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ABSTRACT

Robust M-periodogram is defined for the analysis of
signals with heavy-tailed distribution noise. In the form of
a robust spectrogram (RSPEC) it can be used for the
analysis of nonstationary signals. In this paper a RSPEC
based instantaneous frequency (IF) estimator, with a time-
varying window length, is presented. The optimal choice
of the window length can resolve the bias-variance trade-
off in the RSPEC based IF estimation. However, it
depends on the unknown nonlinearity of the IF. The
algorithm used in this paper is able to provide the accuracy
close to the one that could be achieved if the IF, to be
estimated, were known in advance. Simulations show
good accuracy ability of the adaptive algorithm and good
robustness property with respect to rare high magnitude
noise values.

1. INTRODUCTION

A key-model of the IF concept is the complex-valued
harmonic with a time-varying phase. It is an important
model in the general theory of time-frequency (TF)
distributions. This model has been utilized to study a wide
range of signals, including speech, music, acoustic,
biological, radar, sonar, and geophysical ones. An
overview of the methods for the IF estimation, as well as
the interpretation of the IF concept itself, is presented in
[1]. One possible approach to the IF estimation is based on
TF representations [2]-[4]. The SPEC is a commonly
applied distribution within this approach.

In this paper we combine and develop two different
ideas: the robust M-periodogram and the nonparametric
approach [5]-[9] for selection of the time-varying adaptive
window length in the corresponding periodogram. The
robust M-periodogram is developed as a generalization of
the standard periodogram for analysis of stationary signals
corrupted with heavy tailed distribution noise [10]. Its
form applied to the analysis of nonstationary signals will
be referred to as the RSPEC. Recall that the heavy tailed
noise is used as a model of an impulse noise environment
[11]. The approach which exploits the intersection of
confidence interval rule [12] was used in [13] for the
standard periodogram based estimator with varying

adaptive window length. It uses only the formula for the
variance of the estimate, which does not require prior
information about the IF. Simulations based on the
discrete RSPEC show a good robustness and accuracy
ability of the presented adaptive algorithm, as well as an
improvement in the RSPEC based TF representation of
signals with the nonlinear IF.

2. BACKGROUND THEORY

2.1. Robust spectrogram
Standard SPEC IS(t,ω) definition, of a signal x(t), is

based on the standard short-time Fourier transform (STFT)
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Sampling interval is denoted by T.
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Here, the weighted square absolute error
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is used as a loss function and minimized, by determining
C. From ∂ ∂ =J t C C( , , ) / *ω 0  definition (1) follows.

In [10] it has been shown that the loss functions of
other forms than F(e)=|e|2 can be more efficient in the
optimization procedure (2). In particular, it has been
shown that the loss function of the form F(e)=|Re{e}|+
|Im{e}| can produce very good results in the case of a
signal corrupted with heavy tailed noise. The periodogram
obtained using this loss function is called the robust M-
periodogram. Its corresponding RSPEC is given in the
form:
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By minimizing J(t,ω,C) we get a solution in the form
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This is a set of nonlinear equations with unknown Ch(t,ω).
It can be solved by using the following iterative
procedure[10]:
Step 0. Initialization (standard STFT calculation):
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where η >0 and K are given.
(ii) . Setting the RSPEC IA(t,ω) as I tA( , )ω = | ( , )|C th ω 2 ,

where C t C th h
k( , ) ( , )( �)ω ω= .

Experiments have shown fast convergence of the
algorithm. Provided η=0.1 a usual number of iteration is
between 3 and 5 and never exceeded 15.

2.2. IF Estimation

Consider now the problem of IF estimation, using the
RSPEC, from the discrete-time observations

x(nT)=m(nT)+ε(nT), with m t Aej t( ) ( )= ϕ (8)
where n is an integer, T is a sampling interval and ε(nT) is
a complex-valued white noise E(ε(nT))=0, E(|ε(nT)|2)=σ2.

By definition, the IF is the first derivative of the phase
Ω( ) ' ( )t t= ϕ . Its estimate can be found as
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where for a window wh(nT) there are N samples within the
interval Qω π π∈ −[ , ) . Let us recall that the window

wh(nT) implements the idea of nonparametric estimation of
the time-varying Ω(t), fitted by a constant ω, within the
narrow window around the time-instant t.

The asymptotic accuracy analysis of the robust IF
estimator (9) has been done in [10]. According to that
analysis, with the corresponding constraints, asymptotic
formulae for the variance and bias of the IF estimation
error ∆ Ω� ( ) ( ) � ( )ω ωh ht t t= − , are given by
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where o(x) denotes a small value, such that o x x( ) / → 0
as x → 0 . The following notation has been used
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where T → 0 , h → 0 , T h/ 4 0→ , Ω( ) ( )1 0t ≠ , Ω( ) ( )2 t ≠
0, G is the noise ε(nT) pdf, and F(1) and F(2) are the
derivatives of F.

Comments:
1. Let the noise distribution be Gaussian, ε( ) ~nT

N( , /0 2)2σ , and the loss function be quadratic F(e)=e2,
then V(F,G)=σ2/2. Substituting V(F,G)=σ2/2 into (10)
gives the known formula for the variance of the
periodogram IF estimates. In particular, this formula can
be obtained as a special case from more general results
produced in [6]. In a similar way we obtain V(F,G)=πσ2/2
for F(e)=|e|.
2. Note that V(F,G) appears only in the formula for the
variance. Thus, a choice of the loss function F influences
only the variance of estimation but not the bias. The
formulae for the bias are the same for the robust and
nonrobust estimates [13].
3. Let us consider the mean squared error (MSE) of the
estimate. From (10) and (11) follows that for small h the
dominant terms of the MSE can be given in the form

E t V F G TW A h B h th(( � ( ) )) ( , ) / ( ( ))( )∆ Ωω ω ω
2 2 3 2 2 2= + .(14)

Decrease of the window length h results in decrease of
the bias and in increase of the variance, and vice versa.
The optimal window width is given as

h t V F G TW A B topt( ) ( , ) / ( ( ))( )= ⋅3 4 2 2 2 1/7
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It gives an optimal bias-variance trade-off, usual for
nonparametric estimations. Optimal length depends on the
signal-to-noise ratio A/σε, the sampling interval T, noise
distribution G, selected loss function F, and the second IF
derivative Ω(2)(t). Thus the optimal, or even reasonable
choice of length h, depends on the IF second derivative
Ω(2)(t), which is naturally unknown because the IF itself is
to be estimated.

3. ALGORITHM OF DATA-DRIVEN WINDOW
LENGTH CHOICE

3.1. Basic idea ([13], [14])
The basic idea follows from the IF estimation error

analysis. Namely, at least for the asymptotic case, the
estimation error can be represented as a sum of the
deterministic component (bias) and random component,
with the variance given by (10). The estimation error can
be written as

| ( ) � ( )| | ( , )| ( )Ω t t bias t h hh− ≤ +ω κσ , (15)

with σ ω2( ) var( � ( ))h th= ∆ . Inequality (15) holds with

probability P(κ), where κ is the corresponding quantile of
the standard Gaussian distribution N(0,1). The usual
choice κ=2 gives P(κ)=0.95. It follows from (11) that
|bias(t,h)|→0 as h→0. Now, let h=hs be so small that

| ( , )| ( )bias t h hs s≤ κσ , (16)

then
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It is obvious that, for small hs, all of the segments
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have a point in common, namely Ω(t). Consider an
increasing sequence of hs, h1<h2<.... Let hs+ be the largest
of those hs for which the segments Ds-1 and Ds have a point
in common. Let us call this window length hs+ 'optimal'
and determine the IF estimates with data-driven optimal
window length as � ( )ωhs

t
+

. The basic idea behind this

choice is as follows: If the segments Ds-1 and Ds do not
have a point in common it means that at least one of the
inequalities (17) does not hold, i.e. the bias is too large as
compared with the standard deviation in (16). Thus, the
statistical hypotheses to be tested for the bias is given in
the form of the sequence of inequalities (17) and the
largest length hs for which these inequalities have a point
in common is considered as a bias-variance compromise,
when the bias and variance are of the same order. Details
on this two-segments intersection approach may be found
in [14].

3.2. Algorithm
Let us initially assume that the amplitude A and the

standard deviation σ of the noise are known. Let H be an
increasing sequence of the window length values

H h h h h hs J= < < < <{ | ... }1 2 3 . (19)

In general, any reasonable choice of H is acceptable. In
particular, the lengths with dyadic numbers Ns=2Ns-1 of
observations within the window length, until the largest hJ

is reached, will be assumed. This scheme corresponds to
the radix-2 FFT algorithms. Note that the relation between
the window length and the number of observations within
that length is hs=NsT. However, we want to emphasize that
the minimum window size h1 should not be too small (say
h/T>20) in order to preserve the robustness property of
algorithm with respect to the heavy-tailed distribution
noise. The following steps are generated for each t.
1. The RSPEC is calculated for all h Hs ∈ . Thus, we

obtain a set of RSPECs for a fixed time instant t,
{ ( , ; )},I t h h HA s sω ∈ . The IF estimates are found as
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2. The upper and lower bounds of the confidence intervals
Ds in (19) are built as follows
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while �A  is the estimated amplitude of signal. It can be
obtained applying the methods described [14] to signal
x(t+nT)/e(nT), where e(nT) is the error (4).
3. The 'optimal' window length hs+ is determined as the
largest s=s+ (s=1,2,...,J) when

| � ( ) � ( )| ( ( ) ( ))ω ω κ σ σh h s ss s
t t h h

−
− ≤ +−1

2 1

is still satisfied, �( ) ( )h t h ts= +  and � ( )
�( )

ω
h t

t  is the adaptive

IF estimator with the data driven window for a given t.
4. The RSPEC with the optimal window length is

I t I t h tA
+ =( , ) ( , ; �( ))ω ω . Steps 1-4 are repeated for each

considered instant t.

4. EXAMPLE

Consider now a signal with highly nonlinear IF
Ω( ) asinh( . )t t= +20 125 128π π (22)

The signal is embedded with a high amount of heavy
tailed noise:

ε ε εH R InT nT j nT( ) . ( ( ) ( )) /= +15 23 3 , (23)

where εR nT( )  and ε I nT( )  are mutually independent

white Gaussian noises N(0,1). The non-noisy and noisy
signals are shown in Figs.1a,b. In this case standard SPEC
is useless for IF estimation, Figs.1c,d. Application of the
RSPEC, Section II, along with the algorithm from Section
III resulted in the adaptive window length that is shown in
Fig.1e. MSE of the IF estimation, by using the RSPEC,



versus window length is shown in Fig.1f. The straight line
shows MSE for the IF estimation by using adaptive
RSPEC. We may conclude that the adaptive estimation
produces smaller MSE than the best constant window
length, which is also a priori unknown. The RSPEC
calculated using the adaptive window length is shown in
Fig.1g. The adaptive IF is shown in Fig.1h. Obviously, for
slow IF changes adaptive algorithm takes wider window
length, while for faster changes it takes narrower window
length, as expected.

5. CONCLUSION

The RSPEC as a time-varying form of the robust M-
periodogram, with the varying adaptive window length, is
developed. The intersection of confidence intervals rule is
applied for varying window length selection. Simulation
demonstrates that the new RSPEC gives the estimates of
the varying IF which are strongly robust with respect to
the noise having a heavy-tailed distribution. Note, that
similar problems with another loss function is considered
in [15].
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