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ABSTRACT

We present a novel approach to solve the #-SVR. It is based
on an Iterative Re-Weighted Least Squares (IRWLS) proce-
dure, which is simple to implement and can be tuned to the
usual v-SVR solution. The IRWLS procedure is much more
efficient (computational load) than Quadratic Programming
techniques, which are usually employed to solve it.

1. INTRODUCTION

The Support Vector Machine (SVM) is a state-of-the-art
tool to solve linear and nonlinear regression and classifi-
cation problems [1]. The Support Vector Regressor (SVR)
has not been used as widely as its classification counterpart
(SVCO), because its parameters are hard to set and because
its training time is prohibitively large. The v-SVR [2] is a
different implementation of the SVR which allows to easily
tune the SVR parameters, simplifying its use.

In this communication we will lead with the other v-
SVR limitation, its computational complexity, which limits
its applicability for solving signal processing applications.
The SVM is usually solved using Quadratic Programming
(QP) procedures that are hard to implement, present sev-
eral numerical problems and high computational load [3].
In this communication we propose to solve the v-SVR by
iteratively solving weighted least square problems. The IR-
WLS procedure has been successfully applied to solve the
SVC [4] and the SVR [5].

The outline of the paper is as follows. The v-SVR is
introduced in Section 2. The development of the IRWLS is
done in Section 3, together with its algorithmic implemen-
tation. Computer experiments are shown in Section 4. We
end with some concluding remarks in section 5.

2. v-SUPPORT VECTOR REGRESSOR

The v-SVR, given a labeled training data set ((x1,y1), - - - ,
Xn,Yn), Wwhere x; € R? and y; € R) and a nonlinear trans-

formation to a higher dimensional space (¢(-), R? P jH
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and d < H), needs to solve the following optimizing prob-
lem, in order to find the regression function between x and

Y,
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where ¢; and £;! are positive slack variables, introduced to
deal with prediction error greater than ¢, and C' is the penal-
ization of such deviations.

The usual SVR optimizes (1) (without the last term)
subject to (2), (3) and (4). The v-SVR introduces the value
of € into the minimizing functional, penalizing its growth
by a factor of Cnv. This factor is chosen because the value
of v gives a lower limit in the expected fraction of Support
Vectors [2], being v € [0, 1].

In order to solve the ¥-SVR, the linear restrictions are
introduced in the minimizing functional, making use of the
Lagrange multipliers. We then need to minimize
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with respectto w, b, £ Z(*) and e and maximize it with respect
to the Lagrange multipliers, a(*), ,ug*) and \.

i

IFor short, we will refer to ¢; and £ as ¢ i(*), as well as for the others
varibles with and without *.



The solution to this problem is unique because it is a
convex optimization problem linearly restricted. Its solution
is determined by the Kuhn-Tucker (KT) Theorem [6]. This
Theorem imposes the following conditions to the solution
of (6) (The KT conditions), namely: (2)-(5), and
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The usual v-SVR resolution introduces the KT condi-
tions (7)-(10) into (6), leading to a maximizing functional,
that can be solved using QP procedures [2].

3. ITERATIVE RE-WEIGHTED LEAST SQUARES

We will now follow a different path to solve the v-SVR.
Our aim is to transform the functional (6) into a weighted
least square one, in which the weights depend on the solu-
tion (w, b and ¢). This least square problem is iteratively
solved to reach the v-SVR solution. In order to do so, we
rearrange (6 i i () §

ge (6) collecting the terms depending on §;™ in two
independent sums

=gl + st~ 8w
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which can be simplified, if the KT conditions in (9) are re-
placed into it, reaching
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where we have defined
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eg*) measure the deviation between the actual output (y;)

()

and the regressor output ((j)T(xi)w +b), and a; ’ are the

()

weights associated to each error. Due to ag*) =a; (eg*)),

we will use a Iterative Re-Weighted Least Square (IRWLS)
procedure [7] to solve (16), which consists in:

1. Minimizing (16) with respect to w, b and €, consider-
ing the az(»*) fixed.

2. Recalculating ag*) with w, b and € from step one.

3. Repeating until convergence.

The minimum of (16) with respect to w, b and &, con-

()

sidering fixed a; ’, is given by:
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In order to recalculate ag*), we use the KT conditions

(9), (11)-(14), which must hold at the solution, leading to
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where we have used the following relation between eg*)

¢

and



1. Initialization:
Compute H as in (27). Set S2 = @ and S3 = @.
And Gb = 0, G,, = 0, G13 = 0and as; = 2C.

2. Solve: .
HSI,SI + D(asl+azl) 1 ESI ,851
17 0 0 b
E£1 0 0 €
y Gi3
= 0 — Gy
Cnv — A G,

3. Compute: e™*) as in (17) and (18).
4. Compute: a*) as in (24).
5. Reorder sets:

(a) Move every §; form S1 with e!™ < 0 to S2.

i
(b) Move every 3; = =C form S1 to S3.
(c) Move every 3; form S2 with el < 0toS2.

(d) Move every 3; form S2 withe; > Ooref > 0
to S2.

6. Compute: Gi3 = Hgi 53855, Gp = 1T,653
Gy = E§3ﬂ53 and Bg, =0

7. Back to 2 until there are no further changes in 3, b
ore.

Table 1. IRWLS-v-SVR Procedure.

3.1. Reproducing Kernels Hilbert Space

The SVM is not regularly solved using the nonlinear map-
ping (¢(+)), which in most cases is unknown. In the QP
functional, the nonlinear transformation appears as an in-
ner product with each other (¢” (x;)p(x;) = K (x;,%;)),
so we just need to specify the Reproducing Kernel Hilbert
Space (RKHS) K (-, -), not the nonlinear mapping ¢(-). In
order to solve the »-SVR with the RKHS, we force w to be

w=> Bip(x;)=2"8 (25)

Once (25) has been replaced into (21), (22) and (23), we
obtain the equation system to be solved in the first step of
the IRWLS procedure:

-1
H+D\) 1 E][8 y
1 0 O b = 0
ET 0 O € Cnv — A

where

(H)ij = ¢" (x)p(x;) = K (xi,%;) 27)
* x1 T
) i W (28)
a1 +ajy an + ay,

which does not depend on ¢(-). The necessary algebraic
transformations to obtain (26) from (21), (22), (23) and (25)
are detailed in the Appendix.

In the v-SVR solution most §; are either zero or +£C,
so if we are able to detect which are those f;, they can
be dropped form the linear equation system, simplifying its
resolution. In Table 1, we show an algorithmic implemen-
tation of the IRWLS procedure for the v-SVR in which the
training samples are divided in three sets. The first set (S1)
contains the §; that are neither zero nor £C, the second
one (S2) contains the (3; that are zero, and the third set (S3)
contains the [; that are £C. In order to form these sets,
we must recall that the sample that its corresponding e; and
e} are negative, must present a zero 3;. And the samples,
whose e; or e are positive and its 3; is equal to £C, must
be in S3. The other samples must lie in S1.

4. COMPUTER EXPERIMENTS

In order to try out the proposed procedure we have solved a
prediction problem obtained from the “UCI Machine Learn-
ing Repository” (http://www.ics.uci.edu/"mlearn/ ML.Sum-
mary.html), where we need to estimate the cost of a house in
the Boston metropolitan area from 13 attributes. This data
set contains 506 instances and has been used to show the
insensitivity in the election of v in [2]. We have prepro-
cessed it so every attribute presents zero mean and unity
standard deviation. We have used this data set to com-
pare the training time between the IRWLS-v-SVR proce-
dure in Table 1 against the QP-v-SVR. To solve the QP-v-
SVR we have used Matlab’s gp . m. We have plotted the the
training time mean value for 20 independent trials in Fig-
ure 1 for both procedures. We have used an RBF RKHS,

K(x;,x;) = exp (—w>, and have set 0 = 8,

20
C =1andv =0.5.

In this figure one can understand that the IRWLS proce-
dure is significantly faster than the QP procedure (for n=140
the IRWLS is over 300 times faster than the QP). This ad-
vantage is due to the IRWLS only needs to compute the
value of (3; for a few training samples and the QP proce-
dures needs to operate with all of them.

S. CONCLUSIONS

We have presented an IRWLS procedure to solve the v-
SVR, whose computational load is much lower than the
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Fig. 1. The Training time for both procedures as a function
of the training set size.

QP one. Moreover the proposed procedure is easily imple-
mented, so we have been able to use the v-SVR solution
(most 3; are either 0 or =C') in order to reduce its computa-
tional load.

The IRWLS procedure will now help to use the »-SVR
in signal processing applications where a non-parametric
tool as the SVM might be desirable, such as time series pre-
diction.

APPENDIX

In order to obtain (26) from (21), (22), (23) and (25).
We first need to substitute (25) into (21) and multiply it by
the pseudo-inverse of &7, obtaining

(®®7)'BI+ "D,y BB 8 =
=Dajas[y — 10 — Do _a:1e (29)
Using the definition of H in (27) and multiplying (29) by
the inverse of D, 5+, we reach
(Da+a*)_1H_1 [H + HDa+a* H]/B ==
=[y — 10 — (Dayas) 'Da_a-1le (30)

Once it has been simplified, it can be expressed as

B
1 E]|b|=y 31)
1)

[ H+ (Da+a*)71
Secondly, we rearrange (22) as

B
(a+a*)'H (a+a")"1 (a—a")"1] | b
€

=(a+a")’y (32

and finally, (23) can be transformed into:

_ ax\T _ o\ T #\T IVIB-I_
[(a—a*)'H (a—a")'1l (a+a®)’'1]| b | =
€

=(a-a")Ty-Cnv+X (33)

In order to reach (32) and (33), we have replaced w for
(25) and we must recall that H = 337 (see (27)).

When we join together (31), (32) and (33), we do not
reach (26). In order to obtain (26), further simplifications
are needed. We will replace (32) and (33) by two KT condi-
tions that will reduce the complexity of the equation system
to be solved in the first step of the IRWLS procedure.

The relationship between «; and o with 3; can be ob-
tained from (25) and the KT condition in (7), being 3; =
a; — af, because at the solution the KT conditions must
hold. The KT conditions in (8) and (10) can be also im-
posed over (3, leading, respectively, to

Y Bi=1"8=0 (34)

1"a+a*)=ET(a—a*) =ET"B=Cnv -\ (35)

which can be joined in a linear equation system with (31),
reaching (26).
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