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ABSTRACT

In this paperwe presenta designmethodfor optimal
enegy compactioniR filters, wherethe numeratorandde-
nominatormay have differentdegrees. The designis per
formedyvia iterative relaxationswherethe numeratoiis op-
timized given the denominatqrfollowed by optimizationof
denominatogiventhenumeratar Thetwo optimizationprob-
lems involved are solved using semidefiniteprogramming
(SDP)techniqueswherethe real positvenesof the causal
partof theproducffilter is formulatedn two alternatve ways:
first using Kalman-Yakubwich-Popw (KYP) lemma, and
second by a lessknowvn parameterization[£3], which we
shav to be morecorvenientnumerically Numericalresults
shawv the effectivenessof the proposedmethodandtheim-
provementswhen comparedwith optimal FIR compaction
filtersor constrainediR compactioffilters (restrictedo have
allpasspolyphasecomponents).

1. INTRODUCTION

It waslong obsenred thatthereis an IR filter classwhich
automaticallyfulfills the Nyquist(2) constraintswherethe
polyphasecomponentgreboth allpassfilters. Thereforein
[4][6] the optimizationof the optimumcompactiongain of
thefilter wasformulatedin termsof poles(or polynomialco-
efficients)of theallpasdfilters involved. Thestructurebased
on allpassgreatly simplifies the optimizationproblem, the
setof Nyquist(2) constraintsbeing automaticallyfulfilled.
However if the structureof the IIR filter is arbitrary (i.e.
thedeggreesof numeratomnddenominatoaredifferent)the
Nyquist(2)constrainthave to be enforcedduring optimiza-
tion, makingmuchmoredifficult the numericalsolutionfor
high degreefilters.

Ourwork addressethe problemof arbitrarydegreellR
filters design,for optimum enegy compaction,underthe
constraintNyquist(2). Oneof the mostsuccessfutechnique
for the designof FIR optimal compactiorfilter is basedon
formulatingthe optimizationof the productfilter coeficients
asa SDPproblem[][7], andthenusingthe excitingly pow-
erful tools developedin numericalanalysisfor solving SDP
problems.We areusingthe sametools herefor IIR enegy
compactiorfilter design.

1This work hasbeensupportedy Academyof Finland, project
No. 44876(FinnishCentreof ExcellenceProgram(2000-2005))
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2. OPTIMUM ENERGY COMPACTION IIR
FILTERS

Considerthe lIR filter with the transferfunction H(z) =
Ho(2%)+2~! H1(2*) wherewe canidentify polyphaseom-
ponentdn rationalform
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Alz) = l+az ' +aw +... +anz "
B(z) = bo+biz ' 4bz P4 +bxz . (2)

In this paperthe polynomialswill be denotedby uppercase
letters,while the vectorof their coeficientswill be denoted
by the correspondindower caseletter. The productfilter
G(z) = H(2)H(z™') resultsin theform

B(z)B(z"") _
A()A(z7?)
whereG 4 (z) isthecausalandG 1 (2~ ") theanticausapart

of the productfilter. The Nyquist(2) condition (go = 1,
gor = 0, k > 1) impliesthatG 4 (2~ ') musthave theform
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G(z) = Gi(2) +Gi(zY),
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whereD(z) = do+diz" +doz 2 +. . . +dy_12~ V"D,
andtheconnectiorbetweerthepolynomialsA(z), B(z) and
D(z) is givenby
G"(2) = B(2)B(z™") = A(z")A(z™")
+2 'D(2*)A(z"?) 4+ 2D(2 ?) A(2%). (4)

For simplicity of notationswe considerthe degree of
D(z) to be N — 1, but sometrailing coeficients may be
constrainedo 0in a or d, andconsequentlyhetrueconnec-
tion betweerthedegreesof D(z), A(z) andB(z) will result
from (4).

The input spectrumis supposedo be rationalandthus
its autocorrelatiorsequenceanbe assumeaf theform [4]

Th = Z Sipit!. (5)
i=1
Thevarianceattheoutputof thefilter H(z) is evaluatedas
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andusingthe expression5) we obtain
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Theoptimumenegy compactiorproblemcanbeformu-
latedas

~o D)
1, D)
s.t. §+z m|sposmvereal

A(z) is stable

The criterion and constraintsare strongly non-linearin pa-
rametersandthereforegenerabptimizationtechniquewill
suffer from the well known difficulties (e.g. local minima,
slow convergence).Our strat@y is to solve the problemby
iteratingtwo optimizationstagesconsistingeachin finding
onepolynomial(d or a) giventheother

The lIR filter (1) canbe obtainedfrom the minimizing
set(d, a) by performingthe spectrafactorizationof (4).

3. OPTIMIZATION OF NUMERATOR FOR GIVEN
DENOMINATOR

We dealfirst with the problemof optimizing the numerator
D(z) of (3), for fixed and stabledenominatorA(z). The
variance(6) dependdinearly onthecoeficientsof D(z), as
it canbeeasilyseenby inserting(5) in (6) to obtain

. N-1 n p2k+1
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k=0 i=1

whereatthis stages is a constantector

3.1. KYP parameterization

Theconstrainthat G (z) is positive realmaybe expressed
by usingthe KYP lemma. We associatdéo G4 (z) the con-
trollable state-spaceealization(A4, e, ¢, §), with

_| —a"
A_ |: I2N 0 ) (8)
dT: [0,&1,0,&2,0,...,0,@]\[], (9)
" =d=[do,0,d1,0,...,dn_1,0], (10)

whereey is thefirst unit vector § = 1/2 andIy isthek x k
unit matrix, and A is a stablematrix since A(z) is supposed
stable.TheKYP lemmastateshatG 1 (z) is positive real if
andonly if asymmetricmatrix P > 0 existssuchthat
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Z= P—ATPA

>0.  (11)

We noticethatall thevariablesj.e. thecoeficientsof D(z),

areconcentratedh thevectorc. Consequently(11)is alin-

earmatrix inequality (LMI), as A, ep and§ areconstants.
In orderto expressthe coeficients of the LMI, we intro-

duce the following elementarymatrices. Let E;; be the

symmetricmatrix with onesin positions (z, k) and (k, ¢)

and zeroselsavhere (indices start from zero), and denote
Air = Eit1,k+1 — Eix. Then,theLMI (11) becomes
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We maynow formulatethe optimizationproblemas
T
151’5}3)( B d (13)
s.t. Z > 0, with Z asin (12)

This is a standardSDP problemin primal (or LMI) form
andmay be solvedwith dedicatedoutines.However, it has
a large compleity, dictatedby the numberof variablesin
theLMI (aswell asby the sizeof the LMI), sincethereare
O(N?) extravariablesintroducedwith P.

3.2. Alternative parameterization

As afasteralternatve to (13) we canusea parameterization
discussedh [2][3]. A symmetricpolynomialG®(z) is pos-
itive on the unit circle if andonly if a symmetricpositive
definitematrix @ existssuchthat

gk =tr0LQ, (14)

where®;, is the elementarysymmetricToeplitz matrix with
onesonthek’th diagonalandzeroselseavhere.

The coeficients of the causalpart of the polynomial
G2 (z) from (4) areohviously linearcombinationf the co-
efficientsof D(z), i.e.

g® =Td+1t, (15)

wherethe matrix T and the vectort resulteasily from (4).
Thenew formulation,equivalentto (13), is

max B8%d (16)
d,95,Q
st. gP =tr0xQ, k=0:2N
g® =Td+t
Q>0

Thisis an SDPproblemin dual (or equality)form. Its com-
plexity is dictatedby thenumberof equalityconstraintgand
the size of ), which exceedsonly by one the size of the
LMI from (13)); we have hereonly O(N) equalities which
malesthis approactfasterthan(13).



4. OPTIMIZATION OF THE DENOMINATOR FOR
GIVEN NUMERATOR

We considernow the secondproblem, of optimizing A(z)
whenD(z) is given. Unfortunately the matrix Z from (11)
doesnot dependlinearly on the coeficients of A(z), and
thereforein orderto apply SDPwe resortto anapproxima-
tion, explainedin thefollowing.

Wereplacen (3) theterm1/A(z) by an(unknavn) FIR
approximatiori¥ (z) of orderM > N,

W(z) =wo+wiz ' +wez > +... +wnz M. (17)

Certainly by enlaging M abetterapproximatioris obtained.

Thus,insteadof G+ (z), we work with
GY (2) = % + D)W, (18)

The greatbenefitof this approachs that G (z) is anFIR
filter, for whichan SDPproblemcanbeformulated.
Dueto (18), the optimizationcriterionbecomes

M n
o> =ro+2 Z Wk Z Sip?k+1D(pi_2) =79+ ﬂgw,
k=0 i=1
(19)
i.e.islinearin thevariablew.
4.1. KYP parameterization

Thedegreeof G¥ (z) is Ny = 2(N + M) — 1. Thecon-
trollable state-spaceealizationassociatedvith G¥ (z) is
(Aw,e0,3",6), with
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whereg"’ = Vw, with V' the Toeplitzmatrix
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Denotingvy = Ve the columnsof V', and ¢, the same
columnswith zerosinsertedoetweereachtwo elementsi.e.

57’{ = [01U0k107v1k70:-"507UN+M*1,k]: (23)
the matrix Z from the KYP lemma(11) for the statespace
realization(A.,, eo, §" , §) becomes

M
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Fig. 1. The enegy compactioncriterion (¢2) for optimal
FIR[1] andoptimallIR filters designedvith thenen method
designedor aAR(16) inputsignal.

Finally, we obtainthe optimizationproblem

max ﬂg d (25)

w,P
s.t. Z > 0, with Z asin (24)

4.2. Alternative parameterization

We apply now the sameparameterizatiofrom Section3.2,
thistimefor G (), whichis thecausapartof apolynomial
positive on theunit circle. We obtain

T
@ Puw 20
st gi =trO@ui1Q, k=0:N+M—1
trQ =1, 10,Q =0, k=1: N+ M -1
gW =Vw
Q>0

Again, this problemis equialentto (25), but hasa lower
compleity.

5. THE ITERATIVE OPTIMIZATION PROCEDURE

Giventhecoeficients{S;, p; }i=1:n, Which generatehe co-
variancein (5), we iteratefor the parameterin (3).

0. Initialize: k = 0, DI%(2?) = 1, AP (2?) = 1.
Iterate:
1. Determingthenew AF*11(22) asfollows:

1.1 Solwe for w theoptimizationproblem(26).

1.2 Obtainastablepolynomial A(z) asapproximate
solutionof

2. Determingthenew D**11(22) asfollows:

2.1 Solvefor d the optimizationproblem(16).
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Fig. 2. Thevaluesof the criterionduring the maximization
with thenew methoddesignedor a AR(16) inputsignal.
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Fig. 3. Frequeng responsesoptimal FIR, optimalllR (with
thenew method),dealfilter andinput spectrum.

Until {o2}*+1I (given by (16)) is not significantly larger
than{o?}*! (at previousiteration).

At the end of the iterations, the spectralfactorization

in (4) will provide the numeratorB(z) of the enegy com-
pactionlIR filter H(z) = B(z)/A(2?).

6. EXPERIMENTAL RESULTS

For simulationswe consideredsinputan AR(16) process.

The spectrumof the input is displayedwith dottedline in
Figure 3. In the iterative procedureof Section5, the SDP
problemsweresolved by usingSDPT3package[h

In Figure2 weillustratethe behaiour of theiterative al-
gorithmfor thecaseof following structureof IIR: degD(z) =
23 anddegA(z) = 10. It canbe seenthatafterthefirst ten
iterationsthe improvementsbecomenegligible. Generally
in all testedcasesmostof theimprovementshave beenob-
tainedin thefirst two iterations.

In Figurel we presentomparisonsf o2 obtainedwith
the optimal FIR[1] andoptimal lIR filters designedvith the
new method.Onecancompareeasilythe smallgainin per
formancefor IIR filters having the samenumberof param-
etersasthe FIR filter. We illustratein Figures3 and4 the
frequeny responseof optimal FIR andoptimal IR, at the
samecriterionvalueo® = 1.9537. Evenif the samevalue
of o2 is obtained,differentkinds of approximationof the
ideal filter can be obsered (e.g. steepnessf transitions,
sidelobes).We notethat the allpassrestrictedlIR filter [4]
having twelve parametegivesthe compactiorgain1.931.
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Fig. 4. Only two plotsfrom Figure3: frequeng responsef
optimal FIR andoptimalllIR.

We finally mentiononly qualitatively therankingof the
new methodsin termsof runningtimes. The nev method
basednKYP (13),(25),is abouts timessloverthanthenen
method(16),(26)(basednthealternatve parameterization)
for thelengthof thefilters degD(z) = 10 anddegA(z) =
10; morewverfor thecasedegD(z) = 23 anddegA(z) = 10
the KYP variant could not be run on the PC we usedfor
experiments(Pentiumlll at 700MHz) while the alternatve
parametrizatiomunsin aboutl min/ iteration.
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