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ABSTRACT degradation has been addressed. More recently in reference [1] the

A Kovi del of th bability densitv for decisi authors established a probability state model for the calculation of
markovian modet of the error probabiiity density Tor deciSIOn e yit arror rate degradation due to error propagation.

feedback equalizer is proposed and its application to the error prop-
agation probability computation is derived. The model is a gener- This problem is very often overcome with the transmission
alization of the Iitkemeyer and Noll model proposed in [1]. Itis of a known training data sequence. This training period is used
obtained by the analysis of the gaussian mixture distribution of the both for the starting period (blind equalization) and for the track-
errors which follows a Markov Process. The analysis of this pro- ing period. During this last period, the channel may change and
cess shows that the error propagation probability of the Weightedthe DFE in the decision directed (DD) mode may suffer from the
DFE [2] is less than the one of the classical DFE. error propagation. As a consequence, this training period should
be transmitted regularly. This results in a loss of bit-rate

1. INTRODUCTION This error propagation problem is a major one and its thorough

solution remains an open problem. An effective technique has re-
cently been proposed in [5]. In that work the authors proposed
a blind DFE by commuting, in a reversible way, both its structure

Obviously, the number of services on heterogeneous wireless net
works such as GSM, 1S95, PDC, DECT and the future UMTS is

Increasing drama_tlcally. I_n adqmon, one of the most challenging and its adaptation algorithm, according to some measure of perfor-
issues is interactive multimedia services over wireless networks.

. . ~>*mance as, for instance, the mean square error (MSE). So, in this
As a consequence, the bit-rate of these wireless networks is in-

. . - way, their DFE doesn't suffer from the error propagation problem.

creasing dramatically. Consequently the spectrum efficiency of the
modulation scheme should be more and more important. Being so, In [2] and [6], we addressed the problem of error propagation
the sensitiveness of the transmitting signal to the multipath effectsas being the result of both the input of errors in the feedback fil-
is also increasing. ter and the divergence of the adaptive algorithm. This equalizer

To fight the multipath problem of wireless networks, some ser- called weighted decision feedback equalizer (WDFE) offers the
vices have chosen multicarrier modulation as for instance DAB advantage to limit and solve the error propagation phenomenon.
and DVB-T in Europe. In the case of monocarrier modulation we ) i
need powerful equalization techniques. In t_hls paper for _demonstratlng the performanqe_ of the WDFE

It is well known that MLSE equalizer is the best one, but it W€ f’?f'”e a markovian r_nodel of _the error p_robablllty density for
is also well known that its computational complexity depends on dec_|S|on feedt_)r_slck equallze_r an_d its e_lppllcatlc_)n to the error propa-
both the number of the constellation points and the length of the 9ation probability computation is derived. This model, a general-
channel impulse response. Therefore MLSE is not usable in prac/Zation of the Litkemeyer and Noll model proposed in [1], takes
tice for high spectral efficiency modulation, and it is the main rea- INt0 account only the filtering part of the equalizers. Itis obtained
son why people turn their attention to decision feedback equalizersPY the analysis of the gaussian mixture distribution of the errors
(DFE). In fact it offers the best compromise between performances Which follows a Markov process. This model is totally equivalent
and complexity. DFE are well known for their superior perfor- © the model recently published by Willini. al [7]. The analysis
mance compared to transversal equalizers, but due to their recur2f this process shows that the error propagation probability of the
sive structure (feedback loop), they can suffer from error propaga-Vve'(‘:]hted DFE [6] is Ies_s_ than th? one of the classical DFE. In f"’.‘Ct
tion. This results in an overall mean square error (MSE) degrada-We show ‘h?‘_‘ the transition matrix of the WDFE Markov model is
tion. better conditioned that the one of the classical DFE.

This problem is well known and has already been addressed by The first section presents the WDFE. The second section de-
many authors. In references [3, 4] the problem of bounds of this scripes briefly the hypothesis, our model and the equivalence with

The authors would like to thank George V. Moustakides from the Com- the Willink, Wittke and Campbell model [7]. Finally, in the third
puter Technology Institute (CTI) of Patras, Greece, for his helpful remarks S€ction, we study the behavior of the transition matrix of the WDFE
and suggestions about the comparison methods. compared to the one of the classical DFE.




2. WDFE PRESENTATION

Let f; bep; for i < 0 andd; otherwise, the previous equation
becomes

The weighted decision feedback equalizer is the classical DFE to

which we add two devices (figure 1). The first device computes a
reliability value (a likelihood information) for each output of the
DFE. The second one uses this value in such a way as not to de-
cide on errors in the feedback loop and also to minimize the effect

of the errors in the LMS-DD algorithm. Two different ways for

L L .
dy —dy, = Z fidwp—i + Zbi (dk—i - Jk—i) +ne. (2)

i=—M i=1

If the edge of the constellation is not taken into account, a

computing and using these reliability values have been presentedunctionV’ could be defined as
in papers [2] and [6].

Reliability
computation

Use of this
reliability

Fig. 1. WDFE scheme.

3. WDFE ERROR MODEL

3.1. WDFE filter equivalent structure

The filtering part of the WDFE could be synthesized by a DFE

structure with a soft decision functidn as describe in the figure 2.

Fig. 2. WDFE equivalent structure.

This decision function is only used to compute the feed back
symbols. The WDFE deals with three kinds of error because of

the U function providing a new data estimation:
e ¢ =dj — d} which is the new feedback error.
e ¢, = dy — dj, which is the soft output error of the WDFE.
e ¢ = dy — dj, which is the hard output error of the WDFE.
As the feedback errorg, and the decision errad;, are not

doi —U (d’k,i) =V (ex_s). ®)

However, as seen later, this restriction could be removed. The

existence ol simplifies the equation (2) in
er = —J(Er-1) — I(Dy) — ng, (4)

whereI(Dy) is the ISI part due to thé& mismatch and the anti-
causal part of the channeE}, is the error statgey, ... ex—r+1]
andJ(Ex) = Zle b;V (ex—;) the ISI coming from the errors in
the feedback filter.

3.3. Theunderlying Markov process

If we note X|Y the random variable (r.v.)X conditioned ont”
and fx the probability density function (pdf) of the r.X, the key
equation (4) gives

6k|Ek,1,Dk NN (—J(Ekfl) — I(Dk),a}zv) . (5)

We could easily deal with the ISI coming from the d&a by
assuming

Prlex|Ex 1] =»  Prlex|Ex 1, Di] Pr[Dy], (6)

Dy,

and, as the data is a white uniformly distributed sequePcgD,] =
1/A" with A the number of symbols of the modulation, aid
the length of the channd?.

The relations (4), (5) define-order Markov sequence of the

output error of the WDFE. The pdf of the error could be obtain by

fek|Ek—1aDk (1’|Y, Dk)
AW

fek (1') = Z

D, /RE

fro, (Y)dY. (7)

equal, the results of the papers [1, 3, 8, 9, 4, 10, 11] have to be

improved to match the WDFE particularities. Therefore, it is nec-

essary to build a new model to achieve this goal.

3.2. Thekey equation

In the following, we assume that the channel is a additive white

If we defineg as the gaussian function with the variange,
the previous equation becomes

fer (@) =Z/R‘(]L(“I(fow+ MEe=) gy, ovyav. @

gaussian noise channel, and that the data are a white sequence of

symbols uniformly distributed. Moreover, with the notations of

figure 2, the feedback filter coefficients could be writtentgas=
pi + 6;, and withpy = 1 + o, the output of the equalizer is then
given by the equation

L L
dy = Z pidi—; — Zbidk—i + ng. )
=M i=1

These relations could be greatly simplified thanks to an ap-

proximation of thé/” function by a staircase function wit stairs
defined by the parametersanda;:
fory € [as;ait1] V(y) = vi. 9

The bounds:; can be equal tacoco and the number of stairs
is finite. Thanks to this approximation, the equation (8) becomes



This modified model is for the DFE strictly equivalent to the
Willink, Wittke, and Campbell model [7]. In fact, the proportion
of the gaussian mixture is also the probability to be in a given state
) represented by the mean and the transition matrix are equal.

fek AW Z Z (£K+Zbivij +I(Dk)

Dy 15emey ij j=1

@iy 41 [ip 41 ‘ ‘
ISl free bound
X c fekfl...ek,L (yl, ceey yL) dyy...dyr. (10) Fee WDFE simulation ——
v , S WDFE model  +

We could defind’] the state of the WDFE which are the vector
[Viy)---,0iL] andal(’“) the value of the multiple integration, then
we have

NL

fo@) =30 e S g+ Z(F) +1(Dy), (1)

i=1 Dy,

Symbol Error Rate

whereZ(F;) = Y. >, bjvi; is the ISI coming from the
error in the feedback” fliter usmg the approximation of théunc-
tion.

The last relation means that the pdf of the error is a gaussian
mixture. Only the proportion of that mixture depends on the time SNR (@)
k. If we re-inject this result into the equation (10), a time-relation
between the proportion appears: Fig. 3. Model validation for the WDFE rule 2.

o™ =Q-a* ™, (12)

with Q aNT x NT matrix depending on the channel, the feedback
filter and the noise but not on the time.

This relation (12) highlights the Markov chain character of the
WDFE error process. It is also possible to express the error prob
ability at timek according to the proportion as a scalar product:

To validate the model, a comparison between a Monte Carlo
simulation and the model has been done (figure 3) with a chan-
nel set toP = (1 0.2 0.2) and a backward filter set t8 =
(0.24 0.24). The WDFE used the second rule [2, 6] approximated
“with 16 stairs for a 2-PAM.

4. WDFE/DFE COMPARISON

1
(k) _
P =1- g fer (z) du, (13) 4.1. Introduction

=77 . o®) As the transition matrices for the DFE and the WDFE do not have
the same size, a comparison between their coefficients is not feasi-
The last two equations (12) and (13) define the error model of ble. For this purpose, the WDFE Markov chain should be reduced

the WDFE. into a DFE equivalent chain.
The states of the WDFE Markov chain holds the erréyrs
3.4. The modified error mode which is different from the DFE-like errors. But, if th&, is
known, then the decision error is also known. The Markov chain of
3.4.1. T weighting the WDFE could then be reduced in order to become a DFE-like

chain. The reduction consists of grouping several WDFE states
into one DFE states. This problem is the same as finding the transi-

tion probabilityPr [€x|éx—1 - . . éx— ] knowingPr [ek|ek,1...ek,L].

For a M-PAM, the calculation of the error probability thanks to the
equation (13) is not accurate because of the two symbols on the
edge of the constellation. The integration is right for file— 2
inner symbols. For the 2 others ones, the integration domain is
not [—1; 1] but] — oo; 1] and[—1; oco[ then the newI” vector is 4.2. Markov chain reduction

obtained by ] ) ) = )
1 We define a Markov chait with the transition matrix? and M/

M
Tueightea= —7—T" (14) statesE;. We notek € E; the event: “we are in the stafé; at
time k" and E™) the probability of these events. We define also
the K classesF}; which regroup some statds. E; could be in
only one groupF;. The grouping matri?x x as is then define as

For modulation with a high spectral efficiency, the weighted
factor tends toward 1 as expected.

3.4.2. Q weighting Ri. o { 1 if E; isin the class; (15)
i,j —

. 0 otherwise.
For a 2-PAM DFE, the everfy, = 2 can appear only one time
(for d, = 1 andd, = —1). Itis also the case fof, = —2. We search the transition matr@*) of the reduced Markov
But for ¢, = 0 two cases are possible. This fact comes from the chain M’ defined by
edge effect. In order to integrate it into the model, the lines of the
transition matrix@ should be weighted according to it. Q(k) Pr[k € Filk — 1 € Fj]. (16)



By developing the previous equation we found that it exists a
matrix C*) 17 - such that
Q™ = RPC*™Y)] 17)

where

- Prk € E;]
N ZEleF]— Prik € E]

c*) =Prik € Eilk € F}] = R, - (18)

It is then trivial thatRC'®) = Ik k. The relations useful to
switch between\t and M’ are

E® = c®p® andr™®) =REW. (19)

4.3. WDFE reduction into a DFE

The previous discussion about the reduction of the WDFE Markov

chain raises some difficulties, because the reduction transforms a (3]

time-independent chain into a time-dependent one. However it al-
lows some numerical computation of criteria to compare the equal-
izers, like the eigenvalues which give an indication about the con-
vergence speed of the process.

4.4. Two statesreduction and propagation error probability

The reduction of the Markov chain gives us also an efficient crite-
rion to compare the two kinds of DFE. In fact we could regroup the
states into only two classes: the stélavithout decision error in
the feedback filter and the stafewhich contains one or more er-
rors. The error propagation probabilig. is then the probability

of the transitior — &

Ppe = Pr[(ék o bhmr) # 0| (Chmt ) # 0]. (20)
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Fig. 4. Error propagation probability for the DFE and the WDFE.

The figure 4 presents the computation of the error propaga-

5. CONCLUSION

The error probability model for the WDFE proposed in this paper
is efficient enough to access to the error propagation probability of
the DFE and confirms that this probability is less for WDFE than
for classical DFE.

Future studies will investigate the behavior of this model with
the adaptive algorithm of the WDFE.

6. REFERENCES

[1] C. Lutkemeyer and G. Noll, “A Probability State Model for
the Calculation of the BER Degradation due to Error Propa-
gation in Decision Feedback Equalizers,’l'FC, Porto Car-
ras, Greece, June 1998.

[2] J. Palicot, “A Weighted Decision Feedback Equalizer with
Limited Error propagation,” inCC 2000, New Orleans, US,
June 2000.

D. Duttweiler, J. Mazo, and D. Messerschmitt, “An Upper
Bound on the Error Probability in Decision-Feedback Equal-
ization,” IEEE Trans. on Inform. Theory, vol. IT-20, no. 4,
pp. 490-497, July 1974.

S. Altekar and N. Beaulieu, “Upper Bounds to the Er-
ror Probability of Decision Feedback Equalization,EEE
Trans. on Inform. Theory, vol. 39, no. 1, pp. 145-156, Jan.
1993.

J. Labat and O. Macchi, “Adaptive Decision Feedback
Equalization: Can You Skip the Training Period?EEE
Trans. on Com,, vol. 46, no. 7, pp. 921-930, July 1998.

J. Palicot and C. Roland, “A Weighted Decision Feed-
back Equalizer with complex decomposition of the reliability
function,” in ICT 2000, 2000.

T. J. Willink, P. H. Wittke, and L. L. Campbell, “Evalua-
tion of the Effect of Intersymbol Interference in Decision-
Feedback Equalizer,1EEE Trans. on Com., vol. 48, no. 4,
pp. 629-635, Apr. 2000.

W. Choy and N. Beaulieu, “Improved Bounds for the Error
Recovery Times of Decision Feedback EqualizatidiEEE
Trans. on Inform. Theory, vol. 43, no. 3, pp. 890-902, May
1997.

N. Beaulieu, “Bounds on Recovery Times of Decision Feed-
back Equalizers,1EEE Trans. on Com,, vol. 42, no. 10, pp.
2786-2794, Oct. 1994.

J. Smee and N. Beaulieu, “Error-Rate Evaluation of Linear
Equalization and Decision Feddback Equalization with Error
Propagation,”lEEE Trans. on Com,, vol. 46, no. 5, pp. 656—
665, May 1998.

N. Beaulieu, “The Evaluation of Error Probabilities for Inter-
symbol and Cochannel InterferencéEEE Trans. on Com.,,
vol. 39, no. 12, pp. 1740-1749, Dec. 1991.

(4]

(5]

(8]

[9

—_—

(10]

(11]

tion probability in the steady state with the same conditions as the

previous simulation for different Signal to Noise Ratios.



