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ABSTRACT

This paper introduces the Non-negative Matrix Factorization
for Language Model adaptation. This approach is an alternative
to Latent Semantic Analysis based Language Modeling using Sin-
gular Value Decomposition (SVD) with several benefits. A new
method, which does not require an explicit document segmenta-
tion of the training corpus is presented as well. This method re-
sulted in a perplexity reduction of 16% on a database of biology
lecture transcriptions.

1. INTRODUCTION

In language modeling one has to model the probability of occur-
rence of a predicted word given its history P (wnjH). N-gram
based Language Models have been used successfully in Large Vo-
cabulary Automatic Speech Recognition Systems. In this model,
the word history consists of the N � 1 immediately preceding
words. Particularly, tri-gram language models (P (wnjwn�1; wn�2))
offer a good compromise between modeling power and complex-
ity. A major weakness of these models is the inability to model
word dependencies beyond the span of the n-grams. As such, n-
gram models have limited semantic modeling ability. Alternate
models have been proposed with the aim of incorporating long
term dependencies into the modeling process. Methods such as
word trigger models [4], high-order n-grams, cache models and
etc. have been used in combination with the standard n-gram mod-
els [5].

One such method, a Latent Semantic Analysis based model
has been proposed [2]. A word-document occurrence matrixAN�K
is formed ( N = size of the vocabulary, K = number of docu-
ments), using a training corpus explicitly segmented into a collec-
tion of documents. A Singular Value Decomposition A = USV T

is performed to obtain a low dimensional linear space S , which
is more convenient to perform tasks such as word and document
clustering, using an appropriate metric. This framework can be
used to construct a Language Model, and the metric can be used to
measure the closeness of predicted words to the words of history
H , expressed as a vector dH (such vector would be a column of
the matrix A, if it were included in the training corpus). Meth-
ods for construction of the actual conditional distributions is also
presented [2].

This process can be alternatively viewed as the projection of a
history vector onto the vector space S:

d
0

H = UU
T
dH (1)

This projected history vector reflects a word distribution consistent
with the training corpus and thus can be used for near future pre-
dictions. The linear projection operator UUT involves a rotation
in RN , thus it is possible that some elements of the projected vec-
tor will have a negative values. Since these represent word counts,
such negative values are difficult to interpret.

An objection has been raised to the use of SVD in LSA in
[1]. Its property as the best approximation for a given rank is re-
lated to the assumption of normality of the data samples. Clearly,
the normality assumption is not valid for word counts, Poisson or
other non-negative distributions [1] have been suggested as more
appropriate alternatives.

2. NON-NEGATIVE FACTORIZATION

As an alternative to SVD, use of non-negative matrix factoriza-
tion is proposed. This method has been suggested for use in sev-
eral fields, including information retrieval systems [3] or statistical
translation [7]. It has a form of:

AN�K �WN�rHr�K

r < min(N;K)
Ai;j � 0
Wi;j � 0
Hi;j � 0

(2)

The dimension r is typically much lower then either dimension of
the matrix A. A numerical method has been presented to find a
solution for a given dimension r. The update formulas satisfy the
non-negative constraint and can be derived using an assumption
that the word counts follow Poisson distributions [3]:
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Iteration of these update rules converge to a local maximum of
the objective function:

F =
X

i

X

j

[Aij log(WH)ij � (WH)ij]: (4)

This objective function can be derived from a maximum like-
lihood formulation of the problem - finding a parametric model
P(x,(WH)ij ) which maximizes the likelihood of observing Aij .



In addition to the non-negativity, another property of this fac-
torization is that the columns of W tend to represent clusters of
locally related elements; in our case they represent groups of asso-
ciated words. This is in contrast with the SVD approach, where
columns of U are orthogonal. This property suggests that the
columns of W can be interpreted as conditional word probability
distributions, since they satisfy the conditions of a probability dis-
tribution by the definition. Thus the matrix W describes a hidden
document space D = fdjg by providing conditional distributions
W = P(wijdj). The task is to find a matrix W , given the word-
document count matrix A. The second term of the factorization,
matrix H , reflects the properties of the explicit segmentation of
the training corpus into individual documents. This information is
not of interest in the context of Language Modeling. In fact, in the
SVD case, we could use factorization of the following form:

AA
T = US

2
U
T
; (5)

which leads to the identical values as far as the U matrix is con-
cerned. The matrix AAT is basically a word-word co-occurrence
matrix and does not explicitly shows the document segmentation.
A similar concept could be used in NMF approach. We shall show
an alternative way to construct a matrix with same properties as
AAT , so that an explicit document segmentation is not needed.

Let us consider a matrix M , elements of which are :

mij = E[CiCj ]

=
X

u
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uvP (Ci = u; Cj = v): (6)

The count Ci is the occurrence count of word wi in a doc-
ument instance and its expected value is considered across the
whole document collection. Let us assume that the joint proba-
bility P (Ci = u;Cj = v) can be modeled by a mixture of condi-
tional distributions. Let us further assume that within each mixture
component, the words occur independently of each other. This as-
sumption is reasonable for relatively short documents. Then we
can write:
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By denoting qil = E[Cijdl], we can rewrite this result in a
matrix form:

M = QPQ
T
; (8)

where P is a diagonal matrix, pll = P (dl).
When normalized column-wise, the matrix Q can be consid-

ered as an estimate of the conditional word distributions:

Qn =QK�1 = P̂(wijdj)

qi;j =
E[Cijdj ]P
k
E[Ckjdj ]

(9)

so we can rewrite (8) as:

M = QnKPK
T
Q
T

n ; (10)

where both K and P are diagonal matrices.
This result could be directly related to the NMF algorithm as:

W = Qn H = K
2
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T

n ; (11)

or it is possible to modify the update formulas to reflect the sym-
metry of (8):
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where za is an element of the diagonal matrix Z. These new up-
date formulas lead to somewhat more efficient implementation,
particularly in terms of memory requirements.

In the experiments presented further, a rectangular sliding win-
dow was used to estimate the matrix M . Details of this method
will be presented in section 4.

3. LANGUAGE MODEL CONSTRUCTION

Given a set of conditional distributions P(wijdj), word probabil-
ity distributions conditioned on observed history P (wjH) can be
constructed in the form of a weighted mixture, where the weights
depend on the history.

The probability can be expressed as:

P (wnjH) =
X

j

P (wnjdj)P (djjH) (13)

The assumption made here is that the probability of the predicted
word does not directly depend on the history,
P (wnjdj ; H) � P (wnjdj) , which is consistent with the earlier
assumption that within one document dj words are generated in-
dependently.

The first factor of (13) is already available. To determine the
second factor, one choice would be to compute:

P (Hjdj) =
Y

i

P (wHijdj);

P (dj jH) =
P (Hjdj)P
l
P (Hjdl)

;

(14)

where wHi is one word of the history H . This approach is not
practical, because it assumes that all words in the history are being
generated by a single document. If the probability P (wHijdj) is
zero for any word in the history, the resulting probability P (dj jH)
becomes zero as well.

An alternative approach assumes that the history can be gen-
erated by any of the hidden documents, independently one word at
a time. We can then express the contribution of a particular word
in the history to the conditional weight of each hidden document:

�ij =
P (wHijdj)P (dj)P
l
P (wHijdl)P (dl)

: (15)



Then we can find the probability P (dj jH) by normalizing these
weights:
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where jHj is size of the history.

4. EXPERIMENT DESCRIPTION

Experiments were conducted in the context of the Aristotle project
[6] developed at CAIP. In this project, we used the IBM ViaVoice
speech recognition system for automated transcription of recorded
lectures. The recognizer’s vocabulary was extended to cover the
specific subject (Biology 101), but the performance was not sat-
isfactory. Further improvement was achieved by speaker and lan-
guage model adaptation. We built a topic language model for bi-
ology, using the course textbook as a training corpus (total 600k
words). The final error rate was around 20%. Analysis of the er-
rors led us to the conclusion that further improvement could be
achieved if a language model with semantic modeling capability
was used. The nature of the speech used in the lecture presenta-
tions is more spontaneous than in read speech (looser syntax), at
the same time it exhibits distinct content word patterns in contexts
beyond the reach of trigrams.

In the first case (explicit segmentation), we have applied the
NMF technique on a manually segmented training corpus, ob-
tained from the biology course textbook. Since the chapter and
section boundaries were clearly marked, we have used them as
natural document boundaries. The whole textbook was segmented
into 1500 documents. A manually created stop list of 70 word was
applied to filter out function words. In the second case (implicit
segmentation), we have used a rectangular window of 21 words,
moving through the training corpus one word at a time. For each
instance, we updated the occurrence counts of word pairs consist-
ing of the word in the center of the window together with all the
words included within the window. In the former case we used the
original update formulas (3), in the later case we used the symmet-
ric version (12).

Performance of the model was evaluated by measuring the per-
plexity on a test set, consisting of the transcriptions of several lec-
tures. Since the described model does not incorporate any syntacti-
cal rules, the perplexity can be expected to be quite high (of a same
order as of a unigram model). In addition, it does not model most
of the function words (which were removed by the stop list), so
a direct perplexity measurement would be very unfavorable. For
this reasons, we have measured perplexity on a combined model:

P (wjH) = �Pngram(wjH) + (1� �)PNMF (wjH): (17)

The following table shows perplexity improvement on both
training and test data sets.

Perplexity n-gram explicit implicit
training data 127.8 107.8 103.8

test data 288.8 249.8 240.6

A comparison is made here between the baseline system (tri-
gram model, adapted to the biology topic) and the two methods
described earlier: using explicit document segmentation and the
implicit method (rectangular window count collection). For both

models, there was an improvement in perplexity. It can also be
seen that there is a substantial mismatch between the training cor-
pus and the transcribed lectures. We attribute the higher test set
perplexity to the more spontaneous nature of the lectures.

For both cases, the dimension of factorization was chosen to
be 500. We believe that the choice of this dimension is not very
critical. As opposed to the SVD method, an increment of dimen-
sionality does not simply add new columns to the Q matrix, but
affects all columns. As can be seen in figure (1), the perplex-
ity monotonically decreases with increasing dimension. A loga-
rithmic dependence Perp � a log(r) can be seen. The history
includes jHj immediate predecessors to the predicted word with
equal weight. The effect of the history size jHj on the perplexity
can be seen in figure (4). The best result was achieved with a his-
tory size slightly larger than the size of the window used to collect
the co-occurrence counts during the training.
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Fig. 1. Perplexity versus factor dimension

Table 1 shows three columns of the matrix Q, the top words
with highest conditional probability.

male oxygen common
female carbon evolutionary
males dioxide ancestor
females respiration characters
chromosome cells more
x hemoglobin derived
sex aerobic shared
mating blood ancestral
mate concentration group
many alcohol example
species fermentation character

Table 1. Examples of the hidden document distributions

The word distributions tend to be very sparse, as can be seen
in figure (2). In this figure, the distributions corresponding to sev-
eral columns of the Q matrix are shown, sorted by the probability
values. As can be seen, most of the probability mass is assigned to
few hundred words with a sharp decline afterwards.

We have observed that with increasing dimensionality, similar
clusters of words tend to reappear. So a dimensionality increase
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Fig. 2. Examples of Conditional word distributions
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Fig. 3. Hidden document priors P (dj).

has a refining effect with more-or-less equal weight on all distri-
butions. This can be observed in figure (3) , which shows the doc-
ument priors P (dj) (solid line). In the same figure, we also show
the direct estimates of the priors from the training data in a form
of:

P̂ (dj) =
X

h�H

P (dj jh)P (h); (18)

where we consider all history samples equally likely and P (dj jh)
is obtained using (16). It can be seen that these estimates are fairly
close to the values of P (dj) obtained in the factorization process.

5. SUMMARY

We have presented use of Non-negative matrix factorization for
Language Model adaptation based on Latent Semantic Analysis
framework. A novel approach, which does not require an explicit
document segmentation of the training corpus is presented. Based
on the obtained perplexity improvements, this method produces
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Fig. 4. Perplexity versus history size

results comparable to the method which requires explicit segmen-
tation of the training corpus into documents.
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