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ABSTRACT 1.1. Best Bands Algorithms

Best bands algorithms find the subset of bands in multispec-
In this paper, we explore the role of best bands algorithmstra| or hyperspectral data that yield the best performance
in the context of maximizing the performance of hyperspec- hased on some criteria that is usually linked to some mea-
tral algorithms. Specifically, we first focus on creating an syre of end-performance. They are intrinsically related to
intuitive framework for how metrics quantify the distance metriCS, WhiCh, essentia”&ans|atethe physica' measure-
between two spectra. Focusing on the Spectral Angle Map-ments collected at the sensor into numerical quantities suit-
per (SAM) metric, we demonstrate how the separability of apje for mathematical and statistical modelling[1]. For de-
two spectra can be increased by choosing the bands thafection, this measure is commonly expressed in receiver op-
maximize the metric. This intuition about best bands analy- erator characteristic (ROC) curves depicting probabilities
sis for SAM is extended to the Generalized Likelihood Ra- of false alarm PFA) and detection ED) For estimation,
tio Test (GLRT) for a practical target/background detection Cramer-Rao bounds provide confidence measures for esti-
scenario. Results are shown for a scene imaged by the HYmates, and for classification, probabilities of correct classi-
DICE sensor demonstrating that the separability of targetsfication (P.) are used.
and background can be increased by carefully choosing the  The pest bands problem has been posed for applications
bands for the test. related to multispectral sensing where the bands are neither
contiguous nor do they possess spectral resolution equiva-
lent to that of hyperspectral sensors [2]. More importantly,
the number of bands is typically less than ten, and solutions
derived from algorithms can be verified against an exhaus-
tive test of all possible band combinations. Having hundreds

Hyperspectral data typically consists of radiometric mea- of bands, hyperspectral data poses a more formidable chal-
surements in hundreds of contiguous spectral channels. Coltenge.

lectively, and in their natural order, these bands comprise a

vector for each pixel in the scene having a length equal to

the number of channels and conveys the emissive and re- 2. MAXIMIZING SEPARABILITY

flective properties of the scene being imaged. Significant ) ] o
attention has been given to using the full length vector for Previously, we have considered best bands analysis in the
traditional applications such as spectral unmixing and de-9eneral context of an arbitrary application whose perfor-
tection with the normal rules applying from the domain of Mance can be optimized by the appropriate selection of hy-
linear algebra. Very little attention, however, has been given Perspectral bands. In this section, we focus on the specific
to determining whether these applications actually require t8sk of target detection, starting with the simplest examples,
the full complement of spectral measurements, or Whethera”d_ incrementally progressing to a realistic detection sce-
superior performance can actually be achieved from a lim- hario.

ited spectral regime, or perhaps, even from a subset or bands

located at arbitrary wavelengths along the full spectrum. 3 1. Maximizing SAM

1. INTRODUCTION

Consider the reflectance spectra for two different targets in
This work was sponsored by the Department of the Defense under

Contract F19628-00-C-0002. Opinions, interpretations, conclusions, andFIgure 1. Clearly, they are visually different in both shape

recommendations are those of the author and are not necessarily endorse@Nd amplitude. Their similarity can be measured using the
by the United States Air Force. Spectral Angle Mapper (SAM), which returns the angle be-
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Fig. 1. Spectra for two similar fabrics (bad bands removed). Fig. 2. SAM contour map for two similar fabrics.

similar targets. The maximum value for this SAM con-
tour map is9.18° and occurs for a starting and ending band
T pair of (43, 55) that corresponds to the wavelength interval
), 0=0<5 (D) [596 nm 697 nm|. The increase in the SAM value from
2.73° is 6.45° or 236%. Not so coincidentally, the segment
where< -, - > is the dot product operator, afd || is the yielding the maximum SAM value coincides with the green-
2-norm which may be written using the dot product opera- yellow part of the visible electromagnetic spectrum. This
tor as/< z,z > for a vector,z [3]. Using the two targets  difference in reflectance for the two targets in these wave-

tween two vectors of equal lengtk,andy:

<X,y >

606,y) = arccot iyl

plotted in 1, we find the SAM angle i8.9°. lengths is clearly visible in Figure 1.
Given the SAM value calculated for the two spectra, our
goal is now to maximize the SAM value for the two spectra 3. SAM AND STATISTICAL DETECTORS

by choosing the proper set of bands. We do this because
target classification performance is enhanced when the dif-in Section 2, we optimized the SAM metric by finding a
ference between two targets is maximized. Each target orig-subset of bands in hyperspectral signals that yielded the
inally had210 spectral bands, but because some bands aremaximum angular separation. In spite of the improvements
corrupted by atmospheric absorption bands, they are deleteéh separability, however, the SAM metric is too simple to
from the vector signals, leaving#4 remaining bands for  implement as a detector in real scenarios. Practical detectors
processing. The abbreviated spectra in Figure 1 reflect theare statistical and are designed to maximize the probability
width and location of these omissions. References to bandof detection £5) while minimizing the probability of false
numbers, however, are made with respect to the originalalarm (Px4). Moreover, because the statistics of targets and
210-band spectrum. Our goal is to find the subset f background are rarely, if ever, known beforehand, detectors
bands maximizing. often adaptively estimate the necessary parameters from the

One approach to finding the best bands is to examinedata it is also processing.
the expression in (1), and analytically determine what un-  As a matter of fact, the SAM metric has been shown
constrained subset of bands maximiZesAnalytical ap- to be an extreme simplification of the most general statisti-
proaches, however, are difficult, and a very open area ofcal detector, the Generalized Likelihood Ratio Test (GLRT)
research. Instead, we concentrate on a simpler objective{4, 5]. We can consider the binary hypothesis model that
find the single continuous segment of bands that maximizestests for the presence or absence of a takgetmid an un-
. That s, find the starting and ending band such that the structured background:
resulting spectra have the maximum SAM value.f Iis
calculated for every acceptable pair of starting and ending Hy:x = w, (2)
bands, the result is a two-dimensional contour map. Figure Hi :x = s+w, ()
2 depicts this for the two spectra in Figure 1.

Both targets are green fabrics, but Fabric 1 is noticeably wherew is a Gaussian interference vector having an un-
darker. The SAM value for the full spectra2s73°. Fig- known distribution,s is the desired target spectrum, axd
ure 2 illustrates the SAM contour map for these two very is the received signal. Additionally, the hypothesis test is



constructed usingV target-free training pixelsx(n),n =
1,..., N that are assumed to arise from the same Gaussian
distribution asw. It can then be shown that the optimal test,

7 (x), for a thresholdy,,, and a received pixek, is:

=—1 H1
|s'T,, x|?
= Z . (4)

(stf;ls)(l + xtf;lx) Hp

Terrr(x) =

andT,, = Y., (x(n) — 7,)(x(n) — 7,)" is the un-
scaled estimate of the interference covariance @pd=
LSV x(n) is the sample mean.

4. BEST BANDS ANALYSIS FOR GLRT

The same assertions we made about finding the best bands
in hyperspectral signals in Section 2.1 apply to the GLRT.
Consequently, we will search again, using exhaustive meth-
ods, for the single continuous segment of bands in the origi-
nal signal that maximizes the detection of targets amid back-
ground vegetation. Before, we simply maximized the angu-
lar difference between two targets to achieve our goal. For

the GLRT, however, a more sophisticated analysis is neces- Fig. 3. Forest Radiance | scene.
sary.
4.1. GLRT Performance Metrics 4.2. Experiment

Like all statistical detectors, the measure of performance
for the GLRT consists of maximizing the, and minimiz-

ing the Pr 4 using probabilistic distributions for the output
values (statistics) of the GLRT when applied to target an

In Figure 3, the scene imaged for the Forest Radiance | data
collection using the HYDICE sensor is shown. Three dif-
g ferent target-free regions of background pixels are outlined,
background pixels. as well as one region containing two types of target pixels.
For each background region, an estimate of the covariance

Two things prevent us from formulatingp and Pr 4 . . :
values so easily. First, target spectra may not be available in's determined. GLRT detection results are presented for the

sufficient quantities to yield a reliable estimate of the target case Of detecting Target 2 amid trees with t_he_full spectrum.
statistic density function. Seconé, and Pr4 estimates We gtll!ze the.same methodol_ogy that maximized Fhe SAM
are obtained by integrating the parameterized density func-Metric in Section 2.1 and conﬂ_ne the sea_lrch oa single con-
tions. Instead of trying to achievBy, and Py 4 estimates tinuous segment. The result is a two—dlmgn5|onal cont_our
we can instead examine the minimum separation of the twoMapP Of W, indexed as before by the starting and ending

sets of statistics by establishing the differer®, between bands.
the target pixel with the lowest detection statistic and the Figure 4(a) depicts the contour map\sf for the GLRT,

background pixel statistic with the highest value. where the full spectrum value appears in the upper left-
hand corner and the maximum occurs for the band segment
W = minT (x;) — max7 (xy) )] [60,199] (using the numbering from the original 210-band

spectrum) , which corresponds to the spectral interval from

Admittedly, W reflects neither the shape of the densi- 752 nm to 2409 nm and is comprised 88 bands. Back-
ties, which is critical to any reliable ROC curve analysis, nor ground statistic histograms are shown in Figure 4(b) for
does it bound critical operating parameters like the probabil- 8232 pixels using this band interval and the full spectrum.
ity of error. Yet,W does at least offer a worst-case analy- Finally, Figure 4(c) shows the target statistics forpixels.
sis of the separation from a practical viewpoint. Moreover, The relevant values for calculatifgy have been summa-
it does not attempt to provide the problem with any more rized in Table 1. The increase W of 0.099 was due to a
structure than it actually has. dramatic increase in the minimum target statistic.



Target Background
GLRT stats. | GLRT stats. || W
Min. | Max. [| Min. [ Max.

Full spec. || .169 | .797 || .000 | .008 || .161
Best bands| .230 | .731 || .000 | .008 | .221

Table 1. GLRT statistics for full spectrum and best bands
processing.

Ending band (nm)

5. SUMMARY AND FUTURE WORK

800

We focused on the SAM metric and demonstrated how the 600
angle between the spectra of two objects can be maximizec
to increase the angular distance by choosing an appropriate
set of spectral bands. We then adapted this algorithm to find
the bands that optimize a measure of detection performance soo0

which was chosen to be a worst-case measure of target ani
background separability. Improvement in separability was
demonstrated for a target and background combination.
Future work will focus on developing fast methods for 3500
optimal band selection that avoid the constraints in the se- 23000
lection process utilized here. In particular, the utility of g 2500
angle-based measures to compare the similarity of two spec 2
tra will be explored. Future results will demonstrate meth- 2
ods of integrating the geometric interpretation of spectra 159
with physics-based justifications. 1000
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Fig. 4. Target 2 and trees: (a) Contour map W, (b)
Background statistic histogram, (c) Target pixel statis-



