecog-
nition taskhada vocabularysize of 853 and a testsetperplexity
of 64. Recognitionword accuracyon the cleanspeechtest set
(186 sentencesyvas 92.6%. In recursiveestimationof A, a for-
getting factor of p = 0.5 was used,and the stepsizesof noise
andchannelweresetasey = 1 andeg = 0.02, respectively.

In Fig. 1, thebehaviorof the recursiveestimationalgorithm
in tracking the time-varying noise parameteiis illustrated. The
parameters2 was trackedduring one speechutteranceand the
estimatds seerto follow thevariationof thetrue noiseparameter
closely.

In order to evaluatethe effect of the recursiveestimation
algorithm on improving speechrecognitionaccuracyunder the
simulatedtime-varyingdegradatiorcondition,speectrecognition
experimentsvere performedfor the following five cases:
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Figure 1. Estimationof the time-varyingparametew?2 of
white noiseby the recursiveestimationalgorithm.

(1). Baseline— Recognizeddegradedspeechdirectly;

(2). EM — Used the batch EM algorithm in [8], where the
channelwasinitialized asa unit impulseresponsandnoise
was initialized as white.

(3). REn— Usedthe proposedrecursivealgorithmto estimate
the noise parameteronly, where the noise was initialized
as white.

(4). RE — Usedthe proposedrecursivealgorithm, where the
channelwasinitialized asa unit impulseresponsandnoise
was initialized as white.

(5). True-\ — Usedtrue parameters in estimatingthe posterior
speechpower spectrafrom degradedspeech.

For cases(2) through (4), the noise parameterwas initialized
by an estimatemade over five frames of backgroundsignal
immediatelybeforethe onsetof eachspeechutterance.

Recognitionword accuraciesare shownin Table 1. In the
caseof batchEM, teniterationswere madein eachutteranceas
if A were time-invariantand speechfeatureswere estimatedat
the end of the 10th iteration. RecursiveestimationRE is seento
significantly improved recognitionaccuracyover both baseline
and EM, indicating the positive impact in tracking the time-
variationof A. RE is seento haveoutperformedREn, indicating
thatjoint estimationof noiseandchanneis superiorto estimating
noise alone. It was observedin the experimentsthat due to
the large numberof unknownFIR coeficients (50), the channel
parametersverenot asaccuratelytrackedasthe noiseparameter
asshownin Fig. 1, which could be attributedasthe main factor
in the performancediscrepancybetweenRE and True-A.

Table 1. Recognitionword accuracy(%) achievedby
the recursivealgorithmin comparisorwith those
of baseline batchEM, and known environment.

Baseline EM REN RE True-x

53.5% 69.0% 70.4% 78.4% 82.5%

5. DISCUSSION

A new techniqueis proposedfor automaticspeechrecognition
in time-varying environmentswith both distortion channeland
additive noise. A recursiveestimationalgorithmis formulatedin
the frequencydomain for tracking the time-varying parameters
of channeland noise. Speechfeaturesare estimatedon the fly
from the posteriorestimatesof speechpower spectrausing the
tracked channeland noise parameters.Experimentalresultson
TIMIT speaker-independegbntinuousspeechshowedthat the
proposedechniqueled to well-trackednoiseenegy and signffi-
cantly improvedrecognitionaccuracy andit comparedavorably
over a previouslyproposedatchEM algorithmunderthe simu-
lated time-varying condition. Furtherexperimentakvaluationis
underwayto investigatethe performanceof the proposedtech-
nique in othertypesof time-varyingnoise conditions.
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