INSTANTANEOUS FREQUENCY ESTIMATION BASED ON
THE ROBUST SPECTROGRAM

Igor Djurovi¢!, Vladimir Katkovnik, Ljubisa Stankovié*

YUniversity of Montenegro, 81000 Podgorica, Montenegro.
University of Technology of Tampere, Tampere Int Center for Signal Processing, P.O.Box 553, 303101 Tampere, Finland

ABSTRACT adaptive window length. It uses only the formula for the
variance of the estimate, which does not require prior

Robust M-periodogram is defined for the analysis of information about thelF. Simulations based on the
signals with heavy-tailed distribution noise. In the form of discrete RSPEC show a good robustness and accuracy
a robust spectrogram (RSPEC) it can be used for theability of the presented adaptive algorithm, as well as an
analysis of nonstationary signals. In this paper a RSPECGmprovement in the RSPEC based TF representation of
based instantaneous frequenty) (estimator, with a time-  signals with the nonlinedF.
varying window length, is presented. The optimal choice
of the window length can resolve the bias-variance trade- 2. BACKGROUND THEORY
off in the RSPEC basedF estimation. However, it
depends on the unknown nonlinearity of tie The 2.1. Robust spectrogram
algorithm used in this paper is able to provide the accuracy ~Standard SPEC(t,w) definition, of a signak(t), is
close to the one that could be achieved if feto be based on the standard short-time Fourier transform (STFT)
estimated, were known in advance. Simulations show A _ janT
good accuracy ability of the adaptive algorithm and good Gtw) = z h( KA th(nT) Xt 7 e @
robustness property with respect to rare high magnitude "

noise values. I5(t,w) =IC,(t, w)f
where the windoww,(nT)=T w(nT/h)/h=0 hash>0 as a
1. INTRODUCTION window length, and znwh(n'l‘) -1 as h/T - .

A key-model of thelF concept is the complex-valued Sampling interval is denoted y
harmonic with a time-varying phase. It is an important  The STFTC,(t,w) may be derived as a solution of the
?Od'ebl in thﬁ_hgenef(?'ILheOLy of tﬁlf_ne'éfequendcy (T!;) following optimization problem [10]:
istributions. This model has been utilized to study a wide A _ ;

range of signals, including speech, music, acoustic, Gtw)=arg nng ©.C). 2)

biological, radar, sonar, and geophysical ones. AnWhere

overview of the methods for tHE estimation, as well as I(te,C)= 5 w (NIt n- G(fw) &7F.  (3)

the interpretation of th& concept itself, is presented in n

[1]. One possible approach to theestimation is based on  Here, the weighted square absolute error

TF representations [2]-[4]. The SPEC is a commonly F(e) =lenf=| Xt nT- C( ) & { (4)

applied distribution within this approach. _ is used as a loss function and minimized, by determining

_In this paper we combine and develop two different o ¢, 59t ¢y ©)/9C =0 definition (1) follows.

ideas: the robusM-periodogram and the nonparametric _ .

approach [5]-[9] for selection of the time-varying adaptive In [10] it has bee_n ghown that the Ios_s_func_uons L

window length in the corresponding periodogram. The Oth?f.fmms tharF(e)=lef" can be more efﬂc!ent in the

robustM-periodogram is developed as a generalization of OPtimization procedure (2.)' In_particular, _'t has been

the standard periodogram for analysis of stationary signal hown that the loss function of the forlﬁ@e)—lRe{e}|+
Im{e}| can produce very good results in the case of a

corrupted with heavy tailed distribution noise [10]. Its signal corrupted with heavy tailed noise. The periodogram

form applied to the analysis of nonstationary signals will
be referred to as the RSPEC. Recall that the heavy taHec?btamed using this loss function is called the rothst
Ferlodogram Its corresponding RSPEC is given in the

noise is used as a model of an impulse noise environmen
[11]. The approach which exploits the intersection of
confidence interval rule [12] was used in [13] for the |\t 0) =IC, (tw)F , (5)
standard periodogram based estimator with varying



G(t.w) =argmind ¢ w C) (6) By definition, thelF is the first derivative of the phase
¢ Q(t) =¢'(t) . Its estimate can be found as

J(t,w,C) = nT)J|Re{X t+ nTj—- E Y+ ~
(t.0)= 3 w(nDUIRe(t- N~ G( k) &7} () = argmant () ©
Im{x(t+nT) - G( 1) "] . where for a windowv,(nT) there aréN samples within the
By minimizing J(t, oqC) we get a solution in the form interval Q, O[-1tm) . Let us recall that the window
éh(t,w) - Z d(nT) X t+ nT) & | Wh(nD implements the_idea of nonparametric gst_imation of
z d( T £ the time-varyingQ(t), fitted by a constants, within the

narrow window around the time-instant

d(nT) = y( ”WZV( Y The asymptotic accuracy analysis of the robiist

w.(nT) estimator (9) has been done in [10]. According to that

y(nT) = n 7 analysis, with the corresponding constraints, asymptotic
Ix(t+nT) - G(tw)ée F formulae for the variance and bias of tite estimation

[IRe{x(t+nT) - G(tw) e }+HIm{ K = nT— ¢ ,w) E}] error AQ,(t) = Q(t) - B, (t), are given by

This is a set of nonlinear equations with unkna@y(t,w).

It can be solved by using the following iterative

procedure[10]: (2>

Step Q Initialization (standard STFT calculation): BB, (0) = B‘*’th (§+ 1), (11)

whereo(x) denotes a small value, such that)/ x - 0

var(AG, (1) =V (F, G) o V\{0+0(T/ B), (10)

1 5 jon
G (tw) :szh(m') Xt+n) " (7)  asx - 0. The following notation has been used
n h 0 00
W (u) P du w(u) U du
y(o)(nT) = Wh(n-r) = J.—OO ( ) > Bm = -|.—oooo ( ) (12)
X+ ) - GO (L) e F ([ wodad 3w du
X{|Refx(t +nT) = G (1) & }+ - .
HIm{X(t+nT) - GO( tw) €] V(F.G)=[(F(yday/(] F(y de ) . (13)
(i) Step k k=1,2,..K: whereT - 0, h- 0, T/h - 0, QO1t) 20, Q?(t) #
Cﬁk)(t,w):%Zy(k'”(nT)KH nT) e 0, G is the noiseg(nT) pdf, and F® and F® are the
DY) 4 derivatives of.
(k) W, (nT)
y(nT) = 9 T Comments:
IX(t+nT)~ S‘ (tw) éT F 1. Let the noise distribution be Gaussiap(nT) ~
X{|Refx(t+nT)- G (l;w)§ M+ N(0,0%/2), and the loss function be quadrakie)=¢?,
HIm{X(t+nT) - G tw) €] then V(F,G)=0%2. Substituting V(F,G)=0%2 into (10)
with the stopping rule gives the known formula for the variance of the
R 1G9 (t,w) - G (t,w))| periodogramlF estimates. In particular, this formula can
k min{k =) <n, ks K} be obtained as a special case from more general results
G (tw)l produced in [6]. In a similar way we obta¥fF,G)=rwo?/2
wheren >0 andK are given. for F(e)=le|.
(i)). Setting the RSPEQA(t,w) as | ,(t,w) = |G, (t,w)f, 2. Note thatV(F,G) appears only in the formula for the
" variance. Thus, a choice of the loss functioinfluences
where G, (t,w) = G (t,w). only the variance of estimation but not the bias. The

Experiments have shown fast convergence of theformulae for the bias are the same for the robust and
algorithm. Providech=0.1 a usual number of iteration is nonrobust estimates [13].

between 3 and 5 and never exceeded 15. 3. Let us consider the mean squared erkd®E) of the
estimate. From (10) and (11) follows that for sniathe
2.2. IF Estimation dominant terms of thBISEcan be given in the form

. I . E(Ad,()*) =V(F,OTW/ Afi+( B 2()*(14)
nggncs'?er nc;]w (tjhe F’“’b'.em d’Fb estimation, using the Decrease of the window lengthresults in decrease of
, from the |screte-t|me 0 servathﬂls) the bias and in increase of the variance, and vice versa.
X(nT)=m(nT)+€(nT), with m(t) = Aé (8) The optimal window width is given as
wheren is an integerT is a sampling interval arg{nT) is _ @7 w2\’
a complex-valued white noigg(e(nT))=0, E(E(nT))=c> (1) (3\/( F.OOTW/4 AR () ) '



It gives an optimal bias-variance trade-off, usual for In general, any reasonable choicetbfis acceptable. In
nonparametric estimations. Optimal length depends on theparticular, the lengths with dyadic nhumbeMs=2N,, of
signal-to-noise ratidd/c,, the sampling interval, noise observations within the window length, until the lardgst
distributionG, selected loss functiofR, and the seconbF is reached, will be assumed. This scheme corresponds to
derivative Q(Z)(t)_ Thus the optimal, or even reasonable the radix-2 FFT algorithms. Note that the relation between
choice of lengthh, depends on th& second derivative  the window length and the number of observations within
Q®(t), which is naturally unknown because tReitself is  that length ih=NsT. However, we want to emphasize that

to be estimated. the minimum window sizé; should not be too small (say
h/T>20) in order to preserve the robustness property of
3. ALGORITHM OF DATA-DRIVEN WINDOW algorithm with respect to the heavy-tailed distribution
LENGTH CHOICE noise. The following steps are generated for ¢ach
3.1. Basic idea ([13], [14]) 1. The RSPEC is calculated for afi JH. Thus, we

The basic idea follows from thE= estimation error obtain a set of RSPECs for a fixed time instant

analysis. Namely, at least for the asymptotic case, the{| (¢yt;h)}, h,OH. ThelF estimates are found as
estimation error can be represented as a sum of the

deterministic component (bias) and random component, wn (1) :arg[mﬁxlA wih)l (20)
with the variance given by (10). The estimation error can 2 The upper and lower bounds of the confidence intervals
be written as D, in (19) are built as follows

|Q(t) - &, (1)< [bias(t, hko (h), (15) U () =@, (t) +2ka(h), L(t) =&, (t)-2«a(h). (21)

with  g?(h) = var(Ad, (1)) . Inequality (15) holds with The variance 0®(h) is estimated byd2(h) = 62(h,)
probability P(k), wherek is the corresponding quantile of
the standard Gaussian distributio#(0,1). The usual
choice k=2 gives P(k)=0.95. It follows from (11) that

h?/h?, where G°(h,) is the variance estimation obtained
by using the widest windoWw;, according to

Ibia(t,)] - 0 ash- 0. Now, leth=h; be so small that 6%(h,) = 1 % IX(t+iT)f - A2,
|bias(t, h)k ko (h), (16) N, &
then while A is the estimated amplitude of signal. It can be
|Q(t)—<1)hs(t)|s 2ko(h,) . a7) obtained applying the methods described [14] to signal

It is obvious that, for smaHl, all of the segments )3((tfrnh2/ ?(()gpr,n\iavlher?r?((jgn iﬁa;hgew?m?é (ézlterm'ne d as the
PO . . i window si | i
D, .‘[wfz(t) 2ko(hy), w,(t) + 2a(h)], _ (18) largests=s, (s=1,2,...J) when
have a point in common, namel(t). Consider an |63, .(t) - &, (B)]< 2« (O (h,,) + 6 (hy)
increasing sequence bf h;<h,<.... Leths, be the largest R N _ _
of thoseh, for which the segmen,; andD; have a point is still satisfied,h(t) = h,(t) and w; (t) is the adaptive

in common. Let us call this window lenglh. ‘optimal' £ egtimator with the data driven window for a giten
and determine thé~ estimates with data-driven optimal 4 The RSPEC with the optimal window length is

wint.jow' length ascw, (t). The basic idea behind this (@) =1 (ot ;ﬁ(t)). Steps 1-4 are repeated for each
choice is as follows: If the segmerdg; and Ds do not considered instarit
have a point in common it means that at least one of the
inequalities (17) does not hold, i.e. the bias is too large as 4. EXAMPLE
compared with the standard deviation in (16). Thus, the
statistical hypotheses to be tested for the bias is given in  ~gnsider now a signal with highly nonlind&r
the form of the sequence of inequalities (17) and the Q(t) = 20masinh(L25 }+ 128t (22)
largest length for which these inequalities have a point . . . .
: . . . . .__The signal is embedded with a high amount of heavy
in common is considered as a bias-variance compromise,_. S
. . - tailed noise:
when the bias and variance are of the same order. Details 5 s
on this two-segments intersection approach may be found £4(nT) = 15e3(nT)+ E}(nT) /2, (23)
in [14]. where g;(nT) and g,(nT) are mutually independent

3.2. Algorithm white Gaussian noiseN(0,1). The non-noisy and noisy
' Let us initially assume that the amplitudeand the signals are shown in Figs.1a,b. In this case standard SPEC
standard deviatios of the noise are known. Lét be an is useless fotF estimation, Figs.1c,d. Application of the
; . - ) RSPEC, Section Il, along with the algorithm from Section
increasing sequence of the window length values ted in th ) . | h that is sh .
H={h/h<h<h<.<h (19) II! resulted in the adaptlve Wln_dow engt. that is shown in
" : Fig.1e. MSE of thdF estimation, by using the RSPEC,
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versus window length is shown in Fig.1f. The straight line 2
shows MSE for thelF estimation by using adaptive 0
RSPEC. We may conclude that the adaptive estimation -2
produces smaller MSE thatihe best constant window

length, which is also a priori unknownThe RSPEC

calculated using the adaptive window length is shown in **
Fig.1g. The adaptiviF is shown in Fig.1h. Obviously, for 4%}
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5. CONCLUSION 3

The RSPEC as a time-varying form of the rolbMst 15 KM N —
periodogram, with the varying adaptive window length, is 10 % ,f 5
developed. The intersection of confidence intervals rule is 10°} o/ :
applied for varying window length selection. Simulation w0\ ]
demonstrates that the new RSPEC gives the estimates of 100%‘%:13 o %
the varyinglF which are strongly robust with respect to 0 107! : i |
the noise having a heavy-tailed distribution. Note, that 20 40 60 80 100 t 0 200 400 N
similar problems with another loss function is considered ° K
in [15] ® 500 o(0)
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