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ABSTRACT

Theproblemaddressetiereis classificatiorof videosatthe

highestlevel into pre-definedyenre. The approachadopted
is basedon the dynamiccontentof short sequence$~30

secs). This paperpresentdwo methodsof extracting mo-

tion from a video sequenceforegroundobjectmotion and

backgroundtameramotion. Thesedynamicsareextracted,
processednd appliedto classify 3 broad classes:sports,
cartoonsand news. Experimentalresultsfor this 3 class
problemgive error ratesof 17%, 8% and 6% for camera
motion, objectmotion and both combinedrespectiely, on

~30secondsequences.

1. INTRODUCTION

Thereis asubstantiahmountof multimediadatain theworld,
diversein contentandorigin. In orderto make efficient use
of this datait shouldbe labelledor indexed in someman-
ner Suchlabellingwould malke it easierfor individualsto
retrieve the type of materialdesired. In particularthe area
of multimediadataconsiderechereis the leisurebroadcast
typei.e. T.V. programsfilms etc. Thetaskis to supplycus-
tomerswith materialof their viewing preferenceln this pa-
perwe look at the classificatiorof broadcastaterialat the
highestlevel of genrenamely:sports,nens andcartoons.
Although broadcastaterialcanbe labelledat the pro-
ductionstagethereis still aneedfor automatiaclassification
of videos. First, lots of videoscurrently exist that to date
have not beenlabelled. Second,and perhapsmostimpor-
tantly, content-basedlassificationapproachesrethe ulti-
matefilter especiallyfor broadcasting.Unlike labelsand
watermarkswhicharesusceptibléo humanrerrorandfraud,
content-basedpproachearedependensolelyontheactual
material. The only limit of content-basedpproachess the
accurag of thesystemitself. Furthermorghesystencanbe
consideredsafinal check,andcomplementaryn providing
usefuladditionalmeta-datdo ary staticlabellingsystem.

M. Pawlewski

BTexaCT
AdvancedCommunicationfechnologies
AdastralPark
MartleshamHeath
IpswichIP5 3RE

Therearemary approacheso content-basedlassifica-
tion of videosrangingfrom low-level, limited ervironment,
event detectionthroughto high-level, broad ervironment
genreclassificationTheseapproachesanbebasen static
featuresdynamicfeaturesor acombinationof thetwo.

If the ervironmentis limited thenthe classificatiortask
can becomemore specificas for examplein [1] were se-
mantic attributes of captionsare usedfor classificationof
news videos.A combinationof staticanddynamicfeatures
usedin alimited ervironmentis presentedy Haeringet al
in [2] whereeventdetectionis appliedto detectinghuntsin
wildlife videos. Another combinationapproachs applied
to sportssequenceby Yow et al in [3] who analysesoccer
videofor highlights,wherethe ball is tracked andthe static
up-rightsof the goal postsaredetectedo indicatea shoton
goal. Theseapplicationgequireconstrainednputsfor suc-
cess;they rely on the video being pre-classifiednto news,
wildlife andsportrespectiely. It is this high level of video
classificatiorto which our approacthis applied.

Otherapproacheappliedto thishighlevel of videoclas-
sification, wherethe input ervironmentis relatively unlim-
ited, can be generalisednto two broadcateyories. There
arethosetechniqueghat separatéhe videointo previously
definedcateyoriesand thosethat are example-basedjuery
tools.

In thelatercasepftentermedqueryby example thesys-
temis presentedvith anexampleor smallnumberof exam-
plesof thetypeof videosequenceequired.Thesystenthen
searchea databaséor videoswith similar attributes. These
approachesanvary in functionality andcomplexity of the
similarity measuréetweerthe exampleandretrievedvideo
sequencesAn automaticapproachby Changet al support-
ing spatio-temporadjueriesis presentedn [4]. A suney on
content-basedideoretrieval is presentedy Yongshenget
alin [5].

Within the casewherethe classesrepre-definedthere
is a greatdeal of variation. First, thereis variationin the



classe®r genreof video,in numberandtype. Somepopular
catgyoriesare sports,news, cartoonsand commercials.An
approachhatincludesall thesecateyoriesplusmusicvideos
is presentedby Dorai et al in [6]. A numberof holistic
global featuresincluding staticsand dynamicsare usedfor
classification. Obviously, the most successfulapproaches
will incorporatefeatureextractionfrom the audiosignalas
well asthevideo. A goodexampleof this is presentedy
Fischeret al [7] usingimage basedand audio basedfea-
turesappliedto video genreclassification. The approach
herepresentsdlynamicfeatureextraction appliedto 3 pre-
definedclasses.

Approachesthat are basedon only dynamicsinclude
thoseranging from accuratetracking of object motion to
more crude region-basedmotion measures. Event classi-
fiers usually have complicatedow-level motion measures,
asdescribedoy Courtne/ [8]. Moving objectsare tracked
and representationsf their movementsare then classified
to identify eventssuchas motion/rest,entrance/git of ob-
jectsetc. Similar motion descriptorshave beendeveloped
for object motion by Jeanninet al [9] alongwith camera
motiondescriptorsandarepresentedor applicationfor the
MPEG 7 standard. Theseapproachesretendto be rela-
tively computationallyintensve.

Dynamicapproachethatuselesscomplex motionmea-
suredo classifyvideosequencearepresentedy Bouthemy
et al. For examplein [10, 11] local motion measuresand
globalmotionfeaturesareusedto classifytemporaltextures
suchasfire andfoliage;they alsoclaim thatthesemeasures
canbe usedto retrieve clips of similar global motion prop-
ertiessuchassports.

Hereweinvestigateheperformancef apurelydynamic
basedapproach10, 11] appliedto video classificationas
the works of [9] andcomparabldo [6]. The remainderof
thepaperis structuredasfollows. In Section2 the particular
video dynamicsand motion extractionare defined. In Sec-
tion 3 the experimentalconditionsandresultsarepresented
leadingto conclusionsn Sectior4.

2. VIDEO DYNAMICS

Thereare threedifferentidentifiabletypesof dynamicsin
videosequencesIwo arecontainedvithin thescenenamely
thebackgroundr cameramotionandtheforegroundobject
motion. The third is the rate of shotor scenechangesand
is of a differentorigin, namelyexternalmanualediting in-
fluences.Althoughthis third form of dynamichasbeenre-
portedin [6, 7] to have discriminatorypropertieswithin the
applicationto videoclassificationjt hasnotbeenconsidered
herealthoughit is thesubjectof furtherwork. Thefollowing
sectionsdescribethe motion featureextractionfor the two
dynamicsconsideredThe backgroundor cameramotionis
coveredin Section2.1, anda moredetailedaccountcanbe

foundin [12]. The foregroundobjectmotionis coveredin
Section2.2. Seealso[13].

2.1. Background camera motion extraction

Hereasimplethree-parametanotion modelis usedto deal
with cameramotionX, Y andZ. Left andright, or X motion
includesX translationand pan. Up anddown, or Y mo-
tion includesY translationandtilt, andZ motionincludes
Z translationandfocal lengthmodificationsor zoom. This
providesrelative computationakfficiency andis predicted
to includemostof the discriminatoryinformationusefulfor
high-level classification.

orrelation mask

Fig. 1. Neighborhoodsearchor similar blocks

In orderto extractcameramotion an optical flow based
approachhasbeenadopted. A testmask,labelledcorrela-
tion maskin Figure1, is extractedfrom the currentimage
andthe previousimageis searchedo find a similar mask.
The translationof the block is usually small andtherefore,
to decreaseomputationpnly afractionof the previousim-
ageis searchedgalledthe searcmeighborhoodalsoshovn
in Figurel. Whenthemostsimilar blockin thesearchmeig-
borhoodis found, two thresholdsare checled: one against
the corelationcoeficent to make surethe block is similar
enoughto be assumedhe sameblock, two the numberof
similar enoughblocks within the neigborhoodis counted,
if therearetoo mary this indicatesa uniform areaandthe
motionvectork is unreliable. Whenboththesecriterior are
metthenthe motionvector, k, canthenbedeterminedyood.
Thesimilarity measureaisecto find themotionof theoptical
flow blockis basedon correlationandgivenby:
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where(l, m) locatestheNxN searcmeighborhoodnd
defineghecenterof thetestmasks (i, j) describeshemask
nxn, ¢ € {R,G,B} is thered, greenor blue, P, is the
colourvalueof the pixel in thecurrentimage,and@. is the
colourvalueof the pixel in the previousframe.



This processs repeatedver theimageto obtaina full
optical flow. Large homogeneousegions,typically half of
theimage,areconsideredo bethebackgroundThecamera
motion is calculatedto be the averagemotion vector k of
the blocks containedwithin this backgroundregion. The
camerak hasX, Y andZ motion components.A second
ordersignalof the X andY component®f k arecalculated
to createcameramotionsignalsi/, and M,,.

2.2. Foreground object motion

To measurehe foreground object motion first the camera
motion is subtractedrom the scene. Figure 2 shows the
foregroundmotion extraction. The two original framescan
beseenin Figures2(a)and2(b).

Fig. 2. Motionin asceneia)framet-1, (b) framet, (c) orig-
inal, (d) cameracompensatedg) morphologicalyfiltered

The motion is extractedby pixel-wise differencingof
consecutre framesusingthe equation:

1 > threshold
0 otherwise

P(t) = Pt(z,y) - Ptfl(q:,y) { (2)

where P(t) is the Euclideandistancebetweencolour
pixels(R,G,B)in consecutieframest andt—1, andx,y rep-
resenthe pixel location. The motion betweerthe framesis
shawn by blackpixels. Theresultin Figure2(c)is of all the
motionwithin thescene Thecameracompensationemoves
mostof the backgroundnotion, Figure2(d). To furtheren-
hancethe objectmotion morphologicalopeningis applied,
the resultof which is shawvn in Figure 2(e). Herethe mo-
tion of the objects,basletball players,is mostconcentrated
aroundthearmsandlegs. Fromasequencef enhancedlif-
ferenceframes,suchas2(e), a secondorderobjectmotion
signalé; is calculatedusingthe equation:

wherew and h are width and height of the imagere-
spectiely and P(t) is givenin Equation2. Examplesof
thesesignalsfor eachclasscanbeseenin Figure3.
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Fig. 3. Objectmotionsignalsfor: (a) news, (b) sportand(c)
cartoon

Thesesignalsrepresenthemagnitudeof therateof change
in themotionof theforegroundobjects.As maybeexpected
news 3(a)hasrelativley little foregroundmotionandcartoon
3(c) hasthe most. This signalé; for eachclassalongwith
thecameramotionsignalsiM,, andM,, arefurtherprocessed
for classification.

3. EXPERIMENTS

Themodelingof the signalsis asdescribedn detailin [13].
The magnitudespectraof the secondordermotion signalé$
andthe cameramotion signalsM,, M, areprocessedis-
ing aDCT to provide low-pasdfiltering, orthogonalityanda
reducedfeaturedimension. Thefirst n. coeficientsof each
signalrepresentatiolare concatenatethto a singlefeature
vector Thefeaturevectorsarethenusedto train a Gaussian
Mixture Model (GMM) basedclassifier{14].

The experimentsare basedon a subsetf the database
previously reportedin [13, 12], comprisingof a total of 18
sequences8 sport,8 cartoonand2 news eachabout50 sec-
ondslong. A round-robintechniquéds usedto maximisethe
useof the data: training on 14 minutesof video andtest-
ing on 1 minute then rotating the sequences Assessment
is performedon randomlychosersggmentsithe experiment
is repeatedor differentlength segmentsand classification
performancessessed.

3.1. Experimental objectives

The objectivesareto demonstratehe discriminatoryprop-
ertiesof thetwo typesof videodynamics:

o first, thecameramotion X andY.



e secondthe rate of changeof the foreground object
motion.

¢ finally thecombinatioratfeaturelevel of thetwo types
of videodynamics.

3.2. Resaults

Figure 4 shaws classificationerror rate (%) againstlength
of sequencéseconds)The 3 profilesshav, cameramotion,
object motion and the two combined. The highestprofile
shavs thatthe cameramotion aloneis the wealestdiscrim-
inator. The bestidentificationerror for the cameramotion
of 17% s at ~30 seconds.The profile for the foreground
object motion shavs much more discrimination. Herethe
error rate falls from 42% at 3 secondgo level off around
8% at~30secondsHowever, whenaddedogethematafea-
ture level, the cameramotion improvesthe results,giving

the systemits bestperformancef 6% errorat ~30seconds.

This performancés comparablavith thatof Dorai et al [6]

who report approximately90% accurag using both static
anddynamicfeaturedo classifysport,cartoon,news, com-
mercialsand musicvideos,obtainingthe bestresultson 60
second®f videoon ab classproblem.
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Fig. 4. Identificationperformance

4. CONCLUSIONS

Thediscriminatorypropertief differenttypesof dynamics
within video sequencefave beenpresented.The motion
measuresre content-dependerand are thereforethe ulti-
matefilter, in thatthey arebasedon the obsered content.
Thusthey canbecomplementaryo ary form of staticlabel-
ing e.g. meta-data.Theresultsshowv thatthe dynamicfea-
ture extraction methodsreportedhave good discriminatory
propertiesandjustify beingpart of anoverall classification
systempossiblyincluding staticandaudiofeaturessuchas
in [6, 7]. Usingjust ~30 secondandomlychoserclips the
systemhasa classificatiorerror rateof about6% appliedto
the 3 videoclassesport,cartoonandnews.
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