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ABSTRACT

In this paper, we explore the role of best bands algorithms
in the context of maximizing the performance of hyperspec-
tral algorithms. Specifically, we first focus on creating an
intuitive framework for how metrics quantify the distance
between two spectra. Focusing on the Spectral Angle Map-
per (SAM) metric, we demonstrate how the separability of
two spectra can be increased by choosing the bands that
maximize the metric. This intuition about best bands analy-
sis for SAM is extended to the Generalized Likelihood Ra-
tio Test (GLRT) for a practical target/background detection
scenario. Results are shown for a scene imaged by the HY-
DICE sensor demonstrating that the separability of targets
and background can be increased by carefully choosing the
bands for the test.

1. INTRODUCTION

Hyperspectral data typically consists of radiometric mea-
surements in hundreds of contiguous spectral channels. Col-
lectively, and in their natural order, these bands comprise a
vector for each pixel in the scene having a length equal to
the number of channels and conveys the emissive and re-
flective properties of the scene being imaged. Significant
attention has been given to using the full length vector for
traditional applications such as spectral unmixing and de-
tection with the normal rules applying from the domain of
linear algebra. Very little attention, however, has been given
to determining whether these applications actually require
the full complement of spectral measurements, or whether
superior performance can actually be achieved from a lim-
ited spectral regime, or perhaps, even from a subset or bands
located at arbitrary wavelengths along the full spectrum.
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by the United States Air Force.

1.1. Best Bands Algorithms

Best bands algorithms find the subset of bands in multispec-
tral or hyperspectral data that yield the best performance
based on some criteria that is usually linked to some mea-
sure of end-performance. They are intrinsically related to
metrics, which, essentiallytranslatethe physical measure-
ments collected at the sensor into numerical quantities suit-
able for mathematical and statistical modelling[1]. For de-
tection, this measure is commonly expressed in receiver op-
erator characteristic (ROC) curves depicting probabilities
of false alarm (PFA) and detection (PD). For estimation,
Cramer-Rao bounds provide confidence measures for esti-
mates, and for classification, probabilities of correct classi-
fication (PCC) are used.

The best bands problem has been posed for applications
related to multispectral sensing where the bands are neither
contiguous nor do they possess spectral resolution equiva-
lent to that of hyperspectral sensors [2]. More importantly,
the number of bands is typically less than ten, and solutions
derived from algorithms can be verified against an exhaus-
tive test of all possible band combinations. Having hundreds
of bands, hyperspectral data poses a more formidable chal-
lenge.

2. MAXIMIZING SEPARABILITY

Previously, we have considered best bands analysis in the
general context of an arbitrary application whose perfor-
mance can be optimized by the appropriate selection of hy-
perspectral bands. In this section, we focus on the specific
task of target detection, starting with the simplest examples,
and incrementally progressing to a realistic detection sce-
nario.

2.1. Maximizing SAM

Consider the reflectance spectra for two different targets in
Figure 1. Clearly, they are visually different in both shape
and amplitude. Their similarity can be measured using the
Spectral Angle Mapper (SAM), which returns the angle be-
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Fig. 1. Spectra for two similar fabrics (bad bands removed).

tween two vectors of equal length,x andy:

θ(x,y) = arccos(
< x,y >

‖x‖‖y‖ ), 0 ≤ θ ≤ π

2
(1)

where< ·, · > is the dot product operator, and‖ · ‖ is the
2-norm which may be written using the dot product opera-
tor as

√
< z, z > for a vector,z [3]. Using the two targets

plotted in 1, we find the SAM angle is18.9o.
Given the SAM value calculated for the two spectra, our

goal is now to maximize the SAM value for the two spectra
by choosing the proper set of bands. We do this because
target classification performance is enhanced when the dif-
ference between two targets is maximized. Each target orig-
inally had210 spectral bands, but because some bands are
corrupted by atmospheric absorption bands, they are deleted
from the vector signals, leaving144 remaining bands for
processing. The abbreviated spectra in Figure 1 reflect the
width and location of these omissions. References to band
numbers, however, are made with respect to the original
210-band spectrum. Our goal is to find the subset of144
bands maximizingθ.

One approach to finding the best bands is to examine
the expression in (1), and analytically determine what un-
constrained subset of bands maximizesθ. Analytical ap-
proaches, however, are difficult, and a very open area of
research. Instead, we concentrate on a simpler objective:
find the single continuous segment of bands that maximizes
θ. That is, find the starting and ending band such that the
resulting spectra have the maximum SAM value. Ifθ is
calculated for every acceptable pair of starting and ending
bands, the result is a two-dimensional contour map. Figure
2 depicts this for the two spectra in Figure 1.

Both targets are green fabrics, but Fabric 1 is noticeably
darker. The SAM value for the full spectra is2.73o. Fig-
ure 2 illustrates the SAM contour map for these two very
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Fig. 2. SAM contour map for two similar fabrics.

similar targets. The maximum value for this SAM con-
tour map is9.18o and occurs for a starting and ending band
pair of (43, 55) that corresponds to the wavelength interval
[596 nm, 697 nm]. The increase in the SAM value from
2.73o is 6.45o or 236%. Not so coincidentally, the segment
yielding the maximum SAM value coincides with the green-
yellow part of the visible electromagnetic spectrum. This
difference in reflectance for the two targets in these wave-
lengths is clearly visible in Figure 1.

3. SAM AND STATISTICAL DETECTORS

In Section 2, we optimized the SAM metric by finding a
subset of bands in hyperspectral signals that yielded the
maximum angular separation. In spite of the improvements
in separability, however, the SAM metric is too simple to
implement as a detector in real scenarios. Practical detectors
are statistical and are designed to maximize the probability
of detection (PD) while minimizing the probability of false
alarm (PFA). Moreover, because the statistics of targets and
background are rarely, if ever, known beforehand, detectors
often adaptively estimate the necessary parameters from the
data it is also processing.

As a matter of fact, the SAM metric has been shown
to be an extreme simplification of the most general statisti-
cal detector, the Generalized Likelihood Ratio Test (GLRT)
[4, 5]. We can consider the binary hypothesis model that
tests for the presence or absence of a target,s, amid an un-
structured background:

H0 : x = w, (2)

H1 : x = s + w, (3)

wherew is a Gaussian interference vector having an un-
known distribution,s is the desired target spectrum, andx
is the received signal. Additionally, the hypothesis test is



constructed usingN target-free training pixels,x(n), n =
1, . . . , N that are assumed to arise from the same Gaussian
distribution asw. It can then be shown that the optimal test,
T (x), for a threshold,ηo, and a received pixel,x, is:

TGLRT (x) =
|stΓ

−1

w x|2
(stΓ

−1

w s)(1 + xtΓ
−1

w x)

H1
>
<
H0

η0, (4)

and Γw =
∑N

n=1(x(n) − µw)(x(n) − µw)t is the un-
scaled estimate of the interference covariance andµw =
1
N

∑N
n=1 x(n) is the sample mean.

4. BEST BANDS ANALYSIS FOR GLRT

The same assertions we made about finding the best bands
in hyperspectral signals in Section 2.1 apply to the GLRT.
Consequently, we will search again, using exhaustive meth-
ods, for the single continuous segment of bands in the origi-
nal signal that maximizes the detection of targets amid back-
ground vegetation. Before, we simply maximized the angu-
lar difference between two targets to achieve our goal. For
the GLRT, however, a more sophisticated analysis is neces-
sary.

4.1. GLRT Performance Metrics

Like all statistical detectors, the measure of performance
for the GLRT consists of maximizing thePD and minimiz-
ing thePFA using probabilistic distributions for the output
values (statistics) of the GLRT when applied to target and
background pixels.

Two things prevent us from formulatingPD andPFA

values so easily. First, target spectra may not be available in
sufficient quantities to yield a reliable estimate of the target
statistic density function. Second,PD andPFA estimates
are obtained by integrating the parameterized density func-
tions. Instead of trying to achievePD andPFA estimates,
we can instead examine the minimum separation of the two
sets of statistics by establishing the difference,W, between
the target pixel with the lowest detection statistic and the
background pixel statistic with the highest value.

W = minT (xt)−maxT (xb) (5)

Admittedly, W reflects neither the shape of the densi-
ties, which is critical to any reliable ROC curve analysis, nor
does it bound critical operating parameters like the probabil-
ity of error. Yet,W does at least offer a worst-case analy-
sis of the separation from a practical viewpoint. Moreover,
it does not attempt to provide the problem with any more
structure than it actually has.
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Fig. 3. Forest Radiance I scene.

4.2. Experiment

In Figure 3, the scene imaged for the Forest Radiance I data
collection using the HYDICE sensor is shown. Three dif-
ferent target-free regions of background pixels are outlined,
as well as one region containing two types of target pixels.
For each background region, an estimate of the covariance
is determined. GLRT detection results are presented for the
case of detecting Target 2 amid trees with the full spectrum.
We utilize the same methodology that maximized the SAM
metric in Section 2.1 and confine the search to a single con-
tinuous segment. The result is a two-dimensional contour
map ofW, indexed as before by the starting and ending
bands.

Figure 4(a) depicts the contour map ofW for the GLRT,
where the full spectrum value appears in the upper left-
hand corner and the maximum occurs for the band segment
[60, 199] (using the numbering from the original 210-band
spectrum) , which corresponds to the spectral interval from
752 nm to 2409 nm and is comprised of88 bands. Back-
ground statistic histograms are shown in Figure 4(b) for
8232 pixels using this band interval and the full spectrum.
Finally, Figure 4(c) shows the target statistics for10 pixels.
The relevant values for calculatingW have been summa-
rized in Table 1. The increase inW of 0.099 was due to a
dramatic increase in the minimum target statistic.



Target Background
GLRT stats. GLRT stats. W
Min. Max. Min. Max.

Full spec. .169 .797 .000 .008 .161
Best bands .230 .731 .000 .008 .221

Table 1. GLRT statistics for full spectrum and best bands
processing.

5. SUMMARY AND FUTURE WORK

We focused on the SAM metric and demonstrated how the
angle between the spectra of two objects can be maximized
to increase the angular distance by choosing an appropriate
set of spectral bands. We then adapted this algorithm to find
the bands that optimize a measure of detection performance,
which was chosen to be a worst-case measure of target and
background separability. Improvement in separability was
demonstrated for a target and background combination.

Future work will focus on developing fast methods for
optimal band selection that avoid the constraints in the se-
lection process utilized here. In particular, the utility of
angle-based measures to compare the similarity of two spec-
tra will be explored. Future results will demonstrate meth-
ods of integrating the geometric interpretation of spectra
with physics-based justifications.
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Fig. 4. Target 2 and trees: (a) Contour map forW, (b)
Background statistic histogram, (c) Target pixel statis-
tics.


