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ABSTRACT which give a better description of the signal’s joint time and fre-
quency content. Until recently, most of the algorithms suffered
from a trade—off between sharp auto—term concentration and re-
fiuced cross—term interference, or they were computationally very
expensive to be useful in practical applications. In [1], we de-
veloped a novel T-F analysis algorithm: directionally smoothed
Wigner distribution (DSWD) which avoids the usual trade—off be-

A new algorithm is proposed to obtain very high resolution
time—frequency analysis of signal components with curved time—
frequency supports. The proposed algorithm is based on fractiona
Fourier domain warping concept introduced in this work. By in-
tegrating this warping concept to the recently developed direction-

ally smoothed Wigner distribution algorithm [1], the high perfor- tween the auto—term concentration and cross—term interference

mance of that algorithm on linear, chirp-like components is ex- : - A L
. . . for linear, chirp—like auto—components by performing directional
tended to signal components with curved time—frequency supports.

: . o I smoothing of the WD slices on the T-F support of the components.
The main advantage of the algorithm is its ability to suppress not . .
. However, the auto—cross terms of components with non-linear T-
only the cross—cross terms, but also the auto—cross terms in th

Wigner distribution. For a signal witt\" samples duration, the Etﬁumpfﬁrtﬁ‘;:g 02'if’etopgﬂ‘e'i:Zj‘:ﬁgrefjggrgyvtvlelr?ci‘r"’grgt'gg
computational complexity of the algorithm {3(NV log V) flops ) paper, P ' P

for each computed slice of the new time—frequency distribution. & novel fractional Fourier transform domain warping technique to
P q Y " DSWD. The resultant algorithm gives a very good description of

the signal’'s T-F distribution by suppressing not only the cross—
1. INTRODUCTION cross terms but also the auto—cross terms. When digitally imple-

i . . . mented, the complexity of the algorithm is orfl{ NV log V') flops
Time—Frequency (T-F) analysis is the primary tool for the analysis ¢, gach slice of the T—F distribution to be analyzed for a signal

of non—stationary signals. Among various T-F representations, thewith N samples duration. In the next section we introduce the
Wigner distribution (WD) is the most prominent one [2]. The WD concept of fractional domain warping.

of a signalz(¢) is defined as
Wm(t,f):/m(t+t’/2)x*(t—t’/z)e*ﬂ”f’” ' . (1) 2. FRACTIONAL DOMAIN WARPING

For linear T-F components, the WD gives the highest auto—term Time domain warping is a useful tool which has found place in a
concentration. However, since itis a bilinear representation, it suf- diverse set of applications such as speaker and speech recognition
fers from severe cross—term interference in the presence of mord4l, transversal filtering with non-uniform tap spacing [5], syn-
than one signal components. The geometry of the cross—terms ighesis of time-varying filters for frequency varying signals [6] and
analyzed in [3]. As discussed in that reference, even for mono-time—frequency signal decomposition [7]. Mathematically, itis the
component signals, there will be cross—term interference if the Operation of replacing the time dependence of a sigi@l with a
signal has a curved time—frequency support. Thus cross—termavarping function¢(¢). For the invertiblity of the warping opera-
of the WD can be divided into two categories. We will call the tion,{(t) is chosen as a one—to—one and differentiable function.
cross—terms due to the interaction of different signal components ~ Time warping is especially useful in the processing of fre-
(i.e., auto—components) in a multi-component signat@ss— quency modulated (FM) signals with arbitrary frequency modu-
crossterms and we will call the cross—terms due to the interaction lation. A typical member of this class of signals is in the form
of a single signal component with itself agto—crosgerms. The of z(t) = A(¢)e?>™*®), whereA(¢) is the nonnegative amplitude
auto—cross terms are also calledraser interferencegerms [3]. and ¢(t) is the phase. The energy of these signals in the time—
The cross—terms usually interfere with the auto—components.frequency plane is localized around their instantaneous frequency
Therefore they decrease the interpretability of the WD. Thus defined agf;(t) = d¢(t)/ dt, which is a single valued function of
to have a practically useful time—frequency representation, thesetime as shown in Fig. 2(b).
cross—terms should be suppressed. Much of the research effort Ideally, the warping function for the FM signal should be cho-
in time—frequency analysis is devoted to design of distributions sen as the inverse of its phagét) = ¢~ (fst), wherefs > 0is



an arbitrary scaling constant. With this choice, the warped func- once. For this example, the orientation of the signal support shown

tion takes the following form in Fig. 2(a), justifies the use af = —0.75 as the appropriate FrFT
order.
ze(t) = A(((H)e™ " 2 After rotation of the signal support hyr/2 radians, a spine

o ) _ _ _ 1 (t) is chosen to approximate the frequency center of the signal
which is a sinusoidal function at frequendgf with envelope g,5h0rt as shown in Fig. 2(b). This selection of the spine, in a
A(¢(#)). Consequently, the algorithms designed to operate on si-genge, s an approximation of the instantaneous frequency of the
nusoidal signals can be utilized on the warped signal. signalz, (). However spine is a more general concept than the

In this paper, we first extend the time domain warping con- jnstantaneous frequency, because if the instantaneous frequency
cept to fractional domains [8]. That is instead of wa_rping the time 5kes negative values, then in the proposed algorithm, any of the
signalz(t), we propose to warp its fractional Fourier transform  ¢;ryes which is parallel to the instantaneous frequency but takes
(FrET), which is defined as [9, 10]: only positive values should be used as the spine. The spine can

be found either by using an instantaneous frequency estimation al-

zo(t) = {Fx}(t) £ /Ka (t,t)x(t)dt' ©)) gorithm or by manually marking some of its coordinatés f;),
1 < ¢ < N on the T-F plane and then connecting these points
wherea € R is the order of the transformation aid, (¢, ') is the by using an interpolation algorithm. In this paper, for its simplic-

kernel of the transformation given in [10]. A number of interesting ity the second approach with spline interpolation [13] is preferred.
properties of FrET can be found in [10] In this paper, we make use Furthermore, the integral of the Spine, which will be needed later,
of its rotation property which states that, the WD of tifeorder ~ can be analytically computed in this way. Note that, the proposed
FrFT of a signal is the same as the WD of the original signal ro- a@lgorithm is robust to variations of the spine from the exact instan-
tated by an angle afr/2 radians in the clock—wise direction [10].  taneous frequency. Therefore a very accurate specification of the
For instance in Fig. 2(a) and Fig. 2(b), supports of the WDs of a SPine is not necessary. _ ) _
signalz(t) and its FrF Tz _.75)(¢) are shown. The importance of After identification of the spine, the inverse of the warping
these figures in terms of warping is the following: Although time— function is found by integration:

domain warping is not useful for the processinge6f), since this

t
signal does not have a singled—valued instantaneous frequency, it i) = / Yt)dt' , i <t<ty , 4)
is perfectly well suited to it§—0.75)"" order FrFT. Therefore the t1
fractional domain warping extends the class of signals for which ') = T@)/fe+ti, i <t<tn, (5)

warping concept is applicable. _ ) _
In the next section, we introduce the application of fractional Where fy, = I'(tn)/(tx — t1) is the mean of the spine. Since

domain warping to the T-F analysis of curved time—frequency ¥(t) is found by spline interpolation, its integral can be analyti-
components. cally computed [13]. With these definitions, the warping function

¢(t) becomes

3. WARPED TIME-FREQUENCY ANALYSIS ¢(t) = F_l(fw (t—t1)), t1<t<tn . (6)

Warped time—frequency analysis begins with the identification of Since by definitiong)(t) is a strictly positive functionI'(¢) de-

the signal support in the T-F plane. However if there are more thanfined in (4) is a monotonically increasing function. Hence its in-
one signal component or if the signal components are curved, therverse given in (6) exists and it is unique. In general a closed form
the existence of cross terms might impede the accurate identifica-expression fog (¢) may not exist. Howeveg(t) is a monotoni-

tion of the signal support in the time—frequency plane. Therefore cally increasing function similar tb(t), therefore any of its value
the supports should be identified by using a reduced cross—terntan be easily computed by using a few iterations of a 1-D search
interference [11] or a cross—term free distribution [12]. For the algorithm, e.g., the bisection method.

sake of clarity, in the rest of this section, the case of a mono— Once the warping functiog(¢) is found, the fractional do-
component signal with a curved time—frequency distribution is in- main warping is given as, ¢(¢t) = z.({(¢)). In the simulation
vestigated. When there exist more than one signal componentsexample, the warped signal computed by using this relation for

the same analysis is carried out for each of these components. a = —0.75 is shown in Fig. 3(a). In digital implementation, uni-
The steps of the algorithm will be illustrated on a synthetic sig- formly spaced samples, (kT'), k € Z, of z,¢(t) are to be
nal given in Fig. 1(a). As shown in Fig. 1(b), the WI¥.(¢, f), computed from the available uniformly spaced sampigg:T)

is cluttered with the auto—cross terms. Although the auto—term of of z,(¢), whereT is the sampling interval. A multitude of inter-

the WD is still visible in this example, in a more complicated sig- polation algorithms exist for this purpose. In this paper the spline
nal, it is very difficult to obtain useful information out of the WD. interpolator [13] is preferred for its simplicity.

Therefore, in Fig. 2(a), the support of the T-F distributiorn: (f) After the warping operation, DSWDWV., .(t, f), of the

is obtained by using [12]. With this support information, it be- warped signalz, ¢ (¢) is computed on the line segmef, f;),
comes clear that a fractional domain warping is more appropriatet; < A < ty as shown in Fig. 3(b). The use of the DSWD is
than the time domain warping. The ordeof the FrFT is chosen  appropriate in this application, because after the warping opera-
such that aftear /2 radians rotation of the time—frequency distri- tion, the curved signal component transforms to an almost linear
bution of z(t) in the clock—wise direction, any line parallel to the component in the time—frequency plane. Since DSWD efficiently
frequency axis intersects the rotated signal support no more tharsuppresses cross—term interference on linear signal components, a



high—-resolution T-F slice of the warped signal component is ob-
tained.
Following the computation of the DSWD shown in Fig. 3(b),

the slice of the time—frequency distributié¥i,., (¢, f) which lies
on the spine)(t) given in Fig. 2(b) is found as

Wi (CA), 9 (CAN)) = Way (A fy) , B <A< tn . (7)
To compute other slices of the T—F distributiidn, , (¢, f), we will
impose the frequency shifting property on the resultant distribu-
tion. In other words, we require that when(t) = . (t)e?>" 2%t
is only a linearly frequency modulated versionf(t), the fol-
lowing relation exists between the T-F distributions of these sig-
nals:

W, (t, f+Ay) =Wy, (t, f) ®)

Therefore, to compute the slice of the T-F distribution
Wza,c(t,f), which lies on the shifted spine shown in Fig. 2,
instead of warping the signat,(t), we have to warp its fre-
guency modulated versiap (). After obtaining the warped sig-
nalya,¢(t) shown in Fig. 3(c), DSWD of the warped signal which
is given in Fig. 3(d) should be computed.

The warped form of the signal, (¢) is straightforward to com-
pute, SinCey, ¢ (t) = q,c(t)e’> >+ ¢® . Thus in the digital im-
plementation, interpolation of the samples(¢(kT")) from the
uniformly spaced samples, (kT") should be done only once. For
any value ofA, the above relation between the warped signals
Za,c(t) andy, ¢(t) should be used. Thus by combining (7) with
(8), we obtain

Wao (C(A), Ay +9(C(A))) = Wy A fe) s <AL tN(g')
This relation is used to compute the slice of the distribution
W.. (t, f) on a curve which is parameterized @), f(\))
(C(N), ¥ (¢(N) + Ay). Hence, for each value ak,, the algo-
rithm derived above gives the samples of a different slice of the
time—frequency distribution of, (¢). Thus, by using the same al-
gorithm for several values @k, it is possible to compute the T-F
distribution ofz, (¢) on a region of the T-F plane. In the simulated
example, the T-F distributian, (¢) obtained by using the mapping
rule (9) for a set ofA, values is shown in Fig. 4(a).

Finally, to remove the rotation effect induced by the fractional
Fourier transformation, each slice 0f,,, (¢, f) is rotated back by
aw /2 radians in the counter clock wise direction, and the corre-
sponding slice of the T—F distributidi, (¢, f) of z(t) is obtained
as

Wa(tr(A), fr(A) = Wea (CO), 9 (CA)+A) , 11 S A< tw

(10)
where(t,(\), f- (X)) defines a new curve in the T-F plane param-
eterized with the variabla:

tr(A) = C(A) cos(am/2) — (P(C(N)) + Ay) sin(a/2)
fr(A) = (V) sin(am/2) + ((C(A)) + Ay) cos(am/2) .
In Fig. 4(b), the resultant T-F distribution af(t), obtained by

rotating the T-F distributiofi., (¢, f) of z.(t) given in Fig. 4(a)
is shown.

(11)
(12)

4. CONCLUSIONS

An efficient algorithm is developed to obtain very high resolution
time—frequency distribution of signals. By utilizing a novel frac-
tional domain warping concept, the new algorithm extends the per-
formance of [1] on chirp—like signal components to signals with
curved time—frequency supports. By suppressing both the cross—
cross terms and auto—cross terms, which are inherently present in
the Wigner—distribution, it produces a very good time—frequency
description for both linear and curved signal components. The
high quality of the resultant time—frequency distribution is illus-
trated with a simulation example.

5. REFERENCES

[1] A. K. Ozdemir and O. Arikan, “A high resolution time
frequency representation with significantly reduced cross—
terms,” Proc. IEEE Int. Conf. Acoust. Speech Signal Pro-
cess, vol. Il, pp. 693—-696, June 2000.

[2] T. A. C. M. Claasen and W. F. G. Mecklenbrauker, “The
Wigner distribution — A tool for time—time frequency signal
analysis, Part I: Continuous—time signal®hilips J. Res.
vol. 35, no. 3, pp. 217-250, 1980.

F. Hlawatsch and G. F. Boudreaux-Bartels, “Linear and
guadratic time—frequency signal representatiolsEZE Sig-
nal Processing Magazin@ol. 9, pp. 21-67, Apr. 1992.

(3]

M. K. Brown and L. R. Rabiner, “An adaptive, ordered, graph
search technique for dynamic time warping for isolated word
recognition,”IEEE Trans. Acoust., Speech, and Signal Pro-
cess, vol. ASSP-30, pp. 535-544, 1982.

N. Meda, “Transversal filters with nonuniform tap spacing,”
IEEE Trans. Circuits and Systiol. CAS-27, pp. 1-11, 1980.

D. Wulich, E. I. Plotkin, and M. N. S. Swamy, “Synthesis of
discrete time—varying null filters for frequency—varying sin-
gals using the time—warping techniquéZEE Trans. Cir-
cuits and Systvol. 37, pp. 977-990, Aug. 1990.

M. Coates and W. Fitzgerald, “Time—frequency signal de-
composition using energy mixture modelBfoc. IEEE Int.
Conf. Acoust. Speech Signal Processl. Il, pp. 633—636,
June 2000.

(8]

H. M. Ozaktas and O. Aytur, “Fractional Fourier domains,”
Signal Processvol. 46, pp. 119-124, 1995.

[9] V. Namias, “The fractional order Fourier transform and its
application to quantum mechanics]’ Inst. Math. Appl.
vol. 25, pp. 241265, 1980.

L. B. Almedia, “The fractional Fourier transform and time—
frequency representations|EEE Trans. Signal Process.
vol. 42, pp. 3084-3091, Nov. 1994.

R. G. Baraniuk and D. L. Jones, “An adaptive optimal—
kernel time—frequency representatiof?EE Trans. Signal
Process.vol. 43, pp. 2361-2371, Oct. 1995.

L. Durak, A. K.Ozdemir, and O. Arikan, “An adaptive multi-
ple window short—time Fourier transformation,” submitted to
IEEE Int. Conf. Acoust. Speech Signal Procelgkay 2000.

(10]

(11]

(12]



[13] M. Unser, “Splines a perfect fit for signal and image process- @ ®)

ing,” IEEE Signal Processing Magazineol. 16, pp. 22-38, 5 5 : :

Nov. 1999. Q" i
[14] H. M. Ozaktas, O. Arikan, M. A. Kutay, and G. Bozdagi, - _ \ 2

“Digital computation of the fractional Fourier transform,” 2 075/ 2 2

IEEE Trans. Signal Processvol. 44, pp. 2141-2150, Sept. g° g’ instantaneols frequency

1996. = = (spine)

-5 -5
-5 0 5 -5 0 5
time time
Algorithm 1 The Warped Time—Frequency Analysis Algorithm
1. Identify the support of the components by using [12]. Fig. 2. (a) The support of the signal—-term W, (¢, f) and its
2. Compute FrFT samples, (kT') from the input samples(kT') orientation, (b) the support of the signal-termiif, _, ... (¢, f),
by using [14]. the instantaneous frequency of the signal, 75 (¢) and the spine

3. Rotate the obtained suppartr/2 radians in the clock-wise  (t) .
direction, and for each rotated support identify a set of points
(ti,v¥(t;)) on the spine, and obtain the rest of the points/¢t)

by using spline interpolation [13]. @ ®
4. Computel(t) = [/ (') dt'. o ]
5. Define the warping functiog(t) = T~'(f4(t — t1)), where o .
fo =T(tn)/(ty —t1) . Compute its sampleqkT') by using £
a 1-D search algorithm such as the bisection method. E.00 z
6. Define the samples of the warped signalzas (¢(kT)) = o .
zqo(kT) and perform a non-uniformly spaced to uniformly o3 ]
spaced interpolationz, ¢ (C(kT)) — zq,c(kT) . N iime ° N time °
7. Computey, ¢ (kT) = o ¢ (kT)e??™ 2w kT © o’ il
8. Compute the samples of the DSWD,, . (mT, fy), t1/T < o N
m < tn/T by using [1], wherel’ is the sampling interval of Lo
the DSWD slice. 2 5
9. The slice of the T-F distribution is o
W (b (mT), fo(mT)) = Wy, o (mT o) S L B 0 5
time time

where(t,(mT), f.(mT)) defines a curve in the T-F plane pa-

rameterized with the variableT": Fig. 3. (a) The warped versions_g 75 (t) of the sig-
£ (mT) = C(mT) cos(T) = ((C(mD)) + Ay)sin(2T) " Fomm (i) () the DSWD SIOeTWo g (1 fu) of
2 2 z(—0.75,¢) (t), which gives values of the T-W. _, .. (t, f) ly-

fr(mT) = ¢(mT) sin(ﬂ) + ((¢(mT)) +A¢)cos(ﬂ) ing on the spine shown in Fig. 2 (b), (c) the warped version
2 2 y(,0_75,o (t) Of the Signal’y(,o_75> (t) = 1‘(,0_75) (t)EJZﬂ—.A'pt,'(d)
andt; /T <m <ty/T . the DSWD sllceWy(fo_mo (t, fu) Of y(—o.75,c)(t), which gives

i (¢, f) lying on the shifted spine shown

values of the T-RV,

) : T(-0.75)
in Fig. 2(b).
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Fig. 1. (a) Time—domain signat(t), (b) the Wigner distribution  Fig. 4. (a) The T-F distributioer(_O_m (t, f) of x(_o.75)(t), (b)
Wa(t, f) of z(t) . the T—F distributiorV (¢, f) of z(t) .



