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ABSTRACT

This paper addresses the problem of audio-visual information fu-
sion to provide highly robust speech recognition. We investigate
methods that make different assumptions about asynchrony and
conditional dependence across streams and propose a technique
based on composite HMMs that can account for stream asynchrony
and different levels of information integration. We show how these
models can be trained jointly based on maximum likelihood esti-
mation. Experiments, performed for a speaker-independent large
vocabulary continuous speech recognition task and different inte-
gration methods, show that best performance is obtained by asyn-
chronous stream integration. This system reduces the error rate at
a 8.5 dB SNR with additive speech “babble” noise by 27 % rela-
tive over audio-only models and by 12 % relative over traditional
audio-visual models using concatenative feature fusion.

1. INTRODUCTION

Automatic speech recognition systems that use visual information
from the speaker’s mouth, so-called lipreading or speechreading,
have been shown to improve the word recognition rate over audio-
only systems, especially in noisy audio conditions. One of the
main challenges in audio-visual speech recognition (AVSR) sys-
tems is the audio-visual information integration problem. The
main issues in information integration are, (a) the class conditional
dependence assumption made across streams, (b) the level (e.g.
frame, phone, word) of integration, and (c) the kind (e.g. feature,
partial likelihood, partial decision) of integration. Mainly two dif-
ferent integration methods have been reported in the literature [1]:
Feature fusion and decision fusion. Feature fusion assumes class-
conditional dependence between streams and frame synchronous
information integration. In decision fusion, class-conditional inde-
pendence is assumed and integration is typically done at the phrase
level by integrating hypotheses of both streams.

Here, we describe integration techniques based on multi-stream
HMMs that can be placed between these two extreme cases. These
models allow for different assumptions about the level of integra-
tion and the degree of asynchrony to be made. We show how these
models can be trained jointly using maximum likelihood training
and report results for a large vocabulary continuous audio-visual
speech database. Related work based on feature fusion and deci-
sion fusion is presented in [2] and [3], respectively.

2. DATABASE AND RECOGNITION TASK

All experiments have been performed on a continuous, large vo-
cabulary, speaker independent database that has been collected at
IBM Thomas J. Watson Research Center [2,4]. The database con-
sists of full-face frontal video and audio of 290 subjects, utter-
ing ViaVoice ��� training scripts, i.e., continuous read speech with
mostly verbalized punctuation (dictation style), and a vocabulary
size of approximately 10,500 words. The duration of the entire
database is approximately 50 hours, thus it is the largest audio-
visual database collected to date.

The database has been partitioned into a number of disjoint
sets of which we have used three for our experiments: a training set
(35 hours, 239 subjects), a held-out data set (5 hours, 25 subjects)
to train parameters for decision fusion, and a test set (2.5 hours, 26
subjects).

To assess the benefits of the visual modality to LVCSR for
both clean and noisy audio, two different audio conditions were
considered: The original clean wideband audio, and audio that
is artificially corrupted by additive “babble” noise resulting in a
8.5 dB SNR. Experiments were performed according to matched
audio conditions, i.e. using the same audio conditions for training
and testing, which can be considered a “best case” scenario.

3. AUDIO-VISUAL FEATURES

The acoustic feature vectors are of dimension 60 and are extracted
for both clean and noisy conditions at a rate of 100 Hz [4]. These
features are obtained by a linear discriminant analysis (LDA) data
projection, applied on a concatenation of nine consecutive feature
frames consisting of a 24-dimensional discrete cosine transform
(DCT) of mel-scale filter bank energies. LDA is followed by a
maximum likelihood linear transform (MLLT) based data rotation.
Cepstral mean subtraction (CMS) and energy normalization are
applied to the DCT features at the utterance level, prior to the
LDA/MLLT feature projection. For both clean and noisy audio,
the LDA and MLLT matrices are estimated using the training set
data in the matched condition.

Visual feature extraction is based on pure video pixel, appear-
ance based features of the mouth region [2,4]. This is achieved by
the subsequent processes of face detection, mouth detection, and
discrete cosine image transform of the subject’s mouth area. The
resulting features are further processed by an LDA projection and
an MLLT feature rotation. The 41-dimensional feature vectors, ex-
tracted at 60 Hz, are linearly interpolated to obtain a frame rate of
100 Hz, synchronous to the audio features.



4. BASELINE RECOGNITION SYSTEM

A baseline speech recognition system has been implemented us-
ing the HTK toolkit [5]. Cross-word context dependent phoneme
models are used as speech units and are modeled with HMMs
with Gaussian mixture class-conditional observation probabilities.
These are trained based on maximum likelihood estimation us-
ing embedded training by means of the Expectation-Maximization
(EM) algorithm. Context-dependent phone models are obtained
by decision-tree based clustering. The training procedure has been
the same for all parameter sets, whether audio-only, visual-only, or
synchronous audio-visual.

All decoding experiments were performed by lattice rescor-
ing. Lattices were generated off line using the IBM LVCSR de-
coder with a trigram language model and an IBM trained HMM
system. The lattices are rescored using different models and inte-
gration strategies. The language model score and the word inser-
tion penalty are roughly optimized during rescoring. Three lattices
were generated based on either clean audio, noisy audio, or noisy
audio-visual features. The visual-only system has been rescored
using the lattices from the noisy audio features. As these lattices
contain some audio information, it’s performance can not be con-
sidered as the real visual-only performance.

5. FRAME SYNCHRONOUS INTEGRATION

This feature fusion method, also referred to as early integration, is
based on time-synchronous integration of the audio and visual fea-
tures and makes the assumption of class-conditional dependence
between the two streams.

The audio- and video-only feature vectors at instant
�

, are de-
noted by � ������	��

��� , of dimension � � , where ��������� , respec-
tively. The joint audio-visual feature vector is the concatenation of
the two, namely
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of such features is given by
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where
+ �BA denote the HMM context dependent states (classes).

In addition, mixture weights 4 6 0 are positive adding up to one,C 6 denotes the number of mixtures, and 8ED : � <.= �*> ? is the F -
variate normal distribution with mean

=
and a diagonal covariance

matrix, its diagonal being denoted by > . The dimension of the
integrated feature vector was 101 for our experiments.

6. MULTI-STREAM HMM

If we relax the assumption of class-conditional dependence be-
tween the streams and model each observation stream with a single-
stream HMM we obtain the general form of a multi-stream HMM
(Fig. 1). The class conditional observation likelihood of the multi-
stream HMM is the product of the observation likelihoods of its
single-stream components, raised to appropriate stream exponents
that capture the reliability of each modality, or, equivalently, the
confidence of each single-stream classifier. Such model has been
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Fig. 1: Example of a multi-stream HMM with 2 streams and 3
states in each stream.

considered in speech-noise decomposition [6], multi-band audio-
only ASR [7] and in small vocabulary audio-visual ASR [8–12].
Here, we extend that work in several ways: we describe a method
for training the streams jointly, we apply it to the LVCSR domain,
and we perform comparisons with other fusion algorithms.

Given the bimodal observation vector � ����� , the state emission
(class conditional) probability of the multi-stream HMM is,
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where U � 6WV are the stream exponents, that are non-negative, and,
in general, depend on the modality � , the HMM state (class)

+ �XA ,
and, locally, on the utterance frame (time)

�
. Such time-dependence

can be used to capture the “local” reliability of each stream, and
can be estimated on basis of stream confidences or acoustic signal
characteristics.

In this work, we consider global, modality-dependent weights,
i.e., two stream exponents constant over the entire database

U � �YU � 6ZV �\[�]_^a`_b�b + �7A �c`db�b � �e`_f9gY�E�h�i���hj (4)

Exponents U  and U " are constrained to satisfyk'l U  �KU " lhm �n`_f9goU  & U " � m j (5)

6.1. State Synchronous Integration

Since in (3),
+

denote the HMM context dependent states, the
states across the audio- and video-stream are constrained to be
synchronous. We therefore denote this integration method state
synchronous integration.

Training the multi-stream HMM consists of two tasks: First,
estimation of its stream component parameters (mixture weights,
means, variances, and state transition probabilities) and estimation
of appropriate stream exponents (4) that satisfy (5).

Maximum likelihood parameter estimation by means of the
EM algorithm [13] can be used in a straightforward manner to train
the first set of parameters. This can be done in two ways: Either
train each stream component parameter set separately, based on
single-stream observations, and subsequently combine the result-
ing single-stream HMMs as in (3), or, train the entire parameter set
(excluding the exponents) at once using the bimodal observations.



Audio Model

V
id

eo
 M

od
el

entry
state

exit
state

A1V1 A2V1

A2V2A1V2

A2V3

A3V2

A3V3A1V3

A3V1

Fig. 2: Audio-visual product HMM, equivalent to the multi-stream
HMM shown in Fig. 1. The emission probabilities of the audio-
and video-stream are denoted by

���
and ��� , where � and � is

the state of the audio and visual stream model, respectively.

An obvious drawback of the first approach is that the two
single-modality HMMs are trained asynchronously (i.e., using dif-
ferent forced alignments), whereas (3) assumes that the HMM
stream components are state synchronous. The alternative is to
train the whole model at once, in order to enforce state synchrony.
This approach requires an a-priori choice of stream exponents.
Such stream exponents cannot be obtained by maximum likeli-
hood estimation [10, 11]. A simple technique consists in directly
minimizing the WER on a held-out data set, which was used here.

6.2. Model Synchronous Integration – The Product HMM

It is well known that visual speech activity usually precedes the
audio signal by as much as 120 ms [14], which is close to the
average duration of a phoneme. The multi-stream HMM discussed
above, however, enforces state synchrony between the audio and
visual streams. It is therefore of interest to relax the assumption
of state synchronous integration, and instead allow some degree of
asynchrony between the audio and visual streams.

An extension of the multi-stream HMM allows the single-
stream HMMs to be in asynchrony within a model but forces them
to be in synchrony at the model boundaries. Single-stream log-
likelihoods are linearly combined at such boundaries using stream
weights. A reasonable choice for forcing synchrony constitute the
phone boundaries.

Decoding based on this integration method requires to individ-
ually compute the best state sequences for both audio and visual
streams. To avoid the computation of two best state paths, the
model can be formulated as a composite, or product, HMM [6,
8, 12]. Decoding under such a model requires to calculate a sin-
gle best path. The product HMM consists of composite states that
have audio-visual emission probabilities of the form (3), with au-
dio and visual stream components that correspond to the emission
probabilities of certain audio and visual-only HMM states (Fig. 2).

As depicted in Fig. 3, the single-stream emission probabilities
can be tied across states, therefore the original number of mix-
ture weight, mean, and variance parameters can be kept in the new
model. The transition probabilities of the single-modality HMMs
are now shared by several transition probabilities in the composite
model.
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Fig. 3: Stream tying in a product HMM with limited state asyn-
chrony.

The product HMM allows to restrict the degree of asynchrony
between the two streams, by excluding certain composite states
in the model topology (Fig. 3). As the number of states in the
composite HMM is the product of the number of states of all its
individual streams, such restrictions can reduce this number con-
siderably, and speed up decoding. In the extreme case, when only
the states that lie in its “diagonal” are kept, the model becomes
equivalent to the state synchronous model.

Similarly to the multi-stream HMM, training of the product
HMM can be done separately, or jointly. In joint training, all prod-
uct HMM parameters (with the exception of the stream exponents)
are trained at once, by means of the EM algorithm, and using the
audio-visual training data as shown in Fig. 3.

7. EXPERIMENTS

Systems for audio-only, visual-only, and frame synchronous inte-
gration (AV-FSI) features were trained separately and their recog-
nition results are depicted in Table 1. The performance of the
audio-only system deteriorates considerably in the noisy condition
and is only slightly better than the performance of the visual-only
system. Audio-visual features based on synchronous integration
(AV-FSI) result in higher performance for the noisy audio case but
increase the error rate for clean audio.

We have trained two multi-stream HMMs using the training
procedures described in the previous section: First, we obtained a
multi-stream HMM, referred to as AV-MS-2, by separately train-
ing two single-stream models, and subsequently combining them.
A second multi-stream HMM, denoted by AV-MS-1, was jointly
trained as a single model. For both models, the stream exponents
were estimated to values U  � k j � , U " � k j 	 , in the clean audio
case, and U  � k j 
 , U " � k j � , in the noisy audio one. These
values were obtained by minimizing the WER of various AV-MS-1
trained models on the held-out data set. The audio-visual recog-
nition results on the test set for both clean and noisy audio envi-
ronments are depicted in Table 1. All results are in word error rate



Clean audio Noisy audio

Visual-only 51.08

Audio-only 14.44 48.10

AV-FSI 16.00 40.00

AV-MS-1 14.62 36.61

AV-MS-2 14.92 38.38

AV-PROD 14.19 35.21

Table 1: Recognition performance for different features and
audio-visual integration methods. All results are in WER (%).

(WER) (%). As expected, the AV-MS-1 models outperformed the
AV-MS-2 ones, but the AV-MS-1 HMM was unable to improve the
clean audio-only system. This is somewhat surprising, and could
indicate an inappropriate choice of stream exponents in this case.
On the other hand, in the noisy audio case, the AV-MS-1 based de-
cision fusion significantly outperformed the audio-only baseline.

In our experiments using the product HMM, and in view of
the results in the multi-stream HMM case, we have only consid-
ered the training approach where both streams are trained jointly.
We have limited the degree of asynchrony allowed to one state
only. Lattice rescoring experiments were conducted on the test set
for both clean and audio conditions, using the jointly trained prod-
uct HMM (AV-PROD). Stream exponents U  � k j 
 , U " � k j � ,
were used in the clean audio case, and U  � k j � , U " � k j 	 ,
in the noisy audio one. The obtained results are depicted in Ta-
ble 1. Clearly, the product HMM consistently exhibits superior
performance to both audio-only and AV-MS-1 models. Overall, it
achieves a 2% WER relative reduction in the clean audio case and
a 27% one in noisy audio, over the corresponding audio-only sys-
tem. Its WER reduction over the frame synchronous integration is
12% and over state synchronous integration by AV-MS-1 models
is 3.8%.

8. CONCLUSIONS

We have proposed and evaluated different information integration
techniques for audio-visual speech recognition. Frame synchronous
integration results in improved performance at a 8.5 dB SNR with
additive speech “babble” noise but increases the error rate in the
clean audio case which might be due to the high dimension of the
resulting feature vector. State synchronous integration using multi-
stream HMM degrades performance only slightly in the clean case
but improves the performance considerably in the noisy scenario.
Better results are achieved if the multi-stream HMMs are trained
jointly. Overall best performance is obtained by model-synchronous
integration. This approach results in a significant improvement of
27 % relative WER reduction over audio-only matched models for
the noisy audio. This method even decreases the WER in the clean
audio case by 2%. This result indicates that audio-visual speech is
modeled more accurately with asynchronous stream models.
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