
A MULTI-STAGE MULTI-CANDIDATE ALGORITHM FOR MOTION ESTIMATION

Liao Ta-Changy, See-May Phoongy, and Yuan-Pei Linz

yDept. of EE & Grad. Inst. of Comm Engr., National Taiwan Univ.,Taipei, Taiwan, R. O. C.
zDept. Elec. and Control Engr., National Chiao Tung Univ., Hsinchu, Taiwan, R. O. C.

ABSTRACT

Motion compensation using the optimal full search algo-
rithm is often too computational heavy for real time imple-
mentation. Many suboptimal fast search algorithms have
been proposed. In particular, Liu and Zaccarin proposed the
Alternating Subsampling Search Algorithm (ASSA). The
ASSA reduces the computation by subsampling the pixels
instead of limiting the search locations. It was shown that
ASSA has nearly the same MSE performance as the full
search but its complexity is only 1/4 of the full search. In
this paper, we generalize the idea to the multi-stage case.
Simulation results show that the proposed algorithm has a
comparable performance to the ASSA but it has a much
lower computational cost.

1. INTRODUCTION

Motion estimation plays an important role in the coding of
video signals. Both block matching algorithm and pixel re-
cursive algorithm have been developed. Block matching al-
gorithms have been widely used in video coding standards
due to their simplicity for both software and hardware im-
plementation. The optimal block matching algorithm that
yields the best motion vector (according to some prede-
termined criteria) is the full search (FS) algorithm. It ex-
plores all the possible motion displacements over a defined
search window. However, the computational complexity of
the FS algorithm is often too high for many applications.
A number of fast motion estimation algorithms that yield
suboptimal (or near optimal) motion vector at a much lower
cost have been developed. Most of the proposed fast al-
gorithms reduce the complexity by limiting the number of
search locations. Some of these examples include the three-
step search (3SS) algorithm [1], the new three-step search
(N3SS) [2], the four-step search (4SS) algorithm [3], the
cross search (CS) algorithm [4], the block-based gradient
descent search (BBGDS) [5], the unrestricted center-biased
diamond search (UCBDS) [6], etc. The performance of
these algorithms rely on the monotonically increasing prop-
erty of the distortion function when one moves away from

THIS WORK WAS SUPPORTED BY NSC 89-2213-E-002-122 AND
89-2213-E-009-118, TAIWAN, R.O.C.

the optimal solution. For some image sequences, these algo-
rithms can be trapped into local minimum points, and thus,
can produce a much higher matching error compared with
the FS algorithm.

Liu and Zaccarin proposed an Alternating Subsampling
Search Algorithm (ASSA) [7] which reduces the number
of pixels used in each block distortion measure instead of
reducing the number of checking points. This algorithm
uses alternating subsampling patterns in calculating differ-
ent location’s distortion. Experimental results [7] show that
the MSE performance of ASSA with downsampling fac-
tor of 4 is very close to that of FS. However it can only
achieve computation reduction of 4 times compare to the
FS. This is in general still too costly for most applications.
Though ASSA with higher downsampling factor can have
more computational saving, its performance degrades sub-
stantially. Therefore, to further reduce the complexity, the
authors limit the number of search location by downsam-
pling the motion field. In this paper, we generalize the algo-
rithm in [7] to multiple stages. The original block of image
is partitioned into multiple groups. In the first stage, one
of the groups of pixels are used for the evaluation of dis-
tortion at all search locations, and the best few candidate
search locations are selected. In each of latter stages, we
continue to eliminate a number of candidates by evaluat-
ing the distortion at one new group of pixels, until the last
stage when the best motion vector is obtained by using the
all the groups. By retaining more candidates, we can af-
ford to have a larger downsampling factor at earlier stages
and hence can achieve more computational saving than the
ASSA. Our experiments show that the proposed algorithm
compares favorably with the 3SS, 4SS, ASSA, BBGDS and
UCBDS.

2. THE PROPOSED MULTI-STAGE
MULTI-CANDIDATE ALGORITHM

The pixel value at the coordinate (x0; x1) of the frame n
will be represented as fn(x0; x1). Block-matching motion
estimation is done between current frame n and previous
frame n � 1. Each frame is divided into nonoverlapped N
by N blocks. Each block will be referred to by the coordi-



nate (k0; k1) of its top left corner. The matching criterion
used in this paper is the mean absolute difference (MAD).
The MAD is chosen because it does not need any multipli-
cations and gives similar solution as the mean square error
(MSE). The MAD between block (k0; k1) of current frame
and block (k0 + v0; k1 + v1) of previous frame is given by:

MAD(v0;v1)(k0; k1) =

N�1X

i0=0

N�1X

i1=0

jfn(k0 + i0; k1 + i1)

�fn�1(k0 + v0 + i0; k1 + v1 + i1)j:

The range of the search window is �p � v0 � p and
�p � v1 � p. From the search window, the vector (v0; v1)
that gives the smallest MAD is chosen as the motion vector.
For each block, there are a total of (2p + 1)2 search lo-
cations. For each search location, the computation of the
MAD takes 2N2 additions. Therefore the FS algorithm
needs 2(2p+ 1)2N2 additions for the computation of each
motion vector. This complexity is often too high for many
applications. From the expression 2(2p + 1)2N2, we see
that complexity can be lowered by limiting the number of
search locations or reducing the number of pixels in evalua-
tion of the MAD. Our proposed multi-stage multi-candidate
(MSMC) algorithm belongs to the latter, and the algorithm
is described below.

The MSMC Algorithm
The MSMC algorithm matches all the locations inside

the search window as the FS algorithm. However it uses a
subset of pixels to evaluate the MAD. To explain the method,
we will use a 4-stage MSMC algorithm as an example. It is
not difficult to generalize the method to more stages. The
block size is assumed to be 16 by 16. The pixels in each
block are partitioned into 4 groups as shown in Fig. 1. Note
that the number of groups is equal to the number of stages.
The algorithm is as follows:

Stage 1. Evaluate the MAD using the 16 pixels labeled as
1. The double summation in the MAD expression has
only 16 terms. After evaluating the MAD for all the
locations in the search window, we keep only the K1

candidate motion vectors that have the smallest K1

MAD.

Stage 2. For the K1 motion vectors obtained from Stage 1,
evaluate the MAD using the 64 pixels labeled as 1 and
2. Note that in this case, there are only 48 new terms
in the MAD expression due to those pixels in Group
2. We keep only theK2 candidate motion vectors that
have the smallest K2 MAD.

Stage 3. For the K2 motion vectors, evaluate the MAD
using the 128 pixels labeled as 1, 2 and 3. There are
64 new terms. We keep only theK3 candidate motion
vectors that have the smallest K3 MAD.

Figure 1: Partition of an 16 by 16 block into 4 groups.
Groups 1, 2, 3, 4 are respectively the new pixels used in
the evaluation of the MAD.

Stage 4 For the K3 motion vectors, evaluate the MAD us-
ing all the pixels in the block. There are 128 new
terms. We keep only the best motion vector that have
the smallest MAD.

Computational Complexity
Let the range of the search window be�p � v0 � p and

�p � v1 � p and block size of 16 by 16. The FS algorithm
takes 512�(2p+1)2 additions to find the best motion vector
for each block. For the above 4-stage MSMC algorithm, the
number of additions needed to compute the motion vector
for each block is given by:

2(16 � (2p+ 1)2 + 48 �K1 + 64 �K2 + 128 �K3): (1)

When (2p + 1)2 is much larger than Ki, the MSMC al-
gorithm has a considerable saving over the FS algorithm.
However when Ki are too small, the mean square error
(MSE) performance of the MSMC algorithm will be de-
graded. There is a tradeoff between the computational com-
plexity and performance. After carrying out the simulations
on a number of test sequences, we found that the choice of
K1 = 8, K2 = 4 and K3 = 2 is a good compromise. For
this choice of Ki, we compare its complexity with the FS,
ASSA, 3SS algorithms for the cases of p = 7 and 15. The
complexity of FS is normalized to 1. For the ASSA algo-
rithm [7], it has a downsampling factor of 4. The results are
shown in Table 1. As we can see, for p = 7, the MSMC has
a considerable saving over the other 2 methods. For p = 15,
the 3SS has the lowest complexity.

In (1), we have not included the computation needed for
selecting the candidate. To check each search location if it
is a candidate, we need to do at least one and at most K i

comparisons. This overhead can be significant when K i is



Table 1: Comparison of Complexity.

large. To reduce this overhead, we exploit the center-biased
motion vector distribution characteristics of the real world
sequences [2]. The search of the motion vector starts at the
origin of the search window and then moves outwards with
a spiral scanning path, as shown in Fig. 2. By doing so, the
overhead can be reduced to one comparison for most search
locations.

Figure 2: Spiral scanning path.

3. SIMULATION RESULTS

We compare the performance of the FS, ASSA, 3SS, 4SS,
BBGDS, UCBDS and the proposed MSMC algorithms. Only
the luminance component of the video sequences is used for
the calculation of motion vector. The video sequences used
are the first 150 frames of the sequences Suzie, Trevor, Fore-
man, and Carphone (frame size = 176 by 144) and the first
100 frames of the sequences Tennis, Football, and Flower
(frame size = 352 by 240). Block size is 16 by 16. The 4-
stage MSMC algorithm is used and K1 = 8, K2 = 4, and
K3 = 2. The parameter p = 7. The experiment is done for
two different frame rates of 30 fps and 10 fps.

The MSE performances of all the methods are shown
in Tables 2 and 3 for the two different frame rates. From
the average values in the last column of the tables, we see
that the ASSA has nearly the same MSE performance as the
FS. The MSE performance of MSMC algorithm is slightly
worse than that of ASSA but is much better than the MSE
performances of 3SS, 4SS, BBGDS and UCBDS. We also
compare the execution time taken for these methods. We
normalize the time taken for the FS algorithm as 100%.
The results are shown in Tables 4 and 5 respectively for the

frame rate of 30 fps and 10 fps. From the average values,
we see that the BBGDS is the fastest and the MSMC is only
slightly slower. However the MSE of BBGDS is substan-
tially larger than the MSMC. In summary, the ASSA can
achieve an MSE performance that is very close to the FS
but it is only 3.3 times faster than the FS. The MSMC has
a comparable MSE performance to ASSA but it is 12 times
faster the FS.

4. CONCLUSIONS

In this paper, we have proposed a new fast and efficient al-
gorithm for motion compensation. The proposed MSMC
algorithm compares favorably with the 3SS, 4SS, ASSA,
BBGDS and UCBDS. Moreover, MSMC algorithm can be
combined with the predictive search algorithm and can fur-
ther reduce the computational load without sacrificing much
MSE performance [8].

5. REFERENCES

[1] T. Koga; K. Ilinuma, A. Hirano, Y. Iijima, and T. Ishig-
uro, ”Motion compensated interframe image coding, ”
in Proc. NTC 81, NOV./Dec. 1981, pp. C9.6.1-C9.6.5.

[2] Li, R.; Zeng, B; Liou, M.L. , ”A new three-step search
algorithm for block motion estimation ,” IEEE Trans.
on CSVT, Aug. 1994, pp. 438 -442.

[3] Po, L.; Ma, W. ”A novel four-step search algorithm for
fast block motion estimation, ” IEEE Trans. on CSVT,
June 1996, pp. 313 -317.

[4] Ghanbari, M. ,”The cross-search algorithm for motion
estimation ,” IEEE Trans. on Communications, July
1990, pp. 950 - 953.

[5] Liu, L.; Feig, E. , ”A block-based gradient descent
search algorithm for block motion estimation in video
coding ,” IEEE Trans. on CSVT, Aug. 1996, pp. 419
-422.

[6] Tham, J.; Ranganath, S.; Ranganath, M.; Kassim,
A.A. , ”A novel unrestricted center-biased diamond
search algorithm for block motion estimation,” IEEE
Transactions on CSVT, Aug. 1998, pp. 369 -377.

[7] Liu, B.; Zaccarin, A., ” New fast algorithms for the
estimation of block motion vectors ,” IEEE Trans. on
CSVT, April 1993 , pp. 148 -157.

[8] Liao, T., “New motion estimation method and im-
proved video codec,” Master Thesis, National Taiwan
Univ., June 2000.



Table 2: Comparison of MSE performance for frame rate = 30 fps.

Table 3: Comparison of MSE performance for frame rate = 10 fps.

Table 4: Comparison of complexity for frame rate = 30 fps.

Table 5: Comparison of complexity for frame rate = 10 fps.


