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ABSTRACT

In this paper, we present a new technique for detecting mov-
ing targets from image sequences captured by moving sen-
sors. Feature points are detected and tracked through theim-
age sequences. A validity vector is used to describe the con-
sistency of featuretrajectorieswith sensor motion. By using
the sequential importance sampling method, an approxima-
tion to the posterior distribution of the sensor motion and the
validity vector isderived and the feature points bel onging to
themoving target arethen segmented out. Real imageexam-
ples are included.

1.INTRODUCTION
Detection of movingtargetsfromamoving platformisavery

important task invideo surveillanceapplications. Mainly three

types of moving targets detection algorithms have been de-
veloped. Thefirst type of algorithmsare 2D algorithms|[1].
They are applicable when the observed scene can be well
model ed by aflat surfaceor the cameraonly rotatesand zooms.
The 2D agorithms have difficultiesin processing sequences
containingrich variationsinthe 3D scenestructure. Thesec-
ond type of algorithms are called 3D agorithms[2], where
the structurefrom motion (SfM) problemissolved using fea-
ture correspondencesfrom the sequences. Multiple solutions
to cameramotion relativeto the background and moving tar-
getsaretypically found. Althoughthe 3D algorithmsaresup-
posed to handle sequences with general camera motion and
scene structure, due to the inherent ambiguity in SfM [3],
the 3D algorithms can work well only in some specific cases
such as when the camera can be modeled by orthographic
projection, etc. Thethird approach iscalled plane+ parallax
algorithm [4]. In [4], a plane registration process using the
dominant 2D parametric transformationisapplied to remove
the effects of camera rotation, zoom and calibration. Since
the residual motion field is due to the presence of moving
objects and camera tranglation, the moving targets are iden-
tified by looking at imageregions violating the epiploar con-
straintsif the global epipolecan beextracted correctly. How-
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ever, it is achallenge to extract the global epipole (or focus
of expansion) from a noisy trandlational motion field cor-
rupted by moving objects. Various robust regression tech-
niques such as M-estimators and random sampling consen-
sus paradigm (RANSAC) have also been used for comput-
ing the fundamental matrix [5] and then the moving targets
aresegmented out. A common drawback of the above meth-
odsisthat since only two, three or four frames from the se-
guencesare used to detect movingtargets, the closetemporal
relationship of the motion pattern of the moving targetsin a
video sequence is not explored.

Given a series of image frames, the moving target detec-
tion result ( noisy or might be partially wrong) obtained from
the previousframes should be ableto help refine moving tar-
get detection using current and incoming frames and make
the detection algorithm more robust to observation noise in
a recursive fashion. Although the importance of temporal
correlation in the motion field has received some attention
in detecting independent motion [6] from 2D scenes (aerial
seguences), a sound theoretical computational framework is
still needed to utilize the temporal correlation in detecting
moving targetsin both 2D and 3D scenes.

In this paper, we develop arecursive algorithm for mov-
ing targets detection. A validity vector is used to describe
the segmentation of the feature points. During recursion, the
validity vector evolves such that the entries corresponding
to the background have large positive values while other en-
tries corresponding to the feature points on the moving ob-
jectshavenegativevalues. By usingasampling method called
sequential importance sampling (SIS) [7], an approximation
to the posterior distribution of the cameramotion and theva
lidity vector is obtained. Our approach can deal with both
2D and 3D scenes and since the temporal relationship of the
moving targetsin the entire video sequence istaken into ac-
count during the sequential sampling procedure, our algo-
rithm is robust to observation noise and gives better targets
detection results.

2. THEORY OF SEQUENTIAL IMPORTANCE
SAMPLING

The Sl Stechniqueisarecently proposed method for approx-
imating the posterior distributionof thestate vector for apos-



sibly nonlinear dynamic system[7]. Itisavery practical tool
for prediction, filtering and smoothing of nonlinear and/or
non-Gaussian state space models and has been used in ob-
ject tracking [8] as well as verification [9] where the algo-
rithmisusually called the Condensation algorithm. Usually,
the state space model of a dynamic system is described by
observation and state equations. If the measurement is de-
noted by y, and the state parameter by x;, essentialy, the
observation equation providesthe conditional distribution of
the observation giventhestate, f;(y,|x:). Similarly, thestate
equation gives the Markov transition distribution from time
t tothenext time, ¢;(X;+1|%:). Thegoal isto find the poste-
rior distribution of the states X; = (X, - - -, X¢) given all the
available observations up to ¢, = (X;) = P(X:|Y:) where
Vi = {y;}i_,. Oneway to represent an approximation to
the posterior distribution isby a set of samplesand their cor-
responding weights.

Definition [7] A random variable X drawn from a distribu-
tion g is said to be properly weighted by a weighting func-
tion w(X) with respect to the distribution = if for any inte-
grable function h,

E,h(X)w(X) = Exh(X).
A set of random draws and weights {z(), w()}7, , is
said to be properly weighted with respect to = if

Z;’nﬂ h(m(j))w(j)
ST )

for any integrable function h.

Suppose {Xf”};’;l isaset of random samples properly
weighted by the set of weights {ng )}3“:1 with respect to =,
and let g;11 beatrial distribution. Then the recursive SIS
procedurethat obtai nsthe random samplesand wei ghts prop-
erly weighting 7; 41 isasfollows.

SIS steps: forj:l,'-~~,m, ' '
(A) Draw Xoyr = x§Ql frpm g1 (Xeq1 |Xt(])). Attach XEQI
to form Xt(i)l =, x§f+>1).

(B) Compute the "incremental weight” u;41 by

_ T (X))
(A7) grgs (Xeg |2

and let “’5{21 = ugﬁ_)l ng).

It can beshown[7] that {Xt(_{)l , wﬁfﬁl 7., isproperly weighted

with respect to w4 1.

Hence, the above SIS steps can be applied recursively to
get the properly weighted set for future time instants when
corresponding observations are available. The choice of the
trial distribution g, isvery crucial in SIS sinceit directly
affectsthe efficiency of the proposed SIS method. 1n our ap-
proach, g:41 ischosen as

lim

m—0o0

g1 (K1 |Xe) = T (Xeg1 [%e)

Xc

Fig. 1. Cameracoordinate system and motion model

due to the convenience it provides during the computation
and satisfactory performancefromthe associated SIS method.
It can be shown that in this case u; 41 o¢ p(Y, 1 [Xeq1, Vi)-

3.BAYESIAN MOVING TARGETSDETECTION

In our approach to moving targets detection, we first detect
aset of feature pointsin thefirst frame. Typically, dueto the
intensity differences between moving targets and the back-
ground, some of thefeature pointswill belocated onthemov-
ing targets. Thedetected feature pointsthen aretracked through
the video sequence. By using the SIS technique, the poste-
rior distribution of the camera motion can be approximated
by aset of properly weighted motion samplesand the feature
points on the moving targets can be segmented out simulta-
neoudly.

3.1.A State Space M odel

Par ameterization Two 3D Euclidean coordinate systemsused
inthis paper are showninFig. 1. System O and O, respec-
tively denote the camera-centered coordinate frames before
cameramotion and at timet¢ when the cameramoves. Assuming
that the camera internal calibration parameters are known,
five parameters are enough to describe the camera motion.

mt = (1/)1‘11//):!/1 1//}2‘1&1[7))

¥ = (Ys, Yy, 1. ) aretherotation angles of the cameraabout
the coordinate axes of theinitia frame O. («, 3) aretheel-
evation and azimuth angles of the camera trandlation direc-
tion, also measured in O. The validity vector v, describes
the segmentation of the feature points. If M feature points
are tracked through the sequence, v; is an M -dimensional
vector. Each entry of v, isassociated with afeature point. It
indicates the possibility that this point belongs to the back-
ground.

State space model Given the above parameterization, the
segmentation of the moving objects and the motion of the
cameracan be well described using a state space model with
motion parameters m, and the validity vector v; asits state
vector, i.e.

Xy = (mt, Vt)

and the perspective projection of the feature points on the
image plane as the observations. The corresponding state



space model can be expressed as follows.

Xig1 = Xt + ng (1)
Y, = Proj(X;,S:) + ny 2

where n, isthe dynamic disturbance of the system, describ-
ing the time varying property of the state vector. y, arethe
image positions of thefeaturesat timet Proj(-) denotesthe
perspective projection. Itisafunction of cameramotion m;,
validity vector v, and scene structure S;. In the following
section, it can be shown that the likelihood function f(y, , , |
X:4+1) can be obtained without knowing S;. Hence in the
moving target detection procedure, S; is not required to be
explicitly computed.
3.2.SlS Formulation
Trial functions Based on the above state space model, we
would like to design an SIS method for finding an approxi-
mation to the posterior distribution of the state parameters,
7 (X¢) = P(X:]y,). Aswe mentioned above, thetrial distri-
bution in the SI'S procedure used in our approach is chosen
as

Gr1 (Xeg1[Xe) = T (Xeg1 [Xe)
If no prior knowledge about motion is available, a random
walk will be asuitable alternative for modeling the dynamic
motion of the camera. Hence the trial distribution for the
motion parametersm, issimply the onestep Markovian state
transition distributionq; +1(M;4+1|M:). Therefore, during the
SISstep (A), we draw samplesfrom the distribution of m, +
n,. For the validity vector, the samplesat ¢t + 1 are drawn
via

vipr = v +E(Me,Y,) + 1y (©)
where n,, isthe dynamic noise in the validity vector and v
isan exponentially forgetting factor. Both of them represent
the possibletime-varying property of the validity vector. n,
can be approximated using a Gaussian random vector. &(-)
isafunction used to update the current validity vector.

£m ) = 0~ sion(le/en) T @

wheree = e(my,Y,) isthe distance between the observed
feature points and their associated epipolar lines given the
motion parameters m;. ey, isapre-chosen threshold for the
abovedistance. Thissampling step essentially playstherole
of temporal integration of validity vector. The "incremen-
tal weight” u; 41 inthiscaseisproportional to thelikelihood
function of the observation given the motion parameters, i.e.

gy O f(Yoyq[Xet1) ()

Likelihood function Inthis case, the likelihood function of
the observation given the state parameter is obtained via

M

F(Ylxe) o I{E sign(s(i))>7}(yi+) Z vt (i) exp {—
i=1

(6)

€
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where . .
o= 0O o, @
and ¢ isgiven by
Y e(i)?vy (3)
€= = €S)
RZL0)

SIS Procedure

Linitialization. Draw samples of the motion parame-
ters{mé”};”: fromtheinitial distribution m. 7 de-
scribes the distribution of motion parameters my be-
fore camera moves. Note the fact that camera does
not move does not imply mg = 0. Although the rota-
tion angles ¢ and the trand ational vector are all zero,
the tranglational angles can be uniformly distributed.
Hence, in {mg’ )}, the components of the rotation an-
glesareall set to zero and the samples of « and 3 are
drawnfromtheuniformdistributionin [0, =] and [0, 2],
respectively. The components in the samples corre-
sponding to the validity vector are set to one. Assign
equal weightsto above samples.

Fort=1,---,F:

2.Samples generation. Draw samples of the motion pa-
rameters at time instant ¢, {mi”};“zl, from the distri-
butions of {mgj_ )1 T+ . Since video sequences
are used here as the image sources instead of sets of
image frames in arbitrary orders, a random walk dy-
namic model is assumed and the following distribu-
tion can be used as a good approximation to that of
T -

{ ny, ~ N(0,0,),0€ {z,y,z} )
ng ~ U(=6x,6x),k € {e, B}

where ¢,,6, and 65 can be chosen as some positive

numbers. Draw samplesof thevalidity vector {yfj )};-“:1
via(3).

3.Weight computation and re-sampling. Compute the
weights of the sampl 6,{105] ) }, using theobserved fea-
ture correspondence according to the likelihood equa-
tion (6). The resulting samples and their correspond-
ingweights (x\’), (7)) are properly weighted withre-
spect to 7 (X, ). Re-sample the above samples.

Sincethe samplesequencesare properly weighted by their
weightswith respect to the posterior distribution of the state
parametersx;, either the minimum mean square estimate (M
MSE) or the maximum posterior (MAP) estimate of x; can
be obtai ned by finding the sample mean or locating the modes
of =, respectively. Once an estimate of the validity vector
for thefeature pointsisabtained, classification methodssuch
asthe K-meansalgorithm can be applied to split the features
into a group of features on the background and a group of
features bel onging to the moving objects.
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Fig. 3. (9 is the feature trajectories and (b) shows the detected
walking person in the testing sequence.

4.EXPERIMENTAL RESULTS

The proposed moving object detection algorithm has been
tested using several video sequences and satisfactory results
have been obtained. One of the experimental result isshown
here. Fig. 2 showsthe features detected in the first frame
of a sequence containing a walking person. This sequence
was captured by amoving camera. Fig. 3 (a) showsthefea-
ture trgjectories in the sequence. It can be seen that some of
the feature points are on the walking person and the rest of
the features are on the background. By using the algorithm
described here, the points on the walking person can be seg-
mented out from the feature set and the camera motion re-
spect to the background is estimated simultaneoudly. Fig. 4
(8) shows the sample mean of the validity vector at the last
frame of the sequence and Fig. 4 (b)-(f) show the posterior
distribution of the motion parameters. It can be seen that the
feature points on thewalking person have negativeentriesin
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Fig. 4. (a) isthe mean of the validity vector and (b)-(f) are the a
posterior distributions of the motion parameters at the last frame
in the sequence. (b) and (c) are the distribution of the trandation
angles o and §3, respectively. (d),(€) and (f) are the distribution of
the rotational anglesabout X, Y and 7 axes.

the validity vector. The detection result of the walking per-
sonisshown inFig. 3 (b).
5. CONCLUSIONS

A recursive agorithm for moving targets detection from a
moving platform using the Sl Stechniqueis presented in this
paper. Both 2D and 3D scenes can be handled by the pro-
posed method. Since the temporal relationship of the mov-
ing target segmentation between adjacent frames in the en-
tire video sequence has been taken into account by the SIS
procedure, our approach isvery robust to observation noise.
Although in this paper, we assume that the internal calibra-
tion parameters are known, a much weaker calibration will
also give very similar results. When only the principal point
(the intersection point of the optical axis of the camerawith
theimage plane) is given and thefield of view (FOV) of the
camerais unknown, a similar SIS procedure can be devel-
oped to simultaneously recover the FOV of the camera, seg-
ment moving targets, and estimate camera motion. Future
research will focus on the extraction of the boundary of the
moving targets.
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