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ABSTRACT

A new algorithm is proposed to obtain very high resolution
time–frequency analysis of signal components with curved time–
frequency supports. The proposed algorithm is based on fractional
Fourier domain warping concept introduced in this work. By in-
tegrating this warping concept to the recently developed direction-
ally smoothed Wigner distribution algorithm [1], the high perfor-
mance of that algorithm on linear, chirp–like components is ex-
tended to signal components with curved time–frequency supports.
The main advantage of the algorithm is its ability to suppress not
only the cross–cross terms, but also the auto–cross terms in the
Wigner distribution. For a signal withN samples duration, the
computational complexity of the algorithm isO(N logN) flops
for each computed slice of the new time–frequency distribution.

1. INTRODUCTION

Time–Frequency (T–F) analysis is the primary tool for the analysis
of non–stationary signals. Among various T–F representations, the
Wigner distribution (WD) is the most prominent one [2]. The WD
of a signalx(t) is defined as

Wx(t; f) =

Z
x(t+ t0=2)x�(t� t0=2)e�|2�ft

0

dt0 : (1)

For linear T–F components, the WD gives the highest auto–term
concentration. However, since it is a bilinear representation, it suf-
fers from severe cross–term interference in the presence of more
than one signal components. The geometry of the cross–terms is
analyzed in [3]. As discussed in that reference, even for mono–
component signals, there will be cross–term interference if the
signal has a curved time–frequency support. Thus cross–terms
of the WD can be divided into two categories. We will call the
cross–terms due to the interaction of different signal components
(i.e., auto–components) in a multi–component signal ascross–
crossterms and we will call the cross–terms due to the interaction
of a single signal component with itself asauto–crossterms. The
auto–cross terms are also called asinner interferenceterms [3].

The cross–terms usually interfere with the auto–components.
Therefore they decrease the interpretability of the WD. Thus
to have a practically useful time–frequency representation, these
cross–terms should be suppressed. Much of the research effort
in time–frequency analysis is devoted to design of distributions

which give a better description of the signal’s joint time and fre-
quency content. Until recently, most of the algorithms suffered
from a trade–off between sharp auto–term concentration and re-
duced cross–term interference, or they were computationally very
expensive to be useful in practical applications. In [1], we de-
veloped a novel T–F analysis algorithm: directionally smoothed
Wigner distribution (DSWD) which avoids the usual trade–off be-
tween the auto–term concentration and cross–term interference
for linear, chirp–like auto–components by performing directional
smoothing of the WD slices on the T–F support of the components.
However, the auto–cross terms of components with non–linear T–
F support could only be partially suppressed by the DSWD algo-
rithm [1]. In this paper, to alleviate this problem, we incorporated
a novel fractional Fourier transform domain warping technique to
DSWD. The resultant algorithm gives a very good description of
the signal’s T–F distribution by suppressing not only the cross–
cross terms but also the auto–cross terms. When digitally imple-
mented, the complexity of the algorithm is onlyO(N logN) flops
for each slice of the T–F distribution to be analyzed for a signal
with N samples duration. In the next section we introduce the
concept of fractional domain warping.

2. FRACTIONAL DOMAIN WARPING

Time domain warping is a useful tool which has found place in a
diverse set of applications such as speaker and speech recognition
[4], transversal filtering with non–uniform tap spacing [5], syn-
thesis of time–varying filters for frequency varying signals [6] and
time–frequency signal decomposition [7]. Mathematically, it is the
operation of replacing the time dependence of a signalx(t) with a
warping function�(t). For the invertiblity of the warping opera-
tion, �(t) is chosen as a one–to–one and differentiable function.

Time warping is especially useful in the processing of fre-
quency modulated (FM) signals with arbitrary frequency modu-
lation. A typical member of this class of signals is in the form
of x(t) = A(t)e|2��(t), whereA(t) is the nonnegative amplitude
and�(t) is the phase. The energy of these signals in the time–
frequency plane is localized around their instantaneous frequency
defined asfi(t) = d�(t)=dt, which is a single valued function of
time as shown in Fig. 2(b).

Ideally, the warping function for the FM signal should be cho-
sen as the inverse of its phase,�(t) = ��1(fst), wherefs > 0 is



an arbitrary scaling constant. With this choice, the warped func-
tion takes the following form

x�(t) = A(�(t))e|2�fst ; (2)

which is a sinusoidal function at frequencyfs with envelope
A(�(t)). Consequently, the algorithms designed to operate on si-
nusoidal signals can be utilized on the warped signal.

In this paper, we first extend the time domain warping con-
cept to fractional domains [8]. That is instead of warping the time
signalx(t), we propose to warp its fractional Fourier transform
(FrFT), which is defined as [9, 10]:

xa(t) � fF
axg(t) ,

Z
Ka(t; t

0)x(t0) dt0 ; (3)

wherea 2 R is the order of the transformation andKa(t; t0) is the
kernel of the transformation given in [10]. A number of interesting
properties of FrFT can be found in [10]. In this paper, we make use
of its rotation property which states that, the WD of theath order
FrFT of a signal is the same as the WD of the original signal ro-
tated by an angle ofa�=2 radians in the clock–wise direction [10].
For instance in Fig. 2(a) and Fig. 2(b), supports of the WDs of a
signalx(t) and its FrFTx(�0:75)(t) are shown. The importance of
these figures in terms of warping is the following: Although time–
domain warping is not useful for the processing ofx(t), since this
signal does not have a singled–valued instantaneous frequency, it
is perfectly well suited to its(�0:75)th order FrFT. Therefore the
fractional domain warping extends the class of signals for which
warping concept is applicable.

In the next section, we introduce the application of fractional
domain warping to the T–F analysis of curved time–frequency
components.

3. WARPED TIME–FREQUENCY ANALYSIS

Warped time–frequency analysis begins with the identification of
the signal support in the T–F plane. However if there are more than
one signal component or if the signal components are curved, then
the existence of cross terms might impede the accurate identifica-
tion of the signal support in the time–frequency plane. Therefore
the supports should be identified by using a reduced cross–term
interference [11] or a cross–term free distribution [12]. For the
sake of clarity, in the rest of this section, the case of a mono–
component signal with a curved time–frequency distribution is in-
vestigated. When there exist more than one signal components,
the same analysis is carried out for each of these components.

The steps of the algorithm will be illustrated on a synthetic sig-
nal given in Fig. 1(a). As shown in Fig. 1(b), the WD,Wx(t; f),
is cluttered with the auto–cross terms. Although the auto–term of
the WD is still visible in this example, in a more complicated sig-
nal, it is very difficult to obtain useful information out of the WD.
Therefore, in Fig. 2(a), the support of the T–F distribution ofx(t)
is obtained by using [12]. With this support information, it be-
comes clear that a fractional domain warping is more appropriate
than the time domain warping. The ordera of the FrFT is chosen
such that aftera�=2 radians rotation of the time–frequency distri-
bution ofx(t) in the clock–wise direction, any line parallel to the
frequency axis intersects the rotated signal support no more than

once. For this example, the orientation of the signal support shown
in Fig. 2(a), justifies the use ofa = �0:75 as the appropriate FrFT
order.

After rotation of the signal support bya�=2 radians, a spine
 (t) is chosen to approximate the frequency center of the signal
support as shown in Fig. 2(b). This selection of the spine, in a
sense, is an approximation of the instantaneous frequency of the
signalxa(t). However spine is a more general concept than the
instantaneous frequency, because if the instantaneous frequency
takes negative values, then in the proposed algorithm, any of the
curves which is parallel to the instantaneous frequency but takes
only positive values should be used as the spine. The spine can
be found either by using an instantaneous frequency estimation al-
gorithm or by manually marking some of its coordinates(ti; fi),
1 � i � N on the T–F plane and then connecting these points
by using an interpolation algorithm. In this paper, for its simplic-
ity the second approach with spline interpolation [13] is preferred.
Furthermore, the integral of the spine, which will be needed later,
can be analytically computed in this way. Note that, the proposed
algorithm is robust to variations of the spine from the exact instan-
taneous frequency. Therefore a very accurate specification of the
spine is not necessary.

After identification of the spine, the inverse of the warping
function is found by integration:

�(t) =

Z t

t1

 (t0) dt0 ; t1 � t � tN ; (4)

��1(t) = �(t)=f + t1 ; t1 � t � tN ; (5)

wheref = �(tN)=(tN � t1) is the mean of the spine. Since
 (t) is found by spline interpolation, its integral can be analyti-
cally computed [13]. With these definitions, the warping function
�(t) becomes

�(t) = ��1(f (t� t1)) ; t1 � t � tN : (6)

Since by definition, (t) is a strictly positive function,�(t) de-
fined in (4) is a monotonically increasing function. Hence its in-
verse given in (6) exists and it is unique. In general a closed form
expression for�(t) may not exist. However,�(t) is a monotoni-
cally increasing function similar to�(t), therefore any of its value
can be easily computed by using a few iterations of a 1–D search
algorithm, e.g., the bisection method.

Once the warping function�(t) is found, the fractional do-
main warping is given asxa;�(t) = xa(�(t)). In the simulation
example, the warped signal computed by using this relation for
a = �0:75 is shown in Fig. 3(a). In digital implementation, uni-
formly spaced samplesxa;�(kT ), k 2 Z, of xa;�(t) are to be
computed from the available uniformly spaced samplesxa(kT )
of xa(t), whereT is the sampling interval. A multitude of inter-
polation algorithms exist for this purpose. In this paper the spline
interpolator [13] is preferred for its simplicity.

After the warping operation, DSWD,Wxa;� (t; f), of the
warped signalxa;�(t) is computed on the line segment(�; f ),
t1 � � � tN as shown in Fig. 3(b). The use of the DSWD is
appropriate in this application, because after the warping opera-
tion, the curved signal component transforms to an almost linear
component in the time–frequency plane. Since DSWD efficiently
suppresses cross–term interference on linear signal components, a



high–resolution T–F slice of the warped signal component is ob-
tained.

Following the computation of the DSWD shown in Fig. 3(b),
the slice of the time–frequency distribution~Wxa(t; f) which lies
on the spine (t) given in Fig. 2(b) is found as

~Wxa(�(�);  (�(�))) =Wxa;� (�; f ) ; t1 � � � tN : (7)

To compute other slices of the T–F distribution~Wxa(t; f), we will
impose the frequency shifting property on the resultant distribu-
tion. In other words, we require that whenya(t) = xa(t)e

|2�� t

is only a linearly frequency modulated version ofxa(t), the fol-
lowing relation exists between the T–F distributions of these sig-
nals:

~Wxa(t; f +� ) = ~Wya(t; f) : (8)

Therefore, to compute the slice of the T–F distribution
~Wxa;� (t; f), which lies on the shifted spine shown in Fig. 2 ,

instead of warping the signalxa(t), we have to warp its fre-
quency modulated versionya(t). After obtaining the warped sig-
nalya;�(t) shown in Fig. 3(c), DSWD of the warped signal which
is given in Fig. 3(d) should be computed.

The warped form of the signalya(t) is straightforward to com-
pute, sinceya;�(t) = xa;�(t)e

|2�� �(t). Thus in the digital im-
plementation, interpolation of the samplesxa(�(kT )) from the
uniformly spaced samplesxa(kT ) should be done only once. For
any value of� the above relation between the warped signals
xa;�(t) andya;�(t) should be used. Thus by combining (7) with
(8), we obtain

~Wxa(�(�);� +  (�(�))) =Wya;�(�; f ) ; t1 � � � tN :
(9)

This relation is used to compute the slice of the distribution
~Wxa(t; f) on a curve which is parameterized as(t(�); f(�)) =
(�(�);  (�(�)) + � ). Hence, for each value of� the algo-
rithm derived above gives the samples of a different slice of the
time–frequency distribution ofxa(t). Thus, by using the same al-
gorithm for several values of� , it is possible to compute the T–F
distribution ofxa(t) on a region of the T–F plane. In the simulated
example, the T–F distributionxa(t) obtained by using the mapping
rule (9) for a set of� values is shown in Fig. 4(a).

Finally, to remove the rotation effect induced by the fractional
Fourier transformation, each slice of~Wxa(t; f) is rotated back by
a�=2 radians in the counter clock wise direction, and the corre-
sponding slice of the T–F distribution~Wx(t; f) of x(t) is obtained
as

~Wx(tr(�); fr(�)) = ~Wxa(�(�);  (�(�))+� ) ; t1 � � � tN ;
(10)

where(tr(�); fr(�)) defines a new curve in the T–F plane param-
eterized with the variable�:

tr(�) = �(�) cos(a�=2)� ( (�(�)) +� ) sin(a�=2) (11)

fr(�) = �(�) sin(a�=2) + ( (�(�)) + � ) cos(a�=2) : (12)

In Fig. 4(b), the resultant T–F distribution ofx(t), obtained by
rotating the T–F distribution~Wxa(t; f) of xa(t) given in Fig. 4(a)
is shown.

4. CONCLUSIONS

An efficient algorithm is developed to obtain very high resolution
time–frequency distribution of signals. By utilizing a novel frac-
tional domain warping concept, the new algorithm extends the per-
formance of [1] on chirp–like signal components to signals with
curved time–frequency supports. By suppressing both the cross–
cross terms and auto–cross terms, which are inherently present in
the Wigner–distribution, it produces a very good time–frequency
description for both linear and curved signal components. The
high quality of the resultant time–frequency distribution is illus-
trated with a simulation example.
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Algorithm 1 The Warped Time–Frequency Analysis Algorithm
1. Identify the support of the components by using [12].
2. Compute FrFT samplesxa(kT ) from the input samplesx(kT )

by using [14].
3. Rotate the obtained supporta�=2 radians in the clock–wise

direction, and for each rotated support identify a set of points
(ti;  (ti)) on the spine, and obtain the rest of the points on (t)
by using spline interpolation [13].

4. Compute�(t) =
R t
t1
 (t0) dt0 .

5. Define the warping function�(t) = ��1(f (t � t1)), where
f = �(tN)=(tN � t1) . Compute its samples�(kT ) by using
a 1–D search algorithm such as the bisection method.

6. Define the samples of the warped signal asxa;�(�(kT )) =
xa(kT ) and perform a non–uniformly spaced to uniformly
spaced interpolation:xa;�(�(kT ))! xa;�(kT ) .

7. Computeya;�(kT ) = xa;�(kT )e
|2�� �(kT ) .

8. Compute the samples of the DSWDWya;�(m
�T ; f ), t1= �T �

m � tN= �T by using [1], where�T is the sampling interval of
the DSWD slice.

9. The slice of the T–F distribution is

~Wx(tr(m �T ); fr(m �T )) =Wya;� (m
�T ; f )

where(tr(m �T ); fr(m �T )) defines a curve in the T–F plane pa-
rameterized with the variablem �T :

tr(m �T ) = �(m �T ) cos(
a�

2
)� ( (�(m �T )) +� ) sin(

a�

2
)

fr(m �T ) = �(m �T ) sin(
a�

2
) + ( (�(m �T)) + � ) cos(

a�

2
)

andt1= �T � m � tN= �T .
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Fig. 1. (a) Time–domain signalx(t), (b) the Wigner distribution
Wx(t; f) of x(t) .
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Fig. 3. (a) The warped versionx(�0:75;�)(t) of the sig-
nal x(�0:75)(t), (b) the DSWD sliceWx(�0:75;�)

(t; f ) of

x(�0:75;�)(t), which gives values of the T–F~Wx(�0:75)
(t; f) ly-

ing on the spine shown in Fig. 2 (b), (c) the warped version
y(�0:75;�)(t) of the signaly(�0:75)(t) = x(�0:75)(t)e

|2�� t, (d)
the DSWD sliceWy(�0:75;�)

(t; f ) of y(�0:75;�)(t), which gives

values of the T–F~Wx(�0:75)
(t; f) lying on the shifted spine shown

in Fig. 2(b).

0

1

2

3

4

time

fr
eq

ue
nc

y

(a)

−5 0 5

−5

0

5

0

1

2

3

4

time

fr
eq

ue
nc

y

(b)

−5 0 5

−5

0

5

Fig. 4. (a) The T–F distribution~Wx(�0:75)
(t; f) of x(�0:75)(t), (b)

the T–F distribution~Wx(t; f) of x(t) .


