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ABSTRACT

A markovian model of the error probability density for decision
feedback equalizer is proposed and its application to the error prop-
agation probability computation is derived. The model is a gener-
alization of the Lütkemeyer and Noll model proposed in [1]. It is
obtained by the analysis of the gaussian mixture distribution of the
errors which follows a Markov Process. The analysis of this pro-
cess shows that the error propagation probability of the Weighted
DFE [2] is less than the one of the classical DFE.

1. INTRODUCTION

Obviously, the number of services on heterogeneous wireless net-
works such as GSM, IS95, PDC, DECT and the future UMTS is
increasing dramatically. In addition, one of the most challenging
issues is interactive multimedia services over wireless networks.
As a consequence, the bit-rate of these wireless networks is in-
creasing dramatically. Consequently the spectrum efficiency of the
modulation scheme should be more and more important. Being so,
the sensitiveness of the transmitting signal to the multipath effects
is also increasing.

To fight the multipath problem of wireless networks, some ser-
vices have chosen multicarrier modulation as for instance DAB
and DVB-T in Europe. In the case of monocarrier modulation we
need powerful equalization techniques.

It is well known that MLSE equalizer is the best one, but it
is also well known that its computational complexity depends on
both the number of the constellation points and the length of the
channel impulse response. Therefore MLSE is not usable in prac-
tice for high spectral efficiency modulation, and it is the main rea-
son why people turn their attention to decision feedback equalizers
(DFE). In fact it offers the best compromise between performances
and complexity. DFE are well known for their superior perfor-
mance compared to transversal equalizers, but due to their recur-
sive structure (feedback loop), they can suffer from error propaga-
tion. This results in an overall mean square error (MSE) degrada-
tion.

This problem is well known and has already been addressed by
many authors. In references [3, 4] the problem of bounds of this
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degradation has been addressed. More recently in reference [1] the
authors established a probability state model for the calculation of
the bit error rate degradation due to error propagation.

This problem is very often overcome with the transmission
of a known training data sequence. This training period is used
both for the starting period (blind equalization) and for the track-
ing period. During this last period, the channel may change and
the DFE in the decision directed (DD) mode may suffer from the
error propagation. As a consequence, this training period should
be transmitted regularly. This results in a loss of bit-rate

This error propagation problem is a major one and its thorough
solution remains an open problem. An effective technique has re-
cently been proposed in [5]. In that work the authors proposed
a blind DFE by commuting, in a reversible way, both its structure
and its adaptation algorithm, according to some measure of perfor-
mance as, for instance, the mean square error (MSE). So, in this
way, their DFE doesn’t suffer from the error propagation problem.

In [2] and [6], we addressed the problem of error propagation
as being the result of both the input of errors in the feedback fil-
ter and the divergence of the adaptive algorithm. This equalizer
called weighted decision feedback equalizer (WDFE) offers the
advantage to limit and solve the error propagation phenomenon.

In this paper for demonstrating the performance of the WDFE
we define a markovian model of the error probability density for
decision feedback equalizer and its application to the error propa-
gation probability computation is derived. This model, a general-
ization of the Lütkemeyer and Noll model proposed in [1], takes
into account only the filtering part of the equalizers. It is obtained
by the analysis of the gaussian mixture distribution of the errors
which follows a Markov process. This model is totally equivalent
to the model recently published by Willink,et. al [7]. The analysis
of this process shows that the error propagation probability of the
Weighted DFE [6] is less than the one of the classical DFE. In fact
we show that the transition matrix of the WDFE Markov model is
better conditioned that the one of the classical DFE.

The first section presents the WDFE. The second section de-
scribes briefly the hypothesis, our model and the equivalence with
the Willink, Wittke and Campbell model [7]. Finally, in the third
section, we study the behavior of the transition matrix of the WDFE
compared to the one of the classical DFE.



2. WDFE PRESENTATION

The weighted decision feedback equalizer is the classical DFE to
which we add two devices (figure 1). The first device computes a
reliability value (a likelihood information) for each output of the
DFE. The second one uses this value in such a way as not to de-
cide on errors in the feedback loop and also to minimize the effect
of the errors in the LMS-DD algorithm. Two different ways for
computing and using these reliability values have been presented
in papers [2] and [6].
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Fig. 1. WDFE scheme.

3. WDFE ERROR MODEL

3.1. WDFE filter equivalent structure

The filtering part of the WDFE could be synthesized by a DFE
structure with a soft decision functionU as describe in the figure 2.
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Fig. 2. WDFE equivalent structure.

This decision function is only used to compute the feed back
symbols. The WDFE deals with three kinds of error because of
theU function providing a new data estimation:

� ~ek = dk � ~̂dk which is the new feedback error.

� ek = dk � ~dk which is the soft output error of the WDFE.

� êk = dk � d̂k which is the hard output error of the WDFE.

As the feedback errors~ek and the decision error̂ek are not
equal, the results of the papers [1, 3, 8, 9, 4, 10, 11] have to be
improved to match the WDFE particularities. Therefore, it is nec-
essary to build a new model to achieve this goal.

3.2. The key equation

In the following, we assume that the channel is a additive white
gaussian noise channel, and that the data are a white sequence of
symbols uniformly distributed. Moreover, with the notations of
figure 2, the feedback filter coefficients could be written as:bi =
pi + Æi, and withp0 = 1 + Æ0, the output of the equalizer is then
given by the equation

~dk =

LX
i=�M

pidk�i �
LX
j=1

bi ~̂dk�i + nk: (1)

Let fi bepi for i < 0 andÆi otherwise, the previous equation
becomes

~dk � dk =

LX
i=�M

fidk�i +

LX
i=1

bi
�
dk�i � ~̂dk�i

�
+ nk: (2)

If the edge of the constellation is not taken into account, a
functionV could be defined as

dk�i � U
�
~dk�i

�
= V (ek�i) : (3)

However, as seen later, this restriction could be removed. The
existence ofV simplifies the equation (2) in

ek = �J(Ek�1)� I(Dk)� nk; (4)

whereI(Dk) is the ISI part due to theB mismatch and the anti-
causal part of the channel.Ek is the error state[ek : : : ek�L+1]
andJ(Ek) =

PL

i=1 biV (ek�i) the ISI coming from the errors in
the feedback filter.

3.3. The underlying Markov process

If we noteXjY the random variable (r.v.)X conditioned onY
andfX the probability density function (pdf) of the r.v.X, the key
equation (4) gives

ekjEk�1; Dk � N
�
�J(Ek�1)� I(Dk); �

2
N

�
: (5)

We could easily deal with the ISI coming from the dataDk by
assuming

Pr [ekjEk�1] =
X
Dk

Pr [ekjEk�1; Dk] Pr [Dk] ; (6)

and, as the data is a white uniformly distributed sequence,Pr [Dk] =
1=AW with A the number of symbols of the modulation, andW
the length of the channelP .

The relations (4), (5) define aL-order Markov sequence of the
output error of the WDFE. The pdf of the error could be obtain by

fek (x) =
X
Dk

Z
RL

fek jEk�1;Dk
(xjY;Dk)

AW
fEk�1

(Y )dY: (7)

If we defineg as the gaussian function with the variance�2N ,
the previous equation becomes

fek (x) =
X
Dk

Z
RL

g (x+ I(Dk) + J(Ek�1))

AW
fEk�1

(Y )dY: (8)

These relations could be greatly simplified thanks to an ap-
proximation of theV function by a staircase function withN stairs
defined by the parametersvi andai:

for y 2 [ai; ai+1] V (y) � vi: (9)

The boundsai can be equal to�1 and the number of stairs
is finite. Thanks to this approximation, the equation (8) becomes



fek (x) =
1

AW

X
Dk

LX
i1;:::;ij=1

g

 
x+

LX
j=1

bivij + I(Dk)

!

�

Z ai1+1
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aiL

fek�1:::ek�L(y1; : : : ; yL)dy1 : : : dyL: (10)

We could defineFl the state of the WDFE which are the vector
[vi1 ; : : : ; viL ] and�(k)i the value of the multiple integration, then
we have

fek (x) =

NLX
i=1

�
(k)
i

1

AW

X
Dk

g (x+ Z (Fi) + I(Dk)) ; (11)

whereZ(Fi) =
P

i1;:::;iL

P
j
bjvij is the ISI coming from the

error in the feedback filter using the approximation of theV func-
tion.

The last relation means that the pdf of the error is a gaussian
mixture. Only the proportion of that mixture depends on the time
k. If we re-inject this result into the equation (10), a time-relation
between the proportion appears:

�(k) = Q � �(k�1); (12)

withQ aNL�NL matrix depending on the channel, the feedback
filter and the noise but not on the time.

This relation (12) highlights the Markov chain character of the
WDFE error process. It is also possible to express the error prob-
ability at timek according to the proportion as a scalar product:

P (k)
e = 1�

Z 1

�1

fek (x)dx;

= T T � �(k):

(13)

The last two equations (12) and (13) define the error model of
the WDFE.

3.4. The modified error model

3.4.1. T weighting

For a M-PAM, the calculation of the error probability thanks to the
equation (13) is not accurate because of the two symbols on the
edge of the constellation. The integration is right for theM � 2
inner symbols. For the 2 others ones, the integration domain is
not [�1; 1] but ] � 1; 1] and [�1;1[ then the newT vector is
obtained by

Tweighted=
M � 1

M
T: (14)

For modulation with a high spectral efficiency, the weighted
factor tends toward 1 as expected.

3.4.2. Q weighting

For a 2-PAM DFE, the event~ek = 2 can appear only one time
(for dk = 1 and d̂k = �1). It is also the case for~ek = �2.
But for ~ek = 0 two cases are possible. This fact comes from the
edge effect. In order to integrate it into the model, the lines of the
transition matrixQ should be weighted according to it.

This modified model is for the DFE strictly equivalent to the
Willink, Wittke, and Campbell model [7]. In fact, the proportion
of the gaussian mixture is also the probability to be in a given state
represented by the mean and the transition matrix are equal.
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Fig. 3. Model validation for the WDFE rule 2.

To validate the model, a comparison between a Monte Carlo
simulation and the model has been done (figure 3) with a chan-
nel set toP = (1 0:2 0:2) and a backward filter set toB =
(0:24 0:24). The WDFE used the second rule [2, 6] approximated
with 16 stairs for a 2-PAM.

4. WDFE/DFE COMPARISON

4.1. Introduction

As the transition matrices for the DFE and the WDFE do not have
the same size, a comparison between their coefficients is not feasi-
ble. For this purpose, the WDFE Markov chain should be reduced
into a DFE equivalent chain.

The states of the WDFE Markov chain holds the errors~ek
which is different from the DFE-like errors. But, if the~ek is
known, then the decision error is also known. The Markov chain of
the WDFE could then be reduced in order to become a DFE-like
chain. The reduction consists of grouping several WDFE states
into one DFE states. This problem is the same as finding the transi-

tion probabilityPr [êkjêk�1 : : : êk�L] knowingPr
h
~̂ekj~̂ek�1 : : : ~̂ek�L

i
.

4.2. Markov chain reduction

We define a Markov chainM with the transition matrixP andM
statesEi. We notek 2 Ei the event: “we are in the stateEi at
time k” andE(k) the probability of these events. We define also
theK classesFj which regroup some statesEi. Ei could be in
only one groupFj . The grouping matrixRK�M is then define as

Ri;j =

�
1 if Ej is in the classFi;
0 otherwise.

(15)

We search the transition matrixQ(k) of the reduced Markov
chainM0 defined by

Q
(k)
i;j = Pr [k 2 Fijk � 1 2 Fj ] : (16)



By developing the previous equation we found that it exists a
matrixC(k)

M�K such that

Q(k) = RPC(k�1); (17)

where

C
(k)
i;j = Pr [k 2 Eijk 2 Fj ] = Rj;i�

Pr [k 2 Ei]P
El2Fj

Pr [k 2 El]
: (18)

It is then trivial thatRC(k) = IK�K . The relations useful to
switch betweenM andM0 are

E(k) = C(k)F (k) andF (k) = RE(k): (19)

4.3. WDFE reduction into a DFE

The previous discussion about the reduction of the WDFE Markov
chain raises some difficulties, because the reduction transforms a
time-independent chain into a time-dependent one. However it al-
lows some numerical computation of criteria to compare the equal-
izers, like the eigenvalues which give an indication about the con-
vergence speed of the process.

4.4. Two states reduction and propagation error probability

The reduction of the Markov chain gives us also an efficient crite-
rion to compare the two kinds of DFE. In fact we could regroup the
states into only two classes: the stateO without decision error in
the feedback filter and the stateE which contains one or more er-
rors. The error propagation probabilityPpe is then the probability
of the transitionE ! E

Ppe = Pr
h
(êk : : : êk�L) 6= 0

�� (êk�1 : : : êk�L�1) 6= 0
i
: (20)
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Fig. 4. Error propagation probability for the DFE and the WDFE.

The figure 4 presents the computation of the error propaga-
tion probability in the steady state with the same conditions as the
previous simulation for different Signal to Noise Ratios.

5. CONCLUSION

The error probability model for the WDFE proposed in this paper
is efficient enough to access to the error propagation probability of
the DFE and confirms that this probability is less for WDFE than
for classical DFE.

Future studies will investigate the behavior of this model with
the adaptive algorithm of the WDFE.
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