
������������	
�������

���������
�������
�

���������	
���
�������������������
������
�������

Institut für Theoretische Nachrichtentechnik Robert Bosch GmbH
und Informationsverarbeitung Hildesheim, Germany
Universität Hannover, Germany

��
�����

A programmable processor architecture for MPEG-4 video is
proposed, that can serve as a coprocessor module in MPEG-4
decoder systems. It consists of a 64-bit dual-issue VLIW
macroblock engine, a separate RISC core for bitstream
parsing and system processing, and an autonomous I/O
processor. A separate DSP is used for MPEG audio support.
The architecture is fully programmable and supports
parallelism on data-, instruction- and thread-level to cope
with the high flexibility and processing demands of the
MPEG-4 standard. The first implementation will support real-
time decoding of MPEG-4 advanced simple profile or of
MPEG-4 ACE-profile (CCIR601, single-object). Future
designs will add support for object-based MPEG-4
functionalities. The paper focuses on the architecture,
instruction set, and performance of the macroblock engine,
which operates as an autonomous co-processor and carries
most of the workload in MPEG-4 video processing. It has a
RISC-based architecture with support for parallel processing
of instructions and data. Special instructions are implemented
with specific support for video processing.

��� ������������

In contrast to its predecessors, MPEG-1 [1] and MPEG-2 [2],
which focus on specific applications such as playback from
CD-ROM or digital TV, the upcoming MPEG-4 [3][4][5]
standard offers a standardized framework for a whole range of
multimedia applications. Examples include teleshopping,
interactive TV, internet games, or mobile video
communication. MPEG-4 integrates different types of
multimedia data and services by the introduction of an object-
based approach for the description and coding of multimedia
contents. Key aspects of MPEG-4 include, among others,
independent coding of objects in a picture; the ability to
interactively composite these objects into a scene at the
display; transmission of 3D scene descriptions; temporal and
spatial scalability; and improved error resilience.

As MPEG-4 targets a much broader range of different
applications and bitrates than previously defined hybrid video
coding standards like H.263 or MPEG-2, it employs a higher
number of different algorithms and coding modes. Therefore,
MPEG-4 implementations require a more software-oriented
approach to be efficient. However, the total computational

load for an optimized implementation of an MPEG-4 codec
exceeds the performance levels of today’s DSPs, making
further hardware acceleration a necessity. For that purpose,
we develop a new architecture which employs mainly three
(optional four) independent processor cores. Each of them is
optimized for the processing of specific data types, such as
video, audio or stream processing. Video coding, the main
computational load, is carried out by the macroblock engine,
a 64-bit dual-issue VLIW core.

Section 2 gives an overview of the MPEG-4 standard. The
proposed architecture is detailed in section 3 while in section
4 the architecture of the macroblock engine is presented.
Section 5 concludes the paper.

��� ��
���
����
�������

Current MPEG and ITU audiovisual codecs work frame and
block based. At the sender site, video frames and audio are
rendered, composed, coded, multiplexed and transmitted to
the receiver. At the receiver site, the transport stream is
demultiplexed, video and audio data are decoded, syn-
chronised and presented as defined by the sender site. In
contrast to that, an MPEG-4 scene consists of one or more
audio-visual objects (AVOs) from multiple sources that are
coded separately, using different coding tools for video, 3D
graphics, speech or music. Thus, the composition of the final
scene to be shown at the display is shifted from the studio
(encoder) to the receiver (decoder) side [Fig. 1].

Warping,
rendering,

compositing

Warping,
rendering,

compositing

com-
press

com-
press

Script
Scene-graph

decom-
press

decom-
press

com-
press

com-
press

decom-
press

decom-
press

com-
press

com-
press

decom-
press

decom-
press

com-
press

BIFS
decom-
press

m
u
l
t
i
p
l
e
x

m
u
l
t
i
p
l
e
x

d
e
m
u
l
t
i
p
l
e
x

d
e
m
u
l
t
i
p
l
e
x

user-interactionuser-interaction

ScriptBIFS Scene-graph

Fig. 1: MPEG-4 Coding Scheme

In MPEG-4, the algorithms used for coding of natural video
are based on the block-oriented hybrid coding scheme, as
they are known from MPEG-1 and MPEG-2, but were

extended to allow the coding of arbitrarily shaped video
objects and 3D graphics objects. Further extensions were
added for better coding efficiency (GMC, quarter-pel MC).
For the use in error prone environments, error resilience
features are addressed by several parts of the MPEG-4
standards. This makes MPEG-4 especially suitable for the use
in wireless portable or mobile applications.

��� ��
�����
���
�

An MPEG-4 decoder chip is currently being developed by
Bosch and University of Hannover. The application focus of
the multimedia chip is on mobile and stationary real-time
communication and interactive broadcast systems for mobile
receivers. First silicon is expected for early next year.

���� ������ �!�" #�$%&�!$%�%"�'

Due to its concept, MPEG-4 differs significantly from
existing audiovisual coding standards in terms of its
requirements on processing power, flexibility and memory
bandwidth [6], [7].

First complexity assessments of the standard show that at
least a decoder software implementation will be possible on
advanced DSP or RISC processors for the simpler profiles
and levels [8]. However, the computation requirements for
video broadcast with high frame rates, full CCIR601
resolution, or for two-way real-time communication for
mobile and portable applications, exceed the capabilities of
current programmable processors. Furthermore, power-
consumption, cost and size of the processing hardware are
important parameters for mobile and portable applications.
An optimised MPEG-4 processor platform therefore must
combine the flexibility (i.e. programmability) required for the
variety of different tools with a minimum of cost and power
consumption of the implementation.

Table 1: Algorithmic function classes and their properties

6WUHDP
3URFHVVLQJ

0DFUREORFN
SURFHVVLQJ

3UHVHQWDWLRQ
SURFHVVLQJ

6HTXHQWLDO�ZRUG
DOLJQHG
SURFHVVLQJ

7\SH�RI
SDUDOOHOLVP

&RPSOH[LW\�
SURFHVVLQJ�UHTXLUHPHQWV

'DWD�W\SHV

mostly sequential

data

data, instruction

data, instruction

high complexity
non-word aligned

processing

low complexity
high data bandwidth

block oriented

medium complexity
high data bandwidth

irregular access

medium complexity
irregular data access

short (<16 bit int)

short (8, 16 [32 bit] int)

medium (16, 32 bit, int
floating point)

Varying (8 -24bit int,
floating point)

3DUVLQJ
&RPSRVLWLRQ
5/'��9/'

&RPSRVLWLQJ
5HQGHULQJ
*UDSKLFV

'&7�,'&7
)LOWHUV
0(��0&

$XGLR�&RGHFV
&(/3
+9;&

$OJRULWKP
H[DPSOH

One possible key to achieve this goal is the partitioning of the
processor design into programmable units, which are
optimised for a certain class of algorithmic functions within
MPEG-4 [8]. An analysis of a word-width optimised MPEG-
4 software reference model as a basis for the processor
partitioning showed four classes of algorithms with similar
properties in terms of complexity, processing requirements
and parallelisation potential (Table 1).

Stream processing algorithms are control flow oriented with a
high share of inherently sequential code, many

interdependencies and non-word aligned processing. A
generic RISC architecture with instruction set extensions for
bit operations and code word transforms is a natural choice
for this type of processing. Macroblock-based processing of
video is still one of the most demanding parts of MPEG-4,
especially due to the high throughput of image data and the
addition of new algorithms. Programmable processor
architectures with splitable ALUs have proven useful for
coping with the bandwidth and processing requirements of
these mainly regular, block oriented algorithms. Presentation
processing, i.e., compositing of VOPs, includes overlay
calculation, geometrical transforms, and a number of typical
graphics algorithms, like texture mapping and bi- or trilinear
interpolation. In the audio coding sector, processing consists
of classical DSP algorithms, word aligned processing with a
high share of multiply-accumulate operations and a high
dynamic range. Due to the several alternative audio
algorithms, the mapping on a conventional DSP structure is
the most obvious solution.

���� �(%$ ##� $)*!�%)��$%

The algorithmic partitioning of MPEG-4 type processing is
directly mirrored in the architecture of the MPEG-4 decoder
chip (Fig. 2). The processor consists of three (optional four)
independent, programmable processors. Each of them is
optimised for one of the algorithmic classes.

I/O-Processor

0$&52%/2&.
(1*,1(

TRANS-
CODER

RISC-CORE
MIPS R4000

VIDEO IN

SCALER
VIDEO OUT

CHANNEL
INTERFACE

AUDIO
INTERFACE

$8',2�'63

9,'(2�352&(6625

675($0�352&(6625

03(*���'(&2'(5

SDRAM /
FLASH

INTERFACE
RUN

LEVEL
CODEC

MOTION
ESTIMAT

ION

&RPSRVLWLQJ��
5HQGHULQJ��RSWLRQDO�

Fig. 2: Architecture of the proposed MPEG-4 decoder.
The stream processor consists of a standard RISC core with
instruction and data cache. To achieve high performance for
bit stream parsing and composition, variable length coding
and decoding, a transcoder coprocessor has been added. The
transcoder allows the transformation of bit segments of
variable length into another code and also provides additional
instructions for efficient bit manipulation. A standard DSP
may be added for MPEG-audio processing. They use a
shared-distributed memory system for storage and exchange
of local data. The video processor is optimised for
macroblock oriented algorithms. It consists of two hard-wired

units for motion estimation and run length coding and a
vector-based, programmable macro block engine for all other
macroblock-oriented algorithms. For the higher MPEG-4
profiles, a separate presentation processor for video
compositing and rendering can be added. It will be part of a
future implementation, where object-based funcionalities are
targeted. All transfers to and from external memories (FLASH
ROM and SDRAM) are scheduled by an autonomously
operating I/O processor.

��� ������	��+�
����

���� � � �� �*��$)*!�%)��$%

The structure of the macroblock engine is characterized by the
existence of two parallel data paths, the scalar and the vector
data path [Fig. 3]. The scalar data path operates on 32- bit
data words in a 32-entry register file and provides control
instructions such as jump, branch, and loop. The vector data
path is equipped with a 64-entry register file of 64-bit width.
The 64-bits-wide arithmetic execution units in the vector
path, e.g., MUL/MAC or ALU, incorporate subword
parallelism by processing either two 32-bit, four 16-bit, or
eight 8-bit data entities in parallel within a 64-bit register
operand. The MUL/MAC unit even delivers a 128-bit result
by writing back two 64-bit registers, thus preserving the full
precision of the computed result. This way four 16-bit
multiplications with 32-bit accumulation can be performed in
parallel. With its support for subword parallelism, the vector
data path is particularly suited to process the repetitive
operations of typical macroblock algorithms at high
throughput.

9HFWRU�5HJLVWHU�)LOH�����ELW�6FDODU�5HJLVWHU�)LOH
����ELW�

$/808/
0$&

6)8
�QG�/HYHO
0HPRU\$/8 6)8

Scalar Data Path Vector Data Path

,QVWUXFWLRQ�0HP
,QVWUXFWLRQ�'HFRGHU

&RQWURO�8QLW

Fig. 3: The two data paths of the macroblock engine.
Macroblock engine. Special function units (SFU) provide
instructions characteristic for MPEG-4.

The macroblock engine’s parallel data paths are controlled by
a dual-issue 64-bit VLIW(very long instruction word). By
default, the first slot’s instruction is issued to the vector path,
and the second one is issued to the scalar path, enforcing
parallel execution. However, also two vector or two scalar
instructions can be paired within a VLIW. With four read/two
write ports on the vector register file, even two vector
instructions can execute in parallel provided they do not
belong to the same instruction group (i.e., are not executed on
the same hardware unit). If parallelization is not possible, the
instruction decoder autonomously serializes the execution of
instructions. The flexible utilization of the VLIW minimizes
the number of void instruction slots and promotes code
density.

Instructions and data are supplied to the macroblock engine
via local memories, which are accessible within a single clock
cycle. Transfers between external RAM and local memories
are performed in the background by programmed DMA as the
program execution continues. For the core video algorithms,
scalar and vector path can operate in concert to exchange
blocks of video data between the second-level memory and
the vector register file without stall cycles by performing
parallel stores and loads.

���� �"'�$�)�!�"�
%�

The instruction set of the macroblock engines falls into two
parts: Scalar instructions and vector instructions. Only vector
instructions support subword parallelism. Common features
of both instruction types include signed/unsigned
interpretation of operands and saturation/modulo arithmetic
variants where useful.

The instruction set can be divided into the following groups:
arithmetic, logic, shift&round, min/max/clip, data formatting,
program control, and data transfer. The arithmetic group
includes, among others, the MUL/MAC operation with
multiple precision. The RND instruction combines an
arbitrary shift with different rounding modes as defined by
MPEG-4. MIN, MAX, and CLIP instructions eliminate
comparisons and associated branches in frequent video
operations. The data formatting group comprises instructions
for arbitrary permutations of data fields.

The vector data path supports parallel processing on
subwords. Originally, SIMD-style processing of data types
packed into a single word assumes the same operation to be
applied uniformly to all data items. Whenever subword data
items are to be treated differently, program execution has to
be serialized, resulting in a loss of performance. This
limitation can be removed by the introduction of field-wise
conditional execution, that allows to sustain the SIMD
scheme even for data-dependent processing. A set of
condition flags is available for each data field in the vector
path, whose state is determined by the execution of a previous
instruction (with the explicit permission to modify the flags).
A subsequent conditionally executed instruction then
calculates the result of an operation in dependence on the
state of the condition flags.

Figure 4 shows the example of a conditional move
instruction, which moves the contents of a sub-field
depending on the status of a certain conditional bit that has
been set individually for each data field by previous
operations. Further instructions have been included that are
useful only in conjunction with the conditional execution
mode; the ADDSUB instruction, e.g., performs an addition
for the ’true’ case and a subtraction for the ’ false’ case.

F T T T

09&���0RYH�&RQGLWLRQDO

Assigned Condition

op1: source vector

target vector (new)

MSB LSB

target vector

T: true, F: false

Figure 4. Conditional move instruction (MVC).

���� �%$,�$� ")%�
'�!� �!�"

The macroblock engine has been implemented in VHDL and
synthesis results suggest that it will consume an area of appr.
5mm2 and achieve a 133 MHz clock on a 0.18µ CMOS
technology. Implementation of MPEG-4 ACE Profile (single
VOP, CCIR601, 2Mbit/s) is in progress. Core algorithms to
be implemented include DCT, motion compensation and
postprocessing. First performance estimates are shown in
Table 2. The left side indicates the number of clock cycles
needed for the algorithm, while the right side denotes the
number of cycles needed to decode one second of the
bitstream. The 2D-IDCT for example, consumes 190 clock
cycles for a complete 8x8 transform. Motion compensation
requires about 91 cycles per block (full-pel). Postprocessing
needs 377 cycles. The overall cycle-count shows that real-
time decoding of ACE profile CCIR601 video is feasible.

Table 2: Performance estimates for an MPEG-4 ACE profile
decoder (single object, CCIR601@2Mbit/s)

algorithm #cycles/block #Mcycles/s
IDCT (DC only) 21
IDCT (full) 190
IDCT 11
MC (full-pel) 91
MC (overall) 53
Post-Processing 377 65
other 4
Overall 133

-�� ����	�
���

With it’s object oriented, generic approach and a wide range
of profiles and levels, the emerging MPEG-4 video coding
standard covers a much broader range of real time
communication and broadcast applications than previous
hybrid coding standards. This flexibility results in a much
higher algorithmic complexity and significantly increased
demands on processing power. The proposed MPEG-4
multimedia processor responds to these demands by
integrating three programmable cores and a VLIW
macroblock engine on a single chip, where each unit is
adapted to the specific processing requirements of one
algorithmic function class of MPEG-4. The 64-bit dual issue
VLIW macroblock engine is optimized for the processing of
high-throughput video data and carries most of the workload

of the chip. It has been extended with special instructions that
speed-up execution of MPEG-4 video algorithms. The
processor runs at 133 MHz and is capable to decode MPEG-4
ACE profile video in real time (single object, CCIR601,
2Mbit/s).

�)."�/#%01%�%"�'

The described work was partly funded by the German
Bundesministerium für Wirtschaft und Technologie (BMWi)
and was partly carried out within the framework of the
MEDEA A116 project (M4M-MPEG fo(u)r Mobiles).

2�� �
�
�
��

[1] ISO/IEC 11172-1/-2/-3, Information Technology, “Coding

of moving pictures and associated audio for digital storage
media at up to about 1.5 Mbit/s: Systems/Video/Audio,”
1994.

[2] ISO/IEC 13818-2, “Generic coding of moving pictures
and associated audio, (MPEG-2), Part2: Video,” Nov.
1993.

[3] ISO/IEC JTC11/SC29/WG11 N2323, “Overview of the
MPEG-4 standard,” July 1998.

[4] ISO/IEC JTC11/SC29/WG11 W2502, “ISO/IEC 14496-2.
Final Draft International Standard. Part 2: Visual,”
Atlantic-City, October 1998.

[5] L. Chiariglione, “Impact of MPEG Standards on
Multimedia Industry,” ����
���
�� �
����� �������
���
�������
������������ , Vol. 86, No. 6, pp. 1222-1227,
June 1998.

[6] M. Berekovic, H.-J. Stolberg, M. B. Kulaczewski, P.
Pirsch,. H. Runge, H. Möller, J.Kneip, “Instruction Set
Extensions for MPEG-4 Video,” �������� ��� !"��� �
����
�������
����#�����, Vol. 23, No. 1, October 1999, pp. 27-
50.

[7] M. Berekovic, P. Pirsch, T. Selinger, K.-I. Wels, C. Miro,
A. Lafage, C. Heer, G. Ghigo, “The TANGRAM Co-
Processor for MPEG-4 Visual Compositing,” � � �����
$������%�����
������������
����#�����, SIPS99, Oct. 99,
pp. 311-320.

[8] J. Kneip, S. Bauer, J. Volmer, B. Schmale, P. Kuhn, M.
Reißmann, “The MPEG-4 Video Coding Standard - a
VLSI point of view,” IEEE Intl. Workshop on Signal
Processing Systems SIPS98, Boston, Oct. 1998.

