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ABSTRACT

This paper presents anovel robust adaptive filtering scheme based
on theinteractive use of statistical noise information and an exten-
sion of the ideas developed originally for efficient algorithmic so-
lutions to the convex feasibility problems. The statistical noisein-
formation is quantitatively formul ated as stochastic property closed
convex sets by the simple design formulae developed in this pa-
per. The proposed adaptive algorithm is computationally efficient
and robust to noise because it requires only an iterative parallel
projection onto a series of closed half spaces highly expected to
contain the unknown system to be identified. The numerical ex-
amples show that the proposed adaptive filtering scheme achieves
low estimation error and realizes dramatically fast and stable con-
vergence even for highly colored excited input signals in severely
noisy situations.

1. INTRODUCTION

In this paper, anovel direction toward efficient robust adaptive fil-
tering is addressed by recasting the similarity between one of the
major adaptive algorithms, the affine projection algorithm (APA)
[1,2,3,4,5],and astandard algorithmic solution (POCS) [6] to the
convex feasibility problem for finding a point in the intersection of
afamily of closed convex setsin areal Hilbert space[7, 8, 9, 10].
With the intent of improving the convergence speed of the
classical normalized least mean squares algorithm (NLMS) [11,
12] mainly for highly colored excited input signals, the APA was
proposed as an iterative relaxed projection onto a series of linear
varieties Vi, ¢ R (k € Z) where the unknown system param-
gter h* € RY surely exists in noiseless situations (See (3) for
the definition of the APA). Each linear variety V. is generated as
the intersection of certain number, say » € N*, of hyperplanes
determined by the instantaneous input-output relations of the un-
known system to be estimated (The NLMS, known as a variation
of the standard LMS, is the simplest APA, for r = 1, based on
an iterative relaxed projection onto a series of hyperplanes them-
selves. The rate of convergence of the NLMS is potentially faster
than that of the standard LM S algorithm for both uncorrelated and
correlated input signals [11, 12]. For recent advance on the con-
vergence analysis of the variations of the LMS algorithm, see for
example [13] and the references therein). Although it has been
reported that the increase of the number r of the hyperplanes to
generate V3, improves the convergence speed of APA, in particular
for highly colored excited input signalsin relatively high SNR, the
increase of r causes a serious growth of the computational com-
plexity. To save the computational cost of APA, a great deal of
effort has been devoted for example by using a diding windowed
FRLS[4] or selective-partial-updating techniques [3, 5].
Obviously the underlying idea of the APA isto efficiently find
a vector, as an estimate of the unknown system parameter h™* to
be identified, in the intersection of hyperplanes expected to con-
tain h*. From this point of view, the APA can be seen as a vari-
ation of the classical Kaczmarz's iterative method for system of
linear equations [8] or its well-known generalization POCS [6].
Although there is a big difference between APA and POCS be-

cause POCS repeatedly usesall the linear varieties (more generally
all the closed convex sets) but the APA does not, one of the most
important properties, the monotonicity of the estimation errors (in
noiseless case) of APA, isessentialy derived from the same math-
ematical reason asthat for the Fejér-monotonicity of the POCS[8].

However, in practice, the observed signa is corrupted by the
additive noise and thus each hyperplane has low reliability to con-
tain the system parameter h*—this causes serious instability or
notable decline of the convergence in the learning process of the
APA inrelatively low SNR.

The apparent similarity of APA and POCS suggests that a
straightforward strategy to overcome the sensitiveness of APA to
noise would be the introduction of the idea of POCS and the re-
placement of the linear varietiesin APA by alternative closed con-
vex setswith higher reliability to contain the system parameter h*.
Indeed, aswill be shown in the next section, based on the statistical
information on the additive noise, a set-theoretic formulation pro-
vides such aclosed convex set by C; := {x € RY : g;(x) < 0}
where g; : RY — R is a differentiable convex function for all
1t € I C Z. However since such a closed convex set C; is not
simple enough to have closed form expression of the exact projec-
tion onto itself, the necessary computation for such a projection is
much more costly than that of the orthogonal projection onto the
linear variety in the original APA. To circumvent the shortcoming
of POCS caused by the use of exact projections, the subgradient
projection methods have been developed as aternative algorith-
mic solutions to the convex feasibility problems [7, 8, 14]. Since
the subgradient projection methods do not require the exact projec-
tion onto each closed convex set C; but the projection onto closed
halfspaces defined simply by the gradient or subgradient of the
convex function g;, significant reduction of the computational cost
is achieved.

In this paper we propose a novel adaptive filtering scheme by
extending the ideas of an extrapolated parallel version of the sub-
gradient projection methods [14] for the iterative parallel incorpo-
ration of the noise information into the instantaneous i nput-output
relations. The monotonicity of the estimation error by the pro-
posed adaptive scheme is highly expected because of elementary
facts on the subgradient projection method. Moreover a simple
design of closed convex sets of significant effectivenessto the pro-
posed scheme is presented in this paper which also demonstrates
an essential reason why the APA is sensitive to noise.

The numerical examples show that the proposed algorithm
achieves low estimation error and realizes dramatically fast and
stable convergence even for highly colored excited speech like in-
put signalsin severely noisy situations, which ishard task even for
the RLS [12] because RLS suffers from certain model mismatch
problem causing serious degradation of the learning performance
[12].

2. PRELIMINARIES

Let Z,N and R denote the sets of all integers, nonnegative integers
and real numbersrespectively. Define, also, N* := N\ {0}. Given

N € N*, we consider the Euclidean space H := R” that is a



real Hilbert space equipped with the inner product (z, y) := z'y,

Vae,y € H, and its induced norm ||z|| := (mtm)l/Q, Ve € H,
where the superscript ¢ stands for transposition (We will also use
the same notation || - || for the standard norm defined on the differ-
ent finite dimensional space R",r € N*). A set C' C H is convex
provided that Ve, y € C, Vv € [0,1],ve 4+ (1 — v)y € C (Note
that a linear variety is a closed convex set). For any closed con-
vex set C' C H, the projection operator Po : H — C isdefined
by ||z — Po(x)|| = minyec ||z — yl||, V& € H. The mapping
Tc := I+ X(Pc —I),wherel : H — 'H istheidentity operator,
for A € (0,2) iscaledtherelaxed projection. A functiong : H —
R issaid to be convex if Ve, y € Hand Vv € [0, 1], g(ve + (1 —
v)y) < vg(x) + (1 — v)g(y). The subdifferential of a convex
function g at ¢, denoted dg(y), isthe set of all the subgradients of

gaty: dg(y) :={seH:(x—y)'s+g(y) <g(x),ve c H}.

The convex function g : H — R hasaunique subgradient at y €
H if g is(Géteaux) differentiableat y [8]. Thisunique subgradient
is nothing but the gradient Vg(y), i.e., 9g(y) = {Vg(y)}.

In this paper we elaborate on the following adaptive filtering
estimation scheme. Let (uy), ., C R. Define the input sequence
(k)pey C HaSug := [up,uk—1,... ,ur-~ny1]" € H,Vk € Z.
Forr € N*, let Uy := [tg—rt1,...,us] € RV*". Itscolumn
and row spaces are denoted by R (U ) and R (U},) respectively.
Let, also, (nk),c, C R denote the noise process. If h* ¢ H
stands for the system to be estimated, or estimandum, and n;. :=
[k, ... yne—rt1]t € R", Yk € Z, we introduce the following
linear mode! for the data process (dx), ., C R":

dy:=Uih" +n,, as, VkeZ, @

where a.s. stands for almost surely. Let h € H denote an estimate
of h*. We define then the estimation residual functions e, : H —
R", k € Z,by

exw(h) :=ULh —dy, as, VkecZ. 2
The APA scheme generates asequence (hi),. ., C R", asthe
estimates of h* in (1), by

hit1 := hy + X\ (Py, (hi) — hy),

where A\, € (0,2) and V}, isthe linear variety defined by V3, :=
arg miny, ., |U}h — di|| (NOTE: The equivalence between (3)
and the original formulation in [2] is obvious). For highly colored
excitedsignal (uy), ., inrelatively high SNR, it has been reported
that theuse of r > 1 significantly improvesthe convergence speed
of (hy) generated by the NLMS agorithm defined by (3) with
r = 1. Another characterization of V}, can be given by noticing
that 6;/2 ‘= Mminpen HUZh — dk” = HPR(UZ)(dk) - dkH
Clearly, if dv € R(U}) C R", then 6, = 0. By the fact
U! ¢ RN we deduce that if N >> r, a condition which com-
plies with the demands of nowadays applications, then R (U%},)
will most likely extend over the space R™ and thus include dj, or

at least be large enough to force §;, take values close to zero.
For the noiseless case, a simple inspection leads to

VkeZ, (3

[hri1 — R = ||(hx —h") = M Priuy) (b — 7)), (4)

which isminimized at A\, = 1. Moreover, for any A\, € [0, 2], the
monotonicity property follows:

Ih* = bl < |B° —hill, Vkelcz, ()

being one of the most desired properties for adaptivefiltering. The
property (5) isguaranteed dueto the membershiph™ € (., Vi #

@, or more generally due to the following lemma:

Lemmal Let Cry1 C H bea closed convex set satisfying h* €
Cry1 # 0. Forany by, € H and any A\ € [0, 2], define b1 =
hi+A\e (Pck+1 (hk) — hk). Then, Hh* — hk+1” < ||h* — th
In particular, [|h* — hit1] < ||h* — hi|| for A € (0,2), if
hk ¢ Ck+1.

However, in practice, the inescapable presence of noise (ny)
randomly dislocates each linear variety from its original position,
which in general makes the membership h* € (., Vi # 0
questionable. Thisis the main reason why the performance of the
APA is strongly influenced by additive noise. A very small re-
laxation parameter A (= 0.05) has been empirically chosen even
for SNR = 30dB [3]. To design therefore a robust adaptive fil-
tering scheme, the information about the noise process has to be
incorporated somehow into the formulation—a strategy that is not
followed in the APA. We do so by using the set theoretic estimation
frame [15].

Supposethat we arein the situation where (ny,) ., isthenoise
process of zero mean, independent identically distributed Gaus-
sian random variables A (0, o?), and where the estimandum h*
is perfectly estimated, i.e., hi, = h*. Then, it becomes obvious
by (1) and (2) that ex, (h*) = —ny, as, Vk € Z. Thus, the
stochastic processes (ex (h™)), o, and (—ny), ., have the same
probability theoretic properties. As a result, the random variable
€ := |lex(h™)||* followsthe x? statistic whose probability density
function (pdf) is given by

1 (r—2)/2 _—£/202 fore >0
() =4 Gvartems ¢ ’ © (6
£.(6) {Q bSHNC

The pdf f,.(&) of (6) is strictly monotone decreasing over £ > 0
for r = 1,2, whereasfor r > 3 it hasits unique maximum at £ =
(r —2)o? and £-(0) = limg_o f(€) = 0. Moreover the mean
and the variance of ¢ are given respectively by mg = ro? and
of = 2ro* [16]. In this case, the probability theoretic property
of the process (n4.), ., C R" is quantitatively formulated by the
following stochastic property set.

Cilp) = {heH: ||U;h—dk||2—pgo}, @

where p > 0 determines the reliability on the membership h* €
Cr(p) by [ f-(€)d¢ € [0, 1] (For non-Gaussian process (nx) . ;.
the asymptotic Gaussian approximation of £ based on Lindeberg's
central limit theorem was used to evaluate the above integral in
set theoretic estimation schemes [17]). By (7) and the convex-
ity of the function ||-||?>, we remark that C(p) # 0 iff 0, =
minper |ULR — dkH2 < p. Thus, by increasing p and by let-
ting N > r according to the discussion following (3), we can
highly expect h* € ,.c, Cr(p) # 0, where J is a sufficiently
large subset of Z, and thus the stable convergence of (hy), dueto
Lemma 1. Obviously the APA with A\, = 1 isbased on the projec-
tion onto Cy, (6,) = Vi in(3). Thepdf f. (&) clearly demonstrates
that the APA for » > 3 can hardly ensure the desired relation
h* e ﬂkeJ Vi # 0, even for asmall subset J C Z, causing thus
serious decline of the convergence of the APA. On the other hand,
by the properties of the pdf f1(¢) of (6), we can expect stable
convergence for NLMS with A, = 1 regardless noisy situations
because it projects onto C (6x) (k € Z)forr = 1 (0, = 0 for
ur # 0, Ci(dr) = H for u, = 0). This agrees with the H*°
optimality of the NLMS[18].

In the next section, we will show that the important idea of
finding apoint in the intersection of afamily of closed convex sets
can also serve as the key to realize an efficient adaptive filtering
scheme. The robustness of the proposed adaptive filtering design
can be achieved by the interactive use of p in Cj(p) based on the
variance of the additive noise. The problem regarding the suitable
choice of p > 0in (7) will be also addressed. It will be shown



that by assigning simple values to p, which are directly related to
r and to the variance of the noise process, low estimation error can
be realized, and faster as well as stabler convergence than the one
for APA, NLMS or RLS can be achieved even for severely noisy
situations.

3. ADAPTIVE ALGORITHM AND DESIGN OF THE
STOCHASTIC PROPERTY SETS

Given ¢ € N*, define I, := {Lgk),L;k),.. '“)} CN,VkeN,
andw, > 0, Vv € I, Vk € N, to satisfy >, er, We=1, Vk € N.
Let I := (J,en Ix. We propose thefollowmg adaptlve algorithm
and a proposition regarding the monotonicity. The agorithm is
based on the formulation given by Pierra[19] which was also used
in [14]. Since the proposed a gorithm does not require the repeti-
tive use of the information on the same closed convex set C, (p), it
can be seen as an extension of the algorithms [7, 8, 14, 19] for the
convex feasibility problem. The proof of the proposition is omitted
dueto lack of space.

Algorithm 1 (Adaptive parallel outer projection algorithm) Sup-
pose that a sequence of closed convex sets (C.(p)),o; C H isde
fined asin (7). Let ho € H and define a sequence (hs), .y C H

by
hit1=hg + pg Z w,Ps, (hi) —hy |, VEeEN, (8)
LeTy,
where S, C H isa closed convex set satisfying
Cup)C S, and hy ¢ Ci(p) = hi ¢ S, ©)

and the relaxation parameter ux, € [0, 2M ], where

Toer, wi||Ps, (ki) - e |?
) h Ly
My, = HELezk w, Pg, (hy,)—hy, “2 k ﬂbelk (10
1, otherwise.

(NOTES: M, > 1 by the convexity of ||-||>. By normalizing an
algorithm in [20], a special case of (8) for S, := C.(4,) = V.,
Vo € I, Vk € N, withr = 1 wasderived in [21].)

Proposition 1 For any ho € H, let the sequence (hy), .y C H
generated by Algorithm 1. Then, for any h* € ﬂbe,k S, (this of
courseholdsif h*™ € ,¢;, Ci(p)), [|h" — hiia|| < |R™ — hic]|.
If, in particular, pe € (0,2My) and hy ¢ (,c;, S. (< hi ¢
Nuer, Co(p) by (9), thenfor any h* € N, S, [h* — i
< |[|h* = hg].

Obviously, the critical point in Algorithm 1 is the systematic
generation of the sequence of closed convex sets S, C H, ¢ € I,
each of which must be simple enough to have closed form ex-
pression of Pg, aswell as must satisfy (9). Such a systematic set

generation is realized by applying the following elementary result
on the subgradient to the stochastic property set in (7).

Lemma 2 Suppose that a closed convex set C' C 'H is defined by

a convex functiong : H — RasC := {x € H : g(x) < 0}.
For y € H, define the closed half space H~ (y) := {x € H :
(x —y)'s+ g(y) <0}, wheres € 9g(y). Then, C C 7(y)

andy ¢ C'=y ¢ H (y)

Now, define the convex functionsg, : H — R, v € I, by
g.(h) == |Uh —d.||* — p. The function g, is differentiable
everywhere and Vg(h) = 2U, (Ulh —d.), Vh € H. Inthe
context of Algorithm 1, let S, := H, (h) := {h € H : (h
hk) S, +gL(hk) < 0} where s, := ng(hk) Vi e I, Vk € N,

The set H, (hy) is a closed half space and thus the associated
projection operator has the simple closed form expression:

P h h, h € H (hy),
H,,—(hk)( ) = h+ %3“ h ¢ H (hy).
(11)

Lemma 2 and (11) imply that if p = 6., r = 1 and hy ¢

H, ( ) then PHf(h )(hk) = 1/2 (PVL (hk)+hk) because

C.(6,) = V.. If, also q = 1, (8) becomes. hyy1 = hy +
pr/2 (Py;, (hg) — hy), whichisNLMS if pux := 2. This fact
will be used in Section 4 below.

Clearly, by (8) and (11), the proposed design is free from the
computational load of solving a system of linear equations to up-
datethe estimate h .41 from hy, unlikethe APA schemefor » > 2.
A simple inspection of the summation in (8) implies that the pro-
posed design iswell suited for ¢ concurrent processors. Dueto the
parallel implementation and the use of relaxation parameters that
are bounded by (10) the speed of convergence can be also raised.

We propose a systematic design of the stochastic property set
C.(p) based on the following simple formulae for p that rely only
on r and on the variance of the corrupting noise process (1) ¢z

Examplel (Design of Sochastic Property Sets) p1 1= me +
oe = (r +V2r)c% > ps == me = ro® > py = max{(r —
2)o%,0} (Other possible choice may be p(a) := ps + aoe, a >
0).

4. NUMERICAL EXAMPLES AND CONCLUDING
REMARKS

To compare the proposed design with the APA, the NLMS and

the RLS for estimating h* € ‘H := R**°, we use USASI signal,

stationary with a speech-like spectrum, asthe input (uy), cy (The

USASI generation routine canbefoundinht t p: / / www. ee. i ¢
.ac. uk/ hp/ st af f/ dnmb/ voi cebox/t xt/usasi . txt).

We set » = 10 for the APA frame (Of course, r = 1 for
NLMS). Although the proposed design has the freedom of employ-
ing ¢ parallel processors, for ameaningful comparison, we fix the
number of processed data for each update by rq = 10. To ensure
fair comparison, the relaxation parameters A, = 1, Vk € N, are
used for the NLMS (see (4)). For the APA, we adopt A\, = 0.05,
Vk € N, which has been employed empiricaly in [3, 5] (See also
the discussion following (7)). Regarding RLS, the initial value
Py = 1001 € R?55%256 (T denotes the identity matrix) is utilized
according to the recommendation in [12, p. 570] and the exponen-
tial weighting factor 1, Vk € N, which seemsto give the best per-
formance among our trialsisimplemented. According to the argu-
ments following (11), ur = 2, Vk € N, for the proposed design.
The degrees of freedom for implementing the proposed scheme
for ¢ € N* are represented by I, which is given in its most gen-
eral formin the beginning of Section 3. For the present numerical
tests, where rqg = 10 with» = 1 or » = 10, we focus on the spe-
cial case of Iy, := {k — ir}?_,. Moreover, we let w, := 1/q,
Vi € Iy, Yk € N. The smulaﬁlon tests are performed under
the noise situations of SNR := 10log,, (E {27} /E {ni}) =
10, 20dB, where z;, := uLh* and E denotes expectation. In Fig.
1, ||h* — hg|® /||R*|)°, VE € N, is used as the estimation er-
ror. The notations Proposed(j), j = 1,2, 3, correspond to p;,
j=1,2,3,in Example 1.

As expected, the examples show the strong degradation of
APA asthe noise level increases. NLM S exhibits stable, but unfor-
tunately slow convergence regardless SNR. The RLS suffers from
estimating the statistics of the speech like signal. The proposed
scheme seems to resolve successfully the tradeoff among speed,
stability, accuracy and complexity.
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