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ABSTRACT

In this paperwe presenta designmethodfor optimal
energy compactionIIR filters, wherethenumeratorandde-
nominatormay have differentdegrees. The designis per-
formedvia iterative relaxations,wherethenumeratoris op-
timizedgiventhedenominator, followedby optimizationof
denominatorgiventhenumerator. Thetwo optimizationprob-
lems involved are solved using semidefiniteprogramming
(SDP)techniques,wherethe real positivenessof thecausal
partof theproductfilter is formulatedin two alternativeways:
first using Kalman-Yakubovich-Popov (KYP) lemma,and
second,by a lessknown parameterization[2][3], which we
show to bemoreconvenientnumerically. Numericalresults
show theeffectivenessof theproposedmethodandthe im-
provementswhencomparedwith optimal FIR compaction
filtersorconstrainedIIR compactionfilters(restrictedto have
allpasspolyphasecomponents).

1. INTRODUCTION

It was long observed that thereis an IIR filter classwhich
automaticallyfulfills the Nyquist(2)constraints,wherethe
polyphasecomponentsarebothallpassfilters. Thereforein
[4][6] the optimizationof the optimumcompactiongain of
thefilter wasformulatedin termsof poles(or polynomialco-
efficients)of theallpassfilters involved.Thestructurebased
on allpassgreatlysimplifies the optimizationproblem,the
set of Nyquist(2) constraintsbeing automaticallyfulfilled.
However if the structureof the IIR filter is arbitrary (i.e.
thedegreesof numeratoranddenominatoraredifferent)the
Nyquist(2)constraintshave to beenforcedduringoptimiza-
tion, makingmuchmoredifficult thenumericalsolutionfor
highdegreefilters.

Our work addressestheproblemof arbitrarydegreeIIR
filters design,for optimum energy compaction,under the
constraintNyquist(2).Oneof themostsuccessfultechnique
for thedesignof FIR optimal compactionfilter is basedon
formulatingtheoptimizationof theproductfilter coefficients
asa SDPproblem[1][7], andthenusingtheexcitingly pow-
erful toolsdevelopedin numericalanalysisfor solvingSDP
problems.We areusingthesametoolsherefor IIR energy
compactionfilter design.�
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2. OPTIMUM ENERGY COMPACTION IIR
FILTERS

Considerthe IIR filter with the transferfunction �����
	����
���� � 	������ � � � ��� � 	 wherewecanidentifypolyphasecom-
ponentsin rationalform�����
	�� � ���
	� ��� � 	 � � 
���� � 	� ��� � 	 ��� � � � � ��� � 	� ��� � 	�� (1)

with� ���
	�� ����� � � � � � � � � � � �"!#!$!%� ��&'� � &� ���
	�� (#
���( � � � � � ( � � � � �)!$!$!*� (,+'� � + ! (2)

In this paperthepolynomialswill bedenotedby uppercase
letters,while thevectorof their coefficientswill bedenoted
by the correspondinglower caseletter. The productfilter- ����	.�"�����
	/�����0� � 	 resultsin theform- ���
	.� � ���
	 � ��� � � 	� ��� � 	 � ��� � � 	 � -�1 ���
	2� -�1 ��� � � 	 �
where

- 1 ���
	 is thecausaland
- 1 ��� � � 	 theanticausalpart

of the productfilter. The Nyquist(2) condition ( 3�
4�5� ,3 �76 �"8 , 9;:<� ) impliesthat
-�1 ��� � � 	 musthave theform- 1 ���
	�� �= �>� � �0?A@ � �,B� ��� � 	 � (3)

where? ���
	��"CD
E�;C � ��� � �;C � ��� � �F!$!$!G�;C & � � �0�IH & � �GJ ,
andtheconnectionbetweenthepolynomials

� ����	 , � ���
	 and? ����	 is givenby-�K ���
	�� � ���
	 � ��� � � 	.� � ��� � 	 � ��� � � 	��� � � ? ��� � 	 � ��� � � 	L��� ? ��� � � 	 � ��� � 	M! (4)

For simplicity of notationswe considerthe degreeof? ����	 to be NPOQ� , but sometrailing coefficients may be
constrainedto 0 in � or C , andconsequentlythetrueconnec-
tion betweenthedegreesof ? ����	 , � ���
	 and

� ���
	 will result
from (4).

The input spectrumis supposedto be rationalandthus
its autocorrelationsequencecanbeassumedof theform [4]R 6 � ST U V �XW UZY2[ 6 [U ! (5)

Thevarianceat theoutputof thefilter �����
	 is evaluatedas\ � � R 
.� ="]T 6 V 
 3 �76 1 � R �76 1 �



andusingtheexpression(5) we obtain\ � � R 
.� = ]T 6 V 
 3 �76 1 � ST U V ��W U Y �76 1 �U
� R 
.� = ST U V � W U�^ -�1 � Y � �U 	_O �=a`� R 
.� = ST U V ��W U Y U ? @

Y � �U B� @ Y � �U B ! (6)

Theoptimumenergycompactionproblemcanbeformu-
latedas bdc*ef%g h R 
 � = ST U V �XW UiY0U ? @

Y � �U B� @ Y � �U B
s.t.

�= ��� � �0? @ � � B� ��� � 	 is positive real� ����	 is stable

The criterion andconstraintsarestronglynon-linearin pa-
rameters,andthereforegeneraloptimizationtechniqueswill
suffer from the well known difficulties (e.g. local minima,
slow convergence).Our strategy is to solve theproblemby
iteratingtwo optimizationstages,consistingeachin finding
onepolynomial( C or � ) giventheother.

The IIR filter (1) canbe obtainedfrom the minimizing
set �ZC � ��	 by performingthespectralfactorizationof (4).

3. OPTIMIZATION OF NUMERATOR FOR GIVEN
DENOMINATOR

We dealfirst with theproblemof optimizing thenumerator? ���
	 of (3), for fixed and stabledenominator
� ���
	 . The

variance(6) dependslinearlyon thecoefficientsof ? ���
	 , as
it canbeeasilyseenby inserting(5) in (6) to obtain\ � � R 
 � = & � �T 6 V 
 C 6 ST U V � W U

Y �76 1 �U� � Y � �U 	 � R 
 �kj_lLC � (7)

whereat this stagej is a constantvector.

3.1. KYP parameterization

Theconstraintthat
-�1 ���
	 is positive realmaybeexpressed

by usingtheKYP lemma. We associateto
- 1 ���
	 thecon-

trollablestate-spacerealization� � �7m 
 �7n*�7o 	 , with� �qp Osr� lt � & 84u � (8)r�0lv�xw 8 � � � � 8 � � � � 8 � !$!$! � 8 � � &zy � (9)n lv� rC��Qw CD
 � 8 � C � � 8 � !,!$! � C & � � � 8 y � (10)

wherem 
 is thefirst unit vector, o �Q�,{ = and
t 6 is the 9}|~9

unit matrix,and
�

is a stablematrix since
� ���
	 is supposed

stable.TheKYP lemmastatesthat
- 1 ���
	 is positive real if

andonly if a symmetricmatrix �Q:48 existssuchthat� �qp ��O m l
 � m 
 n l O m l
 � �n O � l � m 
 �)O � l � � u :)8D! (11)

Wenoticethatall thevariables,i.e. thecoefficientsof ? ���
	 ,
areconcentratedin thevector n . Consequently, (11) is a lin-
earmatrix inequality (LMI), as

�
, m 
 and o areconstants.

In order to expressthe coefficients of the LMI, we intro-
duce the following elementarymatrices. Let � U 6 be the
symmetricmatrix with onesin positions �Z� � 9E	 and ��9 � ��	and zeroselsewhere (indicesstart from zero), and denote� U 6 �"� U 1 � g 6 1 � O�� U 6 . Then,theLMI (11) becomes� � �'
7
�� & � �T 6 V 
 C 6 � �76 1 � g 
� � 
7
�� � 
7
 O�p 8 88 r��r� l u ��p 8 r� lr� 8 u��� � & � �T U V � � U 
 � � U 
���p 8 r� u m lU � m U w 8 � r�0l y �� � & � �T U V �

UT 6 V � � U 6 � U 6 ! (12)

We maynow formulatetheoptimizationproblemas
bdc%ef*g � j l C (13)

s.t.
� :48 � with

�
asin �/� = 	

This is a standardSDP problemin primal (or LMI) form
andmaybesolvedwith dedicatedroutines.However, it has
a large complexity, dictatedby the numberof variablesin
theLMI (aswell asby thesizeof theLMI), sincethereare� ��N � 	 extra variablesintroducedwith � .

3.2. Alternative parameterization

As a fasteralternative to (13) we canusea parameterization
discussedin [2][3]. A symmetricpolynomial

- K ����	 is pos-
itive on the unit circle if andonly if a symmetricpositive
definitematrix � existssuchthat3 K6 � tr � 6 � � (14)

where � 6 is theelementarysymmetricToeplitzmatrix with
oneson the 9 ’ th diagonalandzeroselsewhere.

The coefficients of the causalpart of the polynomial- K ���
	 from (4) areobviously linearcombinationsof theco-
efficientsof ? ���
	 , i.e. 3 K �4�'C�� � � (15)

wherethe matrix � andthe vector � resulteasily from (4).
Thenew formulation,equivalentto (13), is

bdc%ef%g �$��g � j l C (16)

s.t. 3 K6 � tr � 6 � � 9}�"8�� = N3 K �4�'C�� ��x:48 �
This is anSDPproblemin dual(or equality)form. Its com-
plexity is dictatedby thenumberof equalityconstraints(and
the size of � , which exceedsonly by one the size of the
LMI from (13)); we have hereonly

� ��N�	 equalities,which
makesthisapproachfasterthan(13).



4. OPTIMIZATION OF THE DENOMINATOR FOR
GIVEN NUMERATOR

We considernow the secondproblem,of optimizing
� ���
	

when ? ���
	 is given. Unfortunately, thematrix
�

from (11)
doesnot dependlinearly on the coefficients of

� ���
	 , and
thereforein orderto applySDPwe resortto anapproxima-
tion, explainedin thefollowing.

Wereplacein (3) theterm �%{ � ���
	 by an(unknown) FIR
approximation�����
	 of order ����N ,� ����	.�)¡ 
 � ¡ � � � � � ¡ � � � � �)!$!$!*� ¡'¢~� � ¢ ! (17)

Certainly, byenlarging � abetterapproximationisobtained.
Thus,insteadof

-�1 ����	 , wework with-�£1 ���
	�� �= �>� � � ? ��� � 	7� ��� � 	M! (18)

Thegreatbenefitof this approachis that
- £ ���
	 is an FIR

filter, for whichanSDPproblemcanbeformulated.
Dueto (18), theoptimizationcriterionbecomes\ � � R 
 � = ¢T 6 V 
 ¡ 6 ST U V � W UiY �76 1 �U ? � Y � �U 	�� R 
 �kjIl¤ ¡ �

(19)
i.e. is linearin thevariable ¡ .

4.1. KYP parameterization

Thedegreeof
- £1 ���
	 is N ¤ � = ��N¥�)�¦	§O)� . Thecon-

trollable state-spacerealizationassociatedwith
- £1 ���
	 is� � ¤ ��m 
 � r3 £ ��o 	 , with� ¤ �qp 8 8t &L¨ 8 u � (20)r3 £ �Qw 3 £
 � 8 � 3 £� � 8 � !$!$! � 8 � 3 £& 1 ¢ � � y l � (21)

where3 £ �<©s¡ , with © theToeplitzmatrix

©ª�
«¬¬¬¬¬¬¬¬¬¬¬¬­
C 
 8 !$!#! 8C � C 
 !$!#! 8
...
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. . .

...
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. . .
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C0& � � . . .
. . .

...8 . . .
. . .

...8 . . .
. . . C0& � �

®°¯¯¯¯¯¯¯¯¯¯¯¯±
! (22)

Denoting ² 6 �P© m 6 the columnsof © , and r² 6 the same
columnswith zerosinsertedbetweeneachtwo elements,i.e.r² l6 �Qw 8 � ²³
 6 � 8 � ² �G6 � 8 � !$!$! � 8 � ² & 1 ¢ � � g 6 y � (23)

thematrix
�

from the KYP lemma(11) for the statespace
realization � � ¤ ��m 
 � r3 £ �/o 	 becomes� � � 
7
 � ¢T 6 V 
 ¡ 6 �Mr² 6 m l
 � m 
 r² l6 	� &a¨ � �T U V 


UT 6 V 
 � U 6 � U 6 ! (24)
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Fig. 1. The energy compactioncriterion ( \ � ) for optimal
FIR[1] andoptimalIIR filtersdesignedwith thenew method
designedfor a AR(16) inputsignal.

Finally, weobtaintheoptimizationproblem
bdc%e¤ g � jIl¤ C (25)

s.t.
� :48 � with

�
asin � =*´ 	

4.2. Alternative parameterization

We applynow thesameparameterizationfrom Section3.2,
thistimefor

- £1 ����	 , whichis thecausalpartof apolynomial
positive on theunit circle. We obtain
bdc*e¤ g �,µ~g � j_l¤ ¡ (26)

s.t. 3 £6 � tr � �76 1 � � � 9¶�"8��
N��>�·O>�
tr �¸�¸� � tr � �76 �ª�<8 � 9}�¸����NA�>�¹O>�3 £ �¦©�¡�º:�8

Again, this problemis equivalent to (25), but hasa lower
complexity.

5. THE ITERATIVE OPTIMIZATION PROCEDURE

Giventhecoefficients » W U � Y0UG¼%U V �7½ S , which generatetheco-
variancein (5), we iteratefor theparametersin (3).

0. Initialize: 9¶�<8 , ?�¾ 
/¿ ��� � 	��¸� � � ¾ 
/¿ ��� � 	��¸� .
Iterate:

1. Determinethenew
� ¾ 6 1 � ¿ ��� � 	 asfollows:

1.1 Solve for ¡ theoptimizationproblem(26).

1.2 Obtainastablepolynomial
� ����	 asapproximate

solutionof ����� � 	.� �� ��� � 	
2. Determinethenew ?�¾ 6 1 � ¿ ��� � 	 asfollows:

2.1 Solve for C theoptimizationproblem(16).
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Fig. 2. Thevaluesof thecriterionduring themaximization
with thenew methoddesignedfor a AR(16) inputsignal.
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Fig. 3. Frequency responses:optimalFIR,optimalIIR (with
thenew method),idealfilter andinputspectrum.

Until » \ � ¼ ¾ 6 1 � ¿ (given by (16)) is not significantly larger
than » \ � ¼ ¾ 6 ¿ (at previousiteration).

At the end of the iterations,the spectralfactorization
in (4) will provide the numerator

� ���
	 of the energy com-
pactionIIR filter �����
	�� � ����	7{ � ��� � 	 .

6. EXPERIMENTAL RESULTS

For simulationswe consideredasinput an
��À �/�,Á�	 process.

The spectrumof the input is displayedwith dottedline in
Figure3. In the iterative procedureof Section5, the SDP
problemsweresolvedby usingSDPT3package[5].

In Figure2 weillustratethebehaviour of theiterativeal-
gorithmfor thecaseof followingstructureof IIR: deg? ���
	.�=*Â

anddeg
� ���
	��A�,8 . It canbeseenthatafter thefirst ten

iterationsthe improvementsbecomenegligible. Generally,
in all testedcases,mostof the improvementshave beenob-
tainedin thefirst two iterations.

In Figure1 wepresentcomparisonsof \ � obtainedwith
theoptimalFIR[1] andoptimalIIR filters designedwith the
new method.Onecancompareeasilythesmallgain in per-
formancefor IIR filters having thesamenumberof param-
etersasthe FIR filter. We illustrate in Figures3 and4 the
frequency responseof optimal FIR andoptimal IIR, at the
samecriterionvalue \ � ���³! Ã�Ä Â�Å . Even if thesamevalue
of \ � is obtained,different kinds of approximationof the
ideal filter can be observed (e.g. steepnessof transitions,
sidelobes).We notethat the allpassrestrictedIIR filter [4]
having twelve parametergivesthecompactiongain ��! Ã Â � .
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Fig. 4. Only two plotsfrom Figure3: frequency responseof
optimalFIR andoptimalIIR.

We finally mentiononly qualitatively therankingof the
new methodsin termsof running times. The new method
basedonKYP (13),(25),isabout5 timesslowerthanthenew
method(16),(26)(basedonthealternativeparameterization)
for the lengthof thefilters deg? ���
	��¥�,8 anddeg

� ���
	���$8 ; moreoverfor thecasedeg? ���
	.� =³Â anddeg
� ���
	��¸�,8

the KYP variant could not be run on the PC we usedfor
experiments(PentiumIII at 700MHz) while the alternative
parametrizationrunsin about1 min/ iteration.
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[4] I. Tăbuş, C. Popeea,and J. Astola. Optimizing the
compactiongain in a classof IIR filters. In Proc. IS-
CAS’99, Florida,May. 1999.

[5] K.C. Toh, M.J. Todd, andR.H. Tütünc̈u, “SDPT3 –
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