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ABSTRACT

In this paper, we present a new technique for detecting mov-
ing targets from image sequences captured by moving sen-
sors. Feature points are detected and tracked through the im-
age sequences. A validity vector is used to describe the con-
sistency of feature trajectories with sensor motion. By using
the sequential importance sampling method, an approxima-
tion to the posterior distribution of the sensor motion and the
validity vector is derived and the feature points belonging to
the moving target are then segmented out. Real image exam-
ples are included.

1.INTRODUCTION

Detection of moving targets from a moving platform is a very
important task in video surveillance applications. Mainly three
types of moving targets detection algorithms have been de-
veloped. The first type of algorithms are 2D algorithms [1].
They are applicable when the observed scene can be well
modeled by a flat surface or the camera only rotates and zooms.
The 2D algorithms have difficulties in processing sequences
containing rich variations in the 3D scene structure. The sec-
ond type of algorithms are called 3D algorithms [2], where
the structure from motion (SfM) problem is solved using fea-
ture correspondences from the sequences. Multiple solutions
to camera motion relative to the background and moving tar-
gets are typically found. Although the 3D algorithms are sup-
posed to handle sequences with general camera motion and
scene structure, due to the inherent ambiguity in SfM [3],
the 3D algorithms can work well only in some specific cases
such as when the camera can be modeled by orthographic
projection, etc. The third approach is called plane+parallax
algorithm [4]. In [4], a plane registration process using the
dominant 2D parametric transformation is applied to remove
the effects of camera rotation, zoom and calibration. Since
the residual motion field is due to the presence of moving
objects and camera translation, the moving targets are iden-
tified by looking at image regions violating the epiploar con-
straints if the global epipole can be extracted correctly. How-
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ever, it is a challenge to extract the global epipole (or focus
of expansion) from a noisy translational motion field cor-
rupted by moving objects. Various robust regression tech-
niques such as M-estimators and random sampling consen-
sus paradigm (RANSAC) have also been used for comput-
ing the fundamental matrix [5] and then the moving targets
are segmented out. A common drawback of the above meth-
ods is that since only two, three or four frames from the se-
quences are used to detect moving targets, the close temporal
relationship of the motion pattern of the moving targets in a
video sequence is not explored.

Given a series of image frames, the moving target detec-
tion result ( noisy or might be partially wrong) obtained from
the previous frames should be able to help refine moving tar-
get detection using current and incoming frames and make
the detection algorithm more robust to observation noise in
a recursive fashion. Although the importance of temporal
correlation in the motion field has received some attention
in detecting independent motion [6] from 2D scenes (aerial
sequences), a sound theoretical computational framework is
still needed to utilize the temporal correlation in detecting
moving targets in both 2D and 3D scenes.

In this paper, we develop a recursive algorithm for mov-
ing targets detection. A validity vector is used to describe
the segmentation of the feature points. During recursion, the
validity vector evolves such that the entries corresponding
to the background have large positive values while other en-
tries corresponding to the feature points on the moving ob-
jects have negative values. By using a sampling method called
sequential importance sampling (SIS) [7], an approximation
to the posterior distributionof the camera motion and the va-
lidity vector is obtained. Our approach can deal with both
2D and 3D scenes and since the temporal relationship of the
moving targets in the entire video sequence is taken into ac-
count during the sequential sampling procedure, our algo-
rithm is robust to observation noise and gives better targets
detection results.

2.THEORY OF SEQUENTIAL IMPORTANCE
SAMPLING

The SIS technique is a recently proposed method for approx-
imating the posterior distributionof the state vector for a pos-



sibly nonlinear dynamic system [7]. It is a very practical tool
for prediction, filtering and smoothing of nonlinear and/or
non-Gaussian state space models and has been used in ob-
ject tracking [8] as well as verification [9] where the algo-
rithm is usually called the Condensation algorithm. Usually,
the state space model of a dynamic system is described by
observation and state equations. If the measurement is de-
noted by y � and the state parameter by x � , essentially, the
observation equation provides the conditional distribution of
the observation given the state,

� ��� y ��� x ��� . Similarly, the state
equation gives the Markov transition distribution from time�

to the next time, 	 �
� x ����
 � x��� . The goal is to find the poste-
rior distribution of the states � ����� x 
���������� x��� given all the
available observations up to

�
, � ��� � ��������� � � � � ��� where� � �"! y #%$ �#'& 
 . One way to represent an approximation to

the posterior distribution is by a set of samples and their cor-
responding weights.
Definition [7] A random variable X drawn from a distribu-
tion g is said to be properly weighted by a weighting func-
tion w(X) with respect to the distribution � if for any inte-
grable function h,( )+* ��,-�
./��,-�0� ( 12* �3,4��5

A set of random draws and weights !7698;:�<
��.=8>:�< $�?: & 
 , is
said to be properly weighted with respect to � if@BABC?EDGF

H ?: & 
 * ��6 8;:�< ��. 8;:�<H ?: & 
 . 8>:�< � ( 1 * ��,-�
for any integrable function h.

Suppose ! � 8;:�<� $�?: & 
 is a set of random samples properly

weighted by the set of weights !7. 8>:�<� $�?: & 
 with respect to � �
and let I ����
 be a trial distribution. Then the recursive SIS
procedure that obtains the random samples and weights prop-
erly weighting � ����
 is as follows.
SIS steps: for J �LKM����������N ,
(A) Draw , ����
 � x 8;:�<�3��
 from I �3��
 � x ����
 � � 8>:�<� � . Attach x 8>:�<����

to form � 8>:�<�3��
 �O� � 8>:�<� � x 8>:�<����
 � .
(B) Compute the ”incremental weight” P ����
 by

P 8>:�<����
 � � ����
 � � 8;:�<����
 �� � � � 8>:�<� � I ����
 � x ����
 � � 8>:�<� �
and let . 8>:�<����
 � P 8>:�<����
 . 8>:�<� .

It can be shown [7] that ! � 8>:�<�3��
 ��. 8>:�<�3��
 $�?: & 
 is properly weighted
with respect to � �3��
 .

Hence, the above SIS steps can be applied recursively to
get the properly weighted set for future time instants when
corresponding observations are available. The choice of the
trial distribution I ����
 is very crucial in SIS since it directly
affects the efficiency of the proposed SIS method. In our ap-
proach, I �3��
 is chosen asI ����
�� x ����
 � � ���Q� � ��� x�3��
 � x���
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Fig. 1. Camera coordinate system and motion model

due to the convenience it provides during the computation
and satisfactory performance from the associated SIS method.
It can be shown that in this case P �3��
SRUTV� y �3��
+� x ����
�� � ��� .

3.BAYESIAN MOVING TARGETS DETECTION

In our approach to moving targets detection, we first detect
a set of feature points in the first frame. Typically, due to the
intensity differences between moving targets and the back-
ground, some of the feature points will be located on the mov-
ing targets. The detected feature points then are tracked through
the video sequence. By using the SIS technique, the poste-
rior distribution of the camera motion can be approximated
by a set of properly weighted motion samples and the feature
points on the moving targets can be segmented out simulta-
neously.

3.1.A State Space Model
Parameterization Two 3D Euclidean coordinate systems used
in this paper are shown in Fig. 1. System W and W � , respec-
tively denote the camera-centered coordinate frames before
camera motion and at time

�
when the camera moves. Assuming

that the camera internal calibration parameters are known,
five parameters are enough to describe the camera motion.

m �Q�X��Y[Z\��Y�]^��Y�_M��`0�
a[�Yb����Y�Z9��Y�]c��Y�_+� are the rotation angles of the camera about
the coordinate axes of the initial frame W . ��`0�
a[� are the el-
evation and azimuth angles of the camera translation direc-
tion, also measured in W . The validity vector d � describes
the segmentation of the feature points. If e feature points
are tracked through the sequence, d � is an e -dimensional
vector. Each entry of d � is associated with a feature point. It
indicates the possibility that this point belongs to the back-
ground.
State space model Given the above parameterization, the
segmentation of the moving objects and the motion of the
camera can be well described using a state space model with
motion parameters m � and the validity vector d � as its state
vector, i.e.

x ����� m �f� d ���
and the perspective projection of the feature points on the
image plane as the observations. The corresponding state



space model can be expressed as follows.

x ����
 � x �\gih\Z (1)

y � � �Gj7k J � x � �
l � � gUh\] (2)

where h Z is the dynamic disturbance of the system, describ-
ing the time varying property of the state vector. y � are the
image positions of the features at time

� �Gj7k J ���>� denotes the
perspective projection. It is a function of camera motion m � ,
validity vector d � and scene structure lm� . In the following
section, it can be shown that the likelihood function

� � y ����
 �
x ����
 � can be obtained without knowing l � . Hence in the
moving target detection procedure, l � is not required to be
explicitly computed.

3.2.SIS Formulation
Trial functions Based on the above state space model, we
would like to design an SIS method for finding an approxi-
mation to the posterior distribution of the state parameters,� �
� x ���Q�n�o� x � � y � � . As we mentioned above, the trial distri-
bution in the SIS procedure used in our approach is chosen
as I ����
�� x ����
 � x ���p� � �
� x ����
 � x���
If no prior knowledge about motion is available, a random
walk will be a suitable alternative for modeling the dynamic
motion of the camera. Hence the trial distribution for the
motion parameters m � is simply the one step Markovian state
transition distribution 	 ����
 � m ����
 �m � � . Therefore, during the
SIS step (A), we draw samples from the distribution of m ��gh ? . For the validity vector, the samples at

� g K are drawn
via d ����
 �rq d �mgts � m � � y� � gUhmu (3)

where h u is the dynamic noise in the validity vector and q
is an exponentially forgetting factor. Both of them represent
the possible time-varying property of the validity vector. h u
can be approximated using a Gaussian random vector. s ���>�
is a function used to update the current validity vector.s � m ��� y� �v�X�-w �3xw g K ��y0zU{�| I h �+} w�~Mw ��x��+��w g Kw ��x (4)

where w � w � m � � y � � is the distance between the observed
feature points and their associated epipolar lines given the
motion parameters m � . w ��x is a pre-chosen threshold for the
above distance. This sampling step essentially plays the role
of temporal integration of validity vector. The ”incremen-
tal weight” P �3��
 in this case is proportional to the likelihood
function of the observation given the motion parameters, i.e.P ����
 R � � y ����
 � x ����
 � (5)

Likelihood function In this case, the likelihood function of
the observation given the state parameter is obtained via� � y ��� x ���pRO�f� H�� # )�� 8 � 8 # <�<3����� � d �� � �� #'& 
 d �� ��|3�2���^��!Mz �� y� g � y� $

(6)

where d �� ��|��p��� d � ��|3�f� d � ��|3�0�r��^� k � * w j7.�|3{ w (7)

and � is given by

� � H �#�& 
 w � ��|�� y d �� ��|3�H �#�& 
 d �� ��|3� (8)

SIS Procedure

1.Initialization. Draw samples of the motion parame-
ters ! m 8;:�<� $�?: & 
 from the initial distribution � � . � � de-
scribes the distribution of motion parameters m � be-
fore camera moves. Note the fact that camera does
not move does not imply m � �n� . Although the rota-
tion angles Y and the translational vector are all zero,
the translational angles can be uniformly distributed.
Hence, in ! m 8>:�<� $ , the components of the rotation an-
gles are all set to zero and the samples of ` and a are
drawn from the uniform distribution in � ��� ��� and � �^��� ��� ,
respectively. The components in the samples corre-
sponding to the validity vector are set to one. Assign
equal weights to above samples.

For
� �LKM�������
��  :

2.Samples generation. Draw samples of the motion pa-
rameters at time instant

�
, ! m 8>:�<� $�?: & 
 , from the distri-

butions of ! m 8;:�<�%¡[
 $�?: & 
 gih ? . Since video sequences
are used here as the image sources instead of sets of
image frames in arbitrary orders, a random walk dy-
namic model is assumed and the following distribu-
tion can be used as a good approximation to that ofh ? . � h\¢^£¥¤ ¦ ���^� �\§ �¨��©�ªb!76[��«^��¬ $hm­ ¤ ® ��z�¯ ­ ��¯ ­ �f��°±ª²!7`S�
a $ (9)

where � § , ¯f³ and ¯�´ can be chosen as some positive

numbers. Draw samples of the validity vector ! d 8;:�<� $�?: & 

via (3).

3.Weight computation and re-sampling. Compute the
weights of the samples, !+. 8>:�<� $ , using the observed fea-
ture correspondence according to the likelihood equa-
tion (6). The resulting samples and their correspond-
ing weights � x 8>:�<� ��. 8>:�<� � are properly weighted with re-
spect to � ��� x ��� . Re-sample the above samples.

Since the sample sequences are properly weighted by their
weights with respect to the posterior distribution of the state
parameters x � , either the minimum mean square estimate (M
MSE) or the maximum posterior (MAP) estimate of x � can
be obtained by finding the sample mean or locating the modes
of � � , respectively. Once an estimate of the validity vector
for the feature points is obtained, classification methods such
as the K-means algorithm can be applied to split the features
into a group of features on the background and a group of
features belonging to the moving objects.
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Fig. 2. Feature points locations in the first frame
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Fig. 3. (a) is the feature trajectories and (b) shows the detected
walking person in the testing sequence.

4.EXPERIMENTAL RESULTS

The proposed moving object detection algorithm has been
tested using several video sequences and satisfactory results
have been obtained. One of the experimental result is shown
here. Fig. 2 shows the features detected in the first frame
of a sequence containing a walking person. This sequence
was captured by a moving camera. Fig. 3 (a) shows the fea-
ture trajectories in the sequence. It can be seen that some of
the feature points are on the walking person and the rest of
the features are on the background. By using the algorithm
described here, the points on the walking person can be seg-
mented out from the feature set and the camera motion re-
spect to the background is estimated simultaneously. Fig. 4
(a) shows the sample mean of the validity vector at the last
frame of the sequence and Fig. 4 (b)-(f) show the posterior
distribution of the motion parameters. It can be seen that the
feature points on the walking person have negative entries in
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Fig. 4. (a) is the mean of the validity vector and (b)-(f) are the a
posterior distributions of the motion parameters at the last frame
in the sequence. (b) and (c) are the distribution of the translation
angles µ and ¶ , respectively. (d),(e) and (f) are the distribution of
the rotational angles about · , ¸ and ¹ axes.

the validity vector. The detection result of the walking per-
son is shown in Fig. 3 (b).

5. CONCLUSIONS

A recursive algorithm for moving targets detection from a
moving platform using the SIS technique is presented in this
paper. Both 2D and 3D scenes can be handled by the pro-
posed method. Since the temporal relationship of the mov-
ing target segmentation between adjacent frames in the en-
tire video sequence has been taken into account by the SIS
procedure, our approach is very robust to observation noise.
Although in this paper, we assume that the internal calibra-
tion parameters are known, a much weaker calibration will
also give very similar results. When only the principal point
(the intersection point of the optical axis of the camera with
the image plane) is given and the field of view (FOV) of the
camera is unknown, a similar SIS procedure can be devel-
oped to simultaneously recover the FOV of the camera, seg-
ment moving targets, and estimate camera motion. Future
research will focus on the extraction of the boundary of the
moving targets.
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