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ABSTRACT

Theproblemaddressedhereis classificationof videosat the
highestlevel into pre-definedgenre.Theapproachadopted
is basedon the dynamiccontentof short sequences( � 30
secs). This paperpresentstwo methodsof extractingmo-
tion from a videosequence:foregroundobjectmotion and
backgroundcameramotion. Thesedynamicsareextracted,
processedand appliedto classify 3 broadclasses:sports,
cartoonsand news. Experimentalresultsfor this 3 class
problemgive error ratesof 17%, 8% and 6% for camera
motion, objectmotion andboth combinedrespectively, on� 30secondsequences.

1. INTRODUCTION

Thereis asubstantialamountof multimediadatain theworld,
diversein contentandorigin. In orderto make efficient use
of this datait shouldbe labelledor indexed in someman-
ner. Suchlabelling would make it easierfor individualsto
retrieve the type of materialdesired. In particularthe area
of multimediadataconsideredhereis the leisurebroadcast
typei.e. T.V. programs,films etc.Thetaskis to supplycus-
tomerswith materialof theirviewing preference.In thispa-
perwe look at theclassificationof broadcastmaterialat the
highestlevel of genrenamely:sports,newsandcartoons.

Althoughbroadcastmaterialcanbe labelledat thepro-
ductionstagethereis still aneedfor automaticclassification
of videos. First, lots of videoscurrentlyexist that to date
have not beenlabelled. Second,andperhapsmost impor-
tantly, content-basedclassificationapproachesarethe ulti-
matefilter especiallyfor broadcasting.Unlike labelsand
watermarkswhicharesusceptibleto humanerrorandfraud,
content-basedapproachesaredependentsolelyontheactual
material.Theonly limit of content-basedapproachesis the
accuracy of thesystemitself. Furthermorethesystemcanbe
consideredasafinal check,andcomplementaryin providing
usefuladditionalmeta-datato any staticlabellingsystem.

Therearemany approachesto content-basedclassifica-
tion of videosrangingfrom low-level, limited environment,
event detectionthrough to high-level, broad environment
genreclassification.Theseapproachescanbebasedonstatic
features,dynamicfeaturesor a combinationof thetwo.

If theenvironmentis limited thentheclassificationtask
can becomemore specificas for examplein [1] were se-
mantic attributesof captionsare usedfor classificationof
news videos.A combinationof staticanddynamicfeatures
usedin a limited environmentis presentedby Haeringet al
in [2] whereeventdetectionis appliedto detectinghuntsin
wildlife videos. Anothercombinationapproachis applied
to sportssequencesby Yow et al in [3] who analysesoccer
videofor highlights,wheretheball is trackedandthestatic
up-rightsof thegoalpostsaredetectedto indicatea shoton
goal. Theseapplicationsrequireconstrainedinputsfor suc-
cess;they rely on the video beingpre-classifiedinto news,
wildlife andsportrespectively. It is this high level of video
classificationto which ourapproachis applied.

Otherapproachesappliedto thishighlevelof videoclas-
sification,wherethe input environmentis relatively unlim-
ited, can be generalisedinto two broadcategories. There
arethosetechniquesthatseparatethevideo into previously
definedcategoriesandthosethat areexample-basedquery
tools.

In thelatercase,oftentermedqueryby example,thesys-
temis presentedwith anexampleor smallnumberof exam-
plesof thetypeof videosequencerequired.Thesystemthen
searchesadatabasefor videoswith similarattributes.These
approachescanvary in functionalityandcomplexity of the
similarity measurebetweentheexampleandretrievedvideo
sequences.An automaticapproachby Changet al support-
ing spatio-temporalqueriesis presentedin [4]. A survey on
content-basedvideo retrieval is presentedby Yongshenget
al in [5].

Within thecasewheretheclassesarepre-defined,there
is a greatdealof variation. First, thereis variation in the



classesor genreof video,in numberandtype.Somepopular
categoriesaresports,news, cartoonsandcommercials.An
approachthatincludesall thesecategoriesplusmusicvideos
is presentedby Dorai et al in [6]. A numberof holistic
global featuresincluding staticsanddynamicsareusedfor
classification. Obviously, the most successfulapproaches
will incorporatefeatureextractionfrom the audiosignalas
well asthe video. A goodexampleof this is presentedby
Fischeret al [7] using imagebasedand audio basedfea-
turesappliedto video genreclassification. The approach
herepresentsdynamicfeatureextractionappliedto 3 pre-
definedclasses.

Approachesthat are basedon only dynamicsinclude
thoseranging from accuratetracking of object motion to
more cruderegion-basedmotion measures.Event classi-
fiers usuallyhave complicatedlow-level motion measures,
asdescribedby Courtney [8]. Moving objectsare tracked
andrepresentationsof their movementsare thenclassified
to identify eventssuchasmotion/rest,entrance/exit of ob-
jectsetc. Similar motion descriptors,have beendeveloped
for object motion by Jeanninet al [9] along with camera
motiondescriptorsandarepresentedfor applicationfor the
MPEG 7 standard.Theseapproachesare tend to be rela-
tively computationallyintensive.

Dynamicapproachesthatuselesscomplex motionmea-
suresto classifyvideosequencesarepresentedbyBouthemy
et al. For examplein [10, 11] local motion measuresand
globalmotionfeaturesareusedto classifytemporaltextures
suchasfire andfoliage;they alsoclaim thatthesemeasures
canbeusedto retrieve clips of similar globalmotionprop-
ertiessuchassports.

Hereweinvestigatetheperformanceof apurelydynamic
basedapproach[10, 11] appliedto video classificationas
the works of [9] andcomparableto [6]. The remainderof
thepaperis structuredasfollows. In Section2 theparticular
videodynamicsandmotionextractionaredefined.In Sec-
tion 3 theexperimentalconditionsandresultsarepresented
leadingto conclusionsin Section4.

2. VIDEO DYNAMICS

Thereare threedifferent identifiabletypesof dynamicsin
videosequences.Twoarecontainedwithin thescene,namely
thebackgroundor cameramotionandtheforegroundobject
motion. The third is the rateof shotor scenechangesand
is of a differentorigin, namelyexternalmanualediting in-
fluences.Althoughthis third form of dynamichasbeenre-
portedin [6, 7] to have discriminatorypropertieswithin the
applicationto videoclassification,it hasnotbeenconsidered
herealthoughit is thesubjectof furtherwork. Thefollowing
sectionsdescribethe motion featureextractionfor the two
dynamicsconsidered.Thebackgroundor cameramotionis
coveredin Section2.1,anda moredetailedaccountcanbe

found in [12]. The foregroundobjectmotion is coveredin
Section2.2. Seealso[13].

2.1. Background camera motion extraction

Hereasimplethree-parametermotionmodelis usedto deal
with cameramotionX, Y andZ. Left andright, or X motion
includesX translationand pan. Up and down, or Y mo-
tion includesY translationandtilt, andZ motion includes
Z translationandfocal lengthmodificationsor zoom. This
providesrelative computationalefficiency andis predicted
to includemostof thediscriminatoryinformationusefulfor
high-level classification.

Fig. 1. Neighborhoodsearchfor similarblocks

In orderto extractcameramotionanopticalflow based
approachhasbeenadopted.A testmask,labelledcorrela-
tion maskin Figure1, is extractedfrom the currentimage
andthe previous imageis searchedto find a similar mask.
The translationof the block is usuallysmall andtherefore,
to decreasecomputation,only a fractionof thepreviousim-
ageis searched,calledthesearchneighborhood,alsoshown
in Figure1. Whenthemostsimilarblock in thesearchneig-
borhoodis found, two thresholdsarechecked: oneagainst
the corelationcoefficent to make surethe block is similar
enoughto be assumedthe sameblock, two the numberof
similar enoughblocks within the neigborhoodis counted,
if therearetoo many this indicatesa uniform areaandthe
motionvector

�
is unreliable.Whenboththesecriterior are

metthenthemotionvector,
�
, canthenbedeterminedgood.

Thesimilarity measureusedto find themotionof theoptical
flow block is basedon correlationandgivenby:
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locatestheN - N searchneighborhoodand
definesthecenterof thetestmasks,
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687 is the red, greenor blue, � � is the
colourvalueof thepixel in thecurrentimage,and
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is the

colourvalueof thepixel in thepreviousframe.



This processis repeatedover the imageto obtaina full
optical flow. Largehomogeneousregions,typically half of
theimage,areconsideredto bethebackground.Thecamera
motion is calculatedto be the averagemotion vector 9� of
the blocks containedwithin this backgroundregion. The
camera 9� hasX, Y and Z motion components.A second
ordersignalof theX andY componentsof 9� arecalculated
to createcameramotionsignals:<; and :<= .
2.2. Foreground object motion

To measurethe foregroundobjectmotion first the camera
motion is subtractedfrom the scene. Figure 2 shows the
foregroundmotionextraction. Thetwo original framescan
beseenin Figures2(a)and2(b).

(a) (b)

(c) (d) (e)

Fig. 2. Motion in ascene:(a) framet-1, (b) framet, (c) orig-
inal, (d) cameracompensated,(e)morphologicalyfiltered

The motion is extractedby pixel-wise differencingof
consecutiveframesusingtheequation:

� ��>?�@� �BA"CD; � =FEHGI�BA"JLK�CM; � =FEHN+OQP thresholdR
otherwise

(2)

where � �)>?� is the Euclideandistancebetweencolour
pixels(R,G,B)in consecutiveframes

>
and
> G O , andx,y rep-

resentthepixel location.Themotionbetweentheframesis
shown by blackpixels.Theresultin Figure2(c) is of all the
motionwithin thescene.Thecameracompensationremoves
mostof thebackgroundmotion,Figure2(d). To furtheren-
hancethe objectmotionmorphologicalopeningis applied,
the resultof which is shown in Figure2(e). Herethe mo-
tion of theobjects,basketballplayers,is mostconcentrated
aroundthearmsandlegs.Fromasequenceof enhanceddif-
ferenceframes,suchas2(e),a secondorderobjectmotion
signal SFA is calculatedusingtheequation:

STA � ;VULW
;�UHK =FUBX
=TUHK � ��>?�Y -&Z [ > (3)

where Y and Z are width and height of the imagere-
spectively and � ��>?� is given in Equation2. Examplesof
thesesignalsfor eachclasscanbeseenin Figure3.

news

sport

cartoon

(a)

(b)

(c)

Fig. 3. Objectmotionsignalsfor: (a)news,(b) sportand(c)
cartoon

Thesesignalsrepresentthemagnitudeof therateof change
in themotionof theforegroundobjects.As maybeexpected
news3(a)hasrelativley little foregroundmotionandcartoon
3(c) hasthe most. This signal S A for eachclassalongwith
thecameramotionsignals: ; and : = arefurtherprocessed
for classification.

3. EXPERIMENTS

Themodelingof thesignalsis asdescribedin detail in [13].
Themagnitudespectraof thesecondordermotionsignal S
and the cameramotion signals :<; , :<= areprocessedus-
ing aDCT to providelow-passfiltering, orthogonalityanda
reducedfeaturedimension.The first \ coefficientsof each
signalrepresentationareconcatenatedinto a singlefeature
vector. Thefeaturevectorsarethenusedto traina Gaussian
Mixture Model (GMM) basedclassifier[14].

The experimentsarebasedon a subsetof the database
previously reportedin [13, 12], comprisingof a total of 18
sequences:8 sport,8 cartoonand2 newseachabout50sec-
ondslong. A round-robintechniqueis usedto maximisethe
useof the data: training on 14 minutesof video and test-
ing on 1 minute then rotating the sequences.Assessment
is performedon randomlychosensegments;theexperiment
is repeatedfor different lengthsegmentsandclassification
performanceassessed.

3.1. Experimental objectives

The objectivesareto demonstratethe discriminatoryprop-
ertiesof thetwo typesof videodynamics:] first, thecameramotionX andY.



] secondthe rate of changeof the foregroundobject
motion.] finally thecombinationatfeaturelevelof thetwo types
of videodynamics.

3.2. Results

Figure4 shows classificationerror rate (%) againstlength
of sequence(seconds).The3 profilesshow, cameramotion,
objectmotion and the two combined. The highestprofile
shows that thecameramotionaloneis theweakestdiscrim-
inator. The bestidentificationerror for the cameramotion
of 17% is at � 30 seconds.The profile for the foreground
objectmotion shows muchmorediscrimination. Here the
error rate falls from 42% at 3 secondsto level off around
8%at � 30seconds.However, whenaddedtogetheratafea-
ture level, the cameramotion improvesthe results,giving
thesystemits bestperformanceof 6%errorat � 30seconds.
This performanceis comparablewith thatof Dorai et al [6]
who report approximately90% accuracy using both static
anddynamicfeaturesto classifysport,cartoon,news, com-
mercialsandmusicvideos,obtainingthebestresultson 60
secondsof videoon a5 classproblem.
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4. CONCLUSIONS

Thediscriminatorypropertiesof differenttypesof dynamics
within video sequenceshave beenpresented.The motion
measuresarecontent-dependentandare thereforethe ulti-
matefilter, in that they arebasedon the observed content.
Thusthey canbecomplementaryto any form of staticlabel-
ing e.g. meta-data.The resultsshow that thedynamicfea-
ture extractionmethodsreportedhave gooddiscriminatory
propertiesandjustify beingpartof anoverall classification
systempossiblyincludingstaticandaudiofeatures,suchas
in [6, 7]. Usingjust � 30 secondrandomlychosenclips the
systemhasa classificationerrorrateof about6% appliedto
the3 videoclassessport,cartoonandnews.
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