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ABSTRACT

An EM-type of recursiveestimationalgorithm is formulatedin
the DFT domainfor joint estimationof time-varyingparameters
of distortion channeland additive noise from online degraded
speech. Speechfeaturesare estimatedfrom the posterioresti-
matesof short-timespeechpowerspectrain anon-the-flyfashion.
Experimentswereperformedon speaker-independentcontinuous
speechrecognitionusingfeaturesof perceptuallybasedlinearpre-
diction cepstralcoefficients, log energy, and temporalregression
coefficients. Speechdatawere taken from the TIMIT database
andweredegradedby simulatedtime-varyingchannelandnoise.
Experimentalresultsshowedsignificantimprovementin recogni-
tion word accuracydue to the proposedrecursiveestimationas
comparedwith the resultsfrom direct recognitionusing a base-
line systemandfrom performingspeechfeatureestimationusing
a batch EM algorithm.

1. INTRODUCTION

Therehavebeenactiveresearchefforts on robustspeechrecogni-
tion in degradationenvironments.In general,the focushasbeen
on stationaryor slowly time-varyingconditions,e.g., stationary
within a speechutterance.In suchcases,environmentparameters
areoften estimatedprior to systemoperationfrom a small setof
adaptationdata,or from onlinespeechusingbatchEM algorithm
in an utterance-by-utterancefashion. The estimatedparameters
are then usedin featureestimationor model compensationfor
recognitionof online speech.

Certainenvironmentsare known to havefast time-varying
characteristicsandhencethe parametersneedto be trackedcon-
tinuously. For example,the level of additive noisemay fluctu-
ate due to movementof noisesource,and the characteristicsof
channelmay vary due to changesin signal paths. As the re-
sult, parameterestimatesobtainedprior to systemoperationare
no longer relevantto subsequentspeechinput, and averagepa-
rameterestimatesobtainedby batchalgorithmscannotaccurately
representthe underlyingchangingenvironment.

Thiswork is partially supportedby theNationalScienceFoundation
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A number of techniqueshave been proposedin speech
researchfor handling nonstationaryacousticenvironmentsand
three approachesthat were aimed at robust speechrecognition
are summarizedhere. In the 1st approach,noise and channel
weremodeledby HMMs thatweretrainedby prior measurement
data of acousticsconditionsand transducercharacteristics.For
example,a five-stateHMM wasusedto modelmachinegunnoise
[1], and an ergotic HMM was usedto model the variation of
room acousticpathsdue to talker movement[2]. In suchcases,
the problem of parameterestimationbecamea simpler task of
identification of the underlying statesequencesof the noise or
channelHMMs. Mixture modelswere also usedfor capturing
the on-and-off activities of multiple noise sources[3]. In the
2nd approach,evolving environmentswere representedby state
spacemodelsof Kalman filtering and estimationwere madeon
time-varyingadditivenoiseparametersin cepstralor log spectral
domains[4,5]. The 3rd approachusedsequentialEM algorithm
to track additive noisemeanparametersin cepstraldomain[6].
In addition, Bayesianrecursive estimationhas been proposed
recentlyfor onlinespeakeradaptationandwasshownto offer the
advantagesof insensitiveto parameterupdatinginterval lengths
andflexible in accommodatingdifferent forms of priors [7].

In the current work, recursiveestimationis proposedfor
trackingbothchannelandnoiseparametersin time-varyingdegra-
dationenvironmentsto improverobustnessof speechrecognition.
Thealgorithmis basedonthefrequency-domainmodelsof speech
and noiseformulatedpreviouslyin [8]. The recursivealgorithm
updatesparameterestimatesin a frame-by-framefashion, and
producesapproximateMMSE of speechfeatureson the fly. The
techniqueis applicableto manycommonlyusedspeechfeatures
that arederivablefrom short-timespeechpower-spectra,for ex-
ample, LPC, MFCC, PLP. A preliminary experimentwas con-
ductedto evaluatetheproposedtechniquefor improvingrecogni-
tion accuracyof speaker-independentcontinuousspeech.Time-
varying channeland noisewere simulatedto generatedegraded
test speechfrom the TIMIT database.Significant improvement
in recognitionword accuracywas obtainedin comparisonwith
direct recognitionusing the baselinesystem[9] andfeatureesti-
mation using the frequency-domainEM algorithm[8].

2. SPEECH, NOISE AND CHANNEL MODELS

A speechdegradationenvironmentwith both channeland noise



can be describedby the frequencydomain models defined in
[8]. The systemequationis
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denoting the short-time discrete
Fourier transforms(DFT) of degradedspeech,clean speech,
and noise of the analysis frame n, and

�
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the DFT of

channel’s finite impulse response� . For a size-N DFT, the
probability density function (pdf) of the clean speechis as-
sumedto be a mixture of Gaussiandensities� � ��� � ������!�" � �#	$%&('*)�+ & ,.- )/0 '�132 ��� � ��� 0 ��!546�57 ���98 & ��� 0 ��� , with + & ’s the mixture

weights and
7 ���98 & ��� 0 � ’s the class-conditionalspectral vari-

ances. The parameters
" � can be estimated from clean

training speech and hence is assumedknown. The addi-
tive noise is assumedto be autoregressiveGaussianof or-
der p (AR(p)). The pdf of degradedspeech is the same
as the clean speech except that the spectral variances are
changedas
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denotesspectralvarianceof noise. Denoting the un-
known parametersof the channel and noise as E , the con-
ditional pdf of clean speech is � �3F : ��� � �����>< � � ������! E �G	$%&('H) + & F : I ,.- )/0 '�1 2KJ ������� 0 ��!�L �3F : I 8 & ��� 0 ���57 ���3F : I 8 & ��� 0 �NM . In the

current work, E is consideredto be time-varying within each
speechutterance.

3. RECURSIVE ESTIMATION

3.1. Basic Formulation

A recursiveestimationalgorithmthatupdatesparameterperanal-
ysis frame is considered,i.e., a new parameterestimateis com-
puteduponacquiringan observationvector

� � �����
. A sequence

of parameterestimates
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is thus generatedfrom an observationsequence
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, starting from an initial parameterE O 15R . The time-varying environmentcharacteristicis therefore
capturedinto the time-trajectoryof theparametersequence

"�O � R
.

A variety of recursiveestimationalgorithms exist in the
literature, with trade-offs in computationalcomplexity, conver-
gencerate,andstability [7]. TheEM-typeof recursiveestimator,
alsoreferredto assequentialEM, is adoptedherefor estimatingE to effectively handlethe incompletedataproblem, i.e., clean
speechis missingandonly degradedspeechis available. Com-
plete data vectors are defined as Y � �����Z	[��� � �\������� � �������

,] 	^4_�>` �5a_�>TUTbT
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Based on the assumption that
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’s are i.i.d.

and upon using the definition of
cnm S E ! E O m RWV 	d f h\iQj � k � Y m ������! E �>< � m ������! E O m R l , one has
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A maximizationof the2nd-orderTaylor serieson
c3O � R S E !�"�O � R V

around E O � R w.r.t. E leadsto a new estimateE O � P )�R as
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where
q S E O � R !�" O � R V and

p S E O � R !�" O � R V arethe1standnegative

2nd order derivativesof
c3O � R S E !�"�O � RWV evaluatedat E 	 E O � R ,

andthey arereferredto asscorestatisticandinformationmatrix,
respectively.

For recursivecomputation,the scorestatisticand informa-
tion matrix are approximatedas
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is a forgettingfactor that adjuststhe effect

of past data in the estimationof current E . A large
s

should
be usedin slowly varying conditions to fully make use of all
available data, and a small

s
should be used in fast varying

conditionsto de-emphasizepastdata.As in mostgradient-based
algorithms,a small positive parameter� can be usedto adjust
the step-sizeof adaptiveestimation. As the result, a recursive
estimationformula for E is obtainedas
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3.2. Parameter Estimation

As in the frequency-domainEM algorithm[8], the outer-product
matrix of the DFT basis vector is defined as � ��� 0 � , the av-
erageposteriorspectralvarianceis defined as � �D�3F : I ��� 0 �n	$%&('H) + & F : I 7 ���3F : I 8 & ��� 0 � , and the averageposteriorpower spec-

trum is definedas � ���3F : I ��� 0 �#	 $% &�' + & F : I � ���3F : I 8 & ��� 0 � . The

1st and2nd orderderivativesof
c � S E ! E O � R V arederivedbelow

for the channelandnoiseparametersto facilitate computingthe
scorestatisticsand information matrices.

Channel�_� �*�����X�6��� ������ � �@�C�@���@�#����H��� �� u¡£¢\¤
��¥§¦¨ ©�ª �X�Q�«�«3¬ ­ � ¢�¤

� ¥ � ® � ¢�¤
� ¥ � ¯�°²± ���Q�³#³ ¢\¤

� ¥X´ ���Q�«�«3¬ ­ � ¢�¤
� ¥

± ¯ ��� �³#³ ¢\¤
� ¥ µ ¶· � ��� �

¸ ¯ ¹ �vºU»�¼�» �X�Q�W½¸�¾¿¸�¾6À Á �U�C�@���U��ÂAÃ ���H�Ä � �� �Å�Æ�Ç
��È6É �Ê�Q�«D«3¬ ­ � Æ�Ç

� È
Ë ��� �³*³ Æ�Ç

� È



Noise

In order to sequentiallyestimatethe noiseAR parameters,
the correlationcoefficients of noise,i.e., ����� ���	��

����������������� ,
are first estimatedusing recursiveestimation,and then the AR
parametersaresolvedby the Durbin’s methodat eachframe � .
By using the relation
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Note that a white Gaussiannoisewith the energy parameter� f�
is a GaussianAR(0) processwith � f� 
9� � � ! .
Speech Features

Thespeechfeaturesof analysisframe � areestimatedusingBED >�F
by the formula �� >$���S� + (,�

� � � Vd� @ � D >�F�i�K� � V � �
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, which

was shown to provide an approximateMMSE estimateof any
speechfeaturesderivablefrom short-timepower spectra[8]. In

batchEM,
� �L�K� � V � � ����� wasestimatedusingthe convergedpa-

rameterestimate
B � ; in recursiveestimation,

� D >�F�i�K� � V � �
�����

is

estimatedusingthe mostrecentlyupdated
BED >�F

, i.e., the features
are estimatedon the fly. The latter has the obvious advantage
of alleviating time delay,and at the sametime enablingfeature
estimationusing trackedrather than averagedenvironmentpa-
rameters. Dynamic speechfeaturesare computedvia temporal
regressionfrom severalsuccessiveinstantaneousspeechfeatures,
incurring insignificant delay.

4. EXPERIMENTS

Experimentswereperformedon continuousspeechof theTIMIT
databasewhich weredown-sampledto 10.67KHz. The training
andtestspeechdatasetswerethesameasusedin [8]. In thecur-
rent work, the testdatawasdegradedby simulatedtime-varying
noiseandchannel.Noisesamplesweregeneratedby modulating
theenergy of white noisewith a 1–Hzcosinefunctionovera dy-
namic rangeof 10 dB. The time-varyingchannelwas simulated
by interpolatingthe FIR filter parameters(50 coefficients) of a
distortionchannelwith thatof a unit impulseresponse,wherethe
distortionchannelwasthesameasusedin [8] andthe interpola-
tion parameterwasmodulatedby a 0.5–Hzcosinefunction. The
resultingSNR in eachtestsentencevariedbetween10 dB to 20
dB. It is recognizedthat the currentsimulationof time-varying
channelmerelyservesthepurposeof testingthecapabilityof the
proposedalgorithm in tracking channelvariation, and more re-
alistic time-varyingchannelsneedto be basedon measurements
of real world conditions.

Short-timepower spectrawere computedusing 256–point
FFTs with zero-paddingand without taperingwindow. Speech
featurevectorseachconsistedof 18 components:8 PLP cep-
stral coefficientsand log energy, andfirst-ordertemporalregres-
sion coefficients with the regressionintervals of 50 ms. The
speechrecognizerwasa speaker-independentcontinuousspeech
recognitionsystembasedon phoneunit HMMs [9]. Eachphone-
unit HMM had three tied-states,and each state was modeled
by a Gaussianmixture density. Decodingwas basedon time-
synchronousbeamsearchusinga word-pairgrammar.Therecog-
nition taskhada vocabularysizeof 853 anda testsetperplexity
of 64. Recognitionword accuracyon the cleanspeechtest set
(186 sentences)was 92.6%. In recursiveestimationof

B
, a for-

getting factor of � 
9�G�k� was used,and the stepsizesof noise
andchannelweresetas � � 
o� and �X� 
n��� � # , respectively.

In Fig. 1, thebehaviorof therecursiveestimationalgorithm
in tracking the time-varyingnoiseparameteris illustrated. The
parameter� f� was trackedduring one speechutteranceand the
estimateis seento follow thevariationof thetruenoiseparameter
closely.

In order to evaluatethe effect of the recursiveestimation
algorithm on improving speechrecognitionaccuracyunder the
simulatedtime-varyingdegradationcondition,speechrecognition
experimentswereperformedfor the following five cases:
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Figure1. Estimationof the time-varyingparameter���� of
white noiseby the recursiveestimationalgorithm.

(1). Baseline— Recognizeddegradedspeechdirectly;
(2). EM — Used the batch EM algorithm in [8], where the

channelwasinitialized asa unit impulseresponseandnoise
was initialized as white.

(3). REn — Usedthe proposedrecursivealgorithmto estimate
the noise parameteronly, where the noise was initialized
as white.

(4). RE — Used the proposedrecursivealgorithm, where the
channelwasinitialized asa unit impulseresponseandnoise
was initialized as white.

(5). True-
�

— Usedtrueparameters
�

in estimatingtheposterior
speechpower spectrafrom degradedspeech.

For cases(2) through (4), the noise parameterwas initialized
by an estimatemade over five frames of backgroundsignal
immediatelybeforethe onsetof eachspeechutterance.

Recognitionword accuraciesare shownin Table 1. In the
caseof batchEM, ten iterationsweremadein eachutteranceas
if
�

were time-invariantand speechfeatureswere estimatedat
the endof the 10th iteration. RecursiveestimationRE is seento
significantly improved recognitionaccuracyover both baseline
and EM, indicating the positive impact in tracking the time-
variationof

�
. RE is seento haveoutperformedREn, indicating

that joint estimationof noiseandchannelis superiorto estimating
noise alone. It was observedin the experimentsthat due to
the large numberof unknownFIR coefficients (50), the channel
parameterswerenot asaccuratelytrackedasthenoiseparameter
asshownin Fig. 1, which could be attributedasthe main factor
in the performancediscrepancybetweenRE and True-

�
.

Table1. Recognitionword accuracy(%) achievedby
the recursivealgorithm in comparisonwith those
of baseline,batchEM, and known environment.

Baseline EM REn RE True-
�

53.5% 69.0% 70.4% 78.4% 82.5%

5. DISCUSSION

A new techniqueis proposedfor automaticspeechrecognition
in time-varying environmentswith both distortion channeland
additivenoise. A recursiveestimationalgorithmis formulatedin
the frequencydomain for tracking the time-varying parameters
of channeland noise. Speechfeaturesare estimatedon the fly
from the posteriorestimatesof speechpower spectrausing the
trackedchanneland noise parameters.Experimentalresultson
TIMIT speaker-independentcontinuousspeechshowedthat the
proposedtechniqueled to well-trackednoiseenergy andsignifi-
cantly improvedrecognitionaccuracy,andit comparedfavorably
over a previouslyproposedbatchEM algorithmunderthe simu-
lated time-varyingcondition. Furtherexperimentalevaluationis
underwayto investigatethe performanceof the proposedtech-
nique in other typesof time-varyingnoiseconditions.

REFERENCES

[1]. A. Varga and R. K. Moore, “Hidden Markov Model De-
compositionof Speechand Noise,” Proc. ICASSP, pp.
845–848,Albuquerque,NM, Apr. 1990.

[2]. T. Takiguchi, S. Nakamura, and K. Shikano, “Speech
Recognition for A Distant Moving SpeakerBased on
HMM Compositionand Separation,”Proc. ICASSP, pp.
1403–1406,Istanbul,Turkey, June2000.

[3]. R. C. Rose,E. M. Hofstetter,andD. A. Reynolds,“Inte-
gratedModelsof SignalandBackgroundwith Application
to SpeakerIdentificationin Noise,” IEEE Trans. on SAP,
Vol. 2, No. 2, pp. 245–258,Apr. 1994.

[4]. N. S. Kim, “IMM-based Estimationfor Slowly Evolving
Environment,”IEEE SPL, Vol. 6, No. 5, June1998.

[5]. K. Yao,B. Shi,P.Fung,andZ. Cao,“ResidueNoiseCom-
pensationfor RobustSpeechRecognitionin Nonstationary
Noise,” Proc. ICASSP, pp. 1125-1128,Istanbul,Turkey,
June2000.

[6]. N. S. Kim, D. K. Kim, and S. R. Kim, “Application of
SequentialEstimationto Time-VaryingEnvironmentCom-
pensation,”Proc. IEEE Workshop on Speech Recognition
and Understanding, pp. 389–395,Santa Barbara,CA,
Dec. 1997.

[7]. S. Wang and Y. Zhao, “On-line BayesianSpeakerAdap-
tation Using Tree-StructuredTransformationand Robust
Priors,” Proc. of ICASSP, pp. 977–980,Istanbul,Turkey,
June2000.

[8]. Y. Zhao,“Frequency-DomainMaximum Likelihood Esti-
mationfor AutomaticSpeechRecognitionin Additive and
ConvolutiveNoises,”IEEE Trans. on SAP, Vol. 8, No. 3,
pp. 255–266,May 2000.

[9]. Y. Zhao, “A Speaker-IndependentContinuous Speech
RecognitionSystemUsing ContinuousMixture Gaussian
Density HMM of Phoneme-sizedUnits,” IEEE Trans. on
SAP, Vol. 1, No. 3, pp. 345–361,July 1993.


