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ABSTRACT

We present a novel approach to solve the �-SVR. It is based

on an Iterative Re-Weighted Least Squares (IRWLS) proce-

dure, which is simple to implement and can be tuned to the

usual �-SVR solution. The IRWLS procedure is much more

ef�cient (computational load) than Quadratic Programming

techniques, which are usually employed to solve it.

1. INTRODUCTION

The Support Vector Machine (SVM) is a state-of-the-art

tool to solve linear and nonlinear regression and classi�-

cation problems [1]. The Support Vector Regressor (SVR)

has not been used as widely as its classi�cation counterpart

(SVC), because its parameters are hard to set and because

its training time is prohibitively large. The �-SVR [2] is a

different implementation of the SVR which allows to easily

tune the SVR parameters, simplifying its use.

In this communication we will lead with the other �-

SVR limitation, its computational complexity, which limits

its applicability for solving signal processing applications.

The SVM is usually solved using Quadratic Programming

(QP) procedures that are hard to implement, present sev-

eral numerical problems and high computational load [3].

In this communication we propose to solve the �-SVR by

iteratively solving weighted least square problems. The IR-

WLS procedure has been successfully applied to solve the

SVC [4] and the SVR [5].

The outline of the paper is as follows. The �-SVR is

introduced in Section 2. The development of the IRWLS is

done in Section 3, together with its algorithmic implemen-

tation. Computer experiments are shown in Section 4. We

end with some concluding remarks in section 5.

2. �-SUPPORT VECTOR REGRESSOR

The �-SVR, given a labeled training data set ((x1; y1); : : : ;
xn; yn), where xi 2 R

d and yi 2 R) and a nonlinear trans-

formation to a higher dimensional space (�(�), Rd
�(:)
�! R

H

and d � H), needs to solve the following optimizing prob-

lem, in order to �nd the regression function between x and

y,
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where �i and �
�

i

1 are positive slack variables, introduced to

deal with prediction error greater than ", andC is the penal-

ization of such deviations.

The usual SVR optimizes (1) (without the last term)

subject to (2), (3) and (4). The �-SVR introduces the value

of " into the minimizing functional, penalizing its growth

by a factor of Cn�. This factor is chosen because the value

of � gives a lower limit in the expected fraction of Support

Vectors [2], being � 2 [0; 1].
In order to solve the �-SVR, the linear restrictions are

introduced in the minimizing functional, making use of the

Lagrange multipliers. We then need to minimize
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with respect tow, b, �
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and " and maximize it with respect

to the Lagrange multipliers, �
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and �.
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varibles with and without �.



The solution to this problem is unique because it is a

convex optimization problem linearly restricted. Its solution

is determined by the Kuhn-Tucker (KT) Theorem [6]. This

Theorem imposes the following conditions to the solution

of (6) (The KT conditions), namely: (2)-(5), and
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The usual �-SVR resolution introduces the KT condi-

tions (7)-(10) into (6), leading to a maximizing functional,

that can be solved using QP procedures [2].

3. ITERATIVE RE-WEIGHTED LEAST SQUARES

We will now follow a different path to solve the �-SVR.

Our aim is to transform the functional (6) into a weighted

least square one, in which the weights depend on the solu-

tion (w, b and "). This least square problem is iteratively

solved to reach the �-SVR solution. In order to do so, we

rearrange (6) collecting the terms depending on �
(�)

i
in two

independent sums
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which can be simpli�ed, if the KT conditions in (9) are re-

placed into it, reaching
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where we have de�ned
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measure the deviation between the actual output (yi)

and the regressor output (�
T (xi)w + b), and a
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i

are the

weights associated to each error. Due to a
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we will use a Iterative Re-Weighted Least Square (IRWLS)

procedure [7] to solve (16), which consists in:

1. Minimizing (16) with respect tow, b and ", consider-

ing the a
(�)
i

�xed.

2. Recalculating a
(�)
i

withw, b and " from step one.

3. Repeating until convergence.

The minimum of (16) with respect to w, b and ", con-

sidering �xed a
(�)
i

, is given by:
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(9), (11)-(14), which must hold at the solution, leading to
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1. Initialization:

ComputeH as in (27). Set S2 = ? and S3 = ?.

AndGb = 0, G� = 0,G13 = 0 and aS1 = 2C.

2. Solve:2
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3. Compute: e(�) as in (17) and (18).

4. Compute: a(�) as in (24).

5. Reorder sets:

(a) Move every �i form S1 with e
(�)
i

< 0 to S2.

(b) Move every �i = �C form S1 to S3.

(c) Move every �i form S2 with e
(�)
i

< 0 to S2.

(d) Move every �i form S2 with ei > 0 or e�
i
> 0

to S2.

6. Compute: G13 = HS1;S3�S3, Gb = 1
T
�
S3

G� = E
T

S3�S3 and �S2 = 0

7. Back to 2 until there are no further changes in �, b

or ".

Table 1. IRWLS-�-SVR Procedure.

3.1. Reproducing Kernels Hilbert Space

The SVM is not regularly solved using the nonlinear map-

ping (�(�)), which in most cases is unknown. In the QP

functional, the nonlinear transformation appears as an in-

ner product with each other (�
T (xi)�(xj) = K(xi;xj)),

so we just need to specify the Reproducing Kernel Hilbert

Space (RKHS) K(�; �), not the nonlinear mapping �(�). In
order to solve the �-SVR with the RKHS, we forcew to be

w =
X
i

�i�(xi) = �
T
� (25)

Once (25) has been replaced into (21), (22) and (23), we

obtain the equation system to be solved in the �rst step of

the IRWLS procedure:
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which does not depend on �(�). The necessary algebraic

transformations to obtain (26) from (21), (22), (23) and (25)

are detailed in the Appendix.

In the �-SVR solution most �i are either zero or �C,

so if we are able to detect which are those �i, they can

be dropped form the linear equation system, simplifying its

resolution. In Table 1, we show an algorithmic implemen-

tation of the IRWLS procedure for the �-SVR in which the

training samples are divided in three sets. The �rst set (S1)

contains the �i that are neither zero nor �C, the second

one (S2) contains the �i that are zero, and the third set (S3)

contains the �i that are �C. In order to form these sets,

we must recall that the sample that its corresponding ei and

e
�

i
are negative, must present a zero �i. And the samples,

whose ei or e
�

i
are positive and its �i is equal to �C, must

be in S3. The other samples must lie in S1.

4. COMPUTER EXPERIMENTS

In order to try out the proposed procedure we have solved a

prediction problem obtained from the �UCIMachine Learn-

ing Repository� (http://www.ics.uci.edu/�mlearn/ MLSum-

mary.html), where we need to estimate the cost of a house in

the Boston metropolitan area from 13 attributes. This data

set contains 506 instances and has been used to show the

insensitivity in the election of � in [2]. We have prepro-

cessed it so every attribute presents zero mean and unity

standard deviation. We have used this data set to com-

pare the training time between the IRWLS-�-SVR proce-

dure in Table 1 against the QP-�-SVR. To solve the QP-�-

SVR we have used Matlab's qp.m. We have plotted the the

training time mean value for 20 independent trials in Fig-

ure 1 for both procedures. We have used an RBF RKHS,

K(xi;xj) = exp

�
�
kxi � xjk

2�

�
, and have set � = 8,

C = 1 and � = 0:5.
In this �gure one can understand that the IRWLS proce-

dure is signi�cantly faster than the QP procedure (for n=140

the IRWLS is over 300 times faster than the QP). This ad-

vantage is due to the IRWLS only needs to compute the

value of �i for a few training samples and the QP proce-

dures needs to operate with all of them.

5. CONCLUSIONS

We have presented an IRWLS procedure to solve the �-

SVR, whose computational load is much lower than the
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Fig. 1. The Training time for both procedures as a function

of the training set size.

QP one. Moreover the proposed procedure is easily imple-

mented, so we have been able to use the �-SVR solution

(most �i are either 0 or�C) in order to reduce its computa-

tional load.

The IRWLS procedure will now help to use the �-SVR

in signal processing applications where a non-parametric

tool as the SVMmight be desirable, such as time series pre-

diction.

APPENDIX

In order to obtain (26) from (21), (22), (23) and (25).

We �rst need to substitute (25) into (21) and multiply it by

the pseudo-inverse of�
T
, obtaining
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Using the de�nition of H in (27) and multiplying (29) by

the inverse ofDa+a� , we reach
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Once it has been simpli�ed, it can be expressed as
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In order to reach (32) and (33), we have replaced w for

(25) and we must recall thatH = ��
T
(see (27)).

When we join together (31), (32) and (33), we do not

reach (26). In order to obtain (26), further simpli�cations

are needed. We will replace (32) and (33) by two KT condi-

tions that will reduce the complexity of the equation system

to be solved in the �rst step of the IRWLS procedure.

The relationship between �i and �
�

i
with �i can be ob-

tained from (25) and the KT condition in (7), being �i =
�i � �

�

i
, because at the solution the KT conditions must

hold. The KT conditions in (8) and (10) can be also im-

posed over �, leading, respectively, toX
i

�i = 1
T
� = 0 (34)

1
T (�+�

�) = E
T (���

�) = E
T
� = Cn� � � (35)

which can be joined in a linear equation system with (31),

reaching (26).
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[5] F. Pérez-Cruz, A. Navia-Vázquez, P. L. Alarcón-Diana,

and A. Artés-Rodr�́guez, �An IRWLS procedure for

SVR,� in EUSIPCO'00, Tampere, Finland, Sept. 2000.

[6] R. Fletcher, Practical Methods of Optimization, John

Wiley and Sons, second edition, 1987.

[7] P. W. Holland and R. E. Welch, �Robust regression us-

ing iterative re-weighted least squares,� Comm. of Stat.

Theory Methods, vol. A6, no. 9, pp. 813�27, 1977.


